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Abstract P-values are a practical success but a critical fail-
ure. Scientists the world over use them, but scarcely a
statistician can be found to defend them. Bayesians in
particular find them ridiculous, but even the modern fre-
quentist has little time for them. In this essay, I consider
what, if anything, might be said in their favour.

Keywords Bayesian, hypothesis-tests, significance tests,
Jeffreys–Lindley paradox, replication probabilities.

Introduction
‘I do not believe in belief’ (EM Forster Two
Cheers for Democracy)

P-values have long linked medicine and statistics. John
Arbuthnot and Daniel Bernoulli were both physicians,
in addition to being mathematicians, and their analyses
of sex ratios at birth (Arbuthnot) and inclination of the
planets’ orbits (Bernoulli) provide the two most famous
early examples of significance tests1–4. If their ubiquity
in medical journals is the standard by which they are
judged, P-values are also extremely popular with the
medical profession. On the other hand, they are subject
to regular criticism from statisticians5–7 and only reluc-
tantly defended8. For example, a dozen years ago, the
prominent biostatisticians, the late Martin Gardner and
Doug Altman9, together with other colleagues, moun-
ted a successful campaign to persuade the British
Medical Journal to place less emphasis on P-values
and more on confidence intervals. The journal Epi-
demiology has banned them altogether. Recently,
attacks have even appeared in the popular press10,11. P-
values thus seem to be an appropriate subject for the
Journal of Epidemiology and Biostatistics. This essay
represents a personal view of what, if anything, may be
said to defend them.

I shall offer a limited defence of P-values only. I shall
argue the following:

l Certain ‘paradoxical’  behaviour of P-values is not
so much an inherent feature of P-values, but
a consequence of the fact that Bayesians can

disagree with each other (possibly quite reason-
ably) about the conclusions to be reached when
data are analysed.

l A supposedly undesirable property of P-values,
that they have moderate replication probability, is
in fact desirable.

l Even expert Bayesians can be faulted in choos-
ing their priors when presenting alternatives to
P-values.

In short, I shall conclude that if you can do better than
using P-values you should, but that to do better is not as
simple as has sometimes been implied.

Significance tests or hypothesis tests
It is often considered important in discussing P-values
to make a clear distinction between the Fisherian test of
significance and Neyman–Pearson hypothesis testing.
However, operationally at least, this distinction is less
important than is sometimes supposed.

In the Fisherian test of significance, three things are
needed for examining a hypothesis: first, a statistic that
measures discrepancy from what is considered expected,
or reasonable, given the hypothesis, second an ordering
of the statistic and third the probability distribution of
that statistic under the hypothesis. Given a particular
value of the test statistic, the probability of observing a
value as extreme or more extreme than the one actually
observed is calculated. This probability is the P-value
and is used as a measure of credibility of the hypothesis.
If the P-value is small, then Fisher invites us to consider
the disjunction: ‘Either an exceptionally rare chance has
occurred, or the theory of random distribution is not
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true’ (Ref. 12, p. 42). Using the P-value is then consid-
ered to constitute a statistical inference.

In the Neyman–Pearson theory, however, a different
approach is adopted. Null and alternative hypotheses are
identified and the task is to decide between them. Two
kinds of error thus become possible. Type I, in which the
null hypothesis is rejected although true and Type II,
where the alternative hypothesis is rejected although true.
Rules for deciding between the hypotheses can then be
characterised in terms of particular probabilities. The size
of the test is the probability of deciding that the null
hypothesis is false given that it is true. (Note that this is
not the same as the probability of a Type I error; it is the
probability of a Type I error under the null hypothesis, the
probability under the alternative hypothesis being zero
and the unconditional probability being either undefined
or some average of the two depending on one’s philoso-
phy.) The power of the test is the probability of deciding
that the alternative hypothesis is true given that it is true.
The actual business of making a decision is made using a
statistic which, if it falls in the so-called critical region,
leads to the decision, ‘reject the null hypothesis, accept the
alternative hypothesis’ and if it does not, leads to the deci-
sion, ‘accept the null hypothesis, reject the alternative
hypothesis’. Given this general framework, the further
step is then usually taken of considering rules for which
the size is fixed to be at or below some predefined limit
and the power is made to be as large as possible. Various
features of the simple theory do not hold for more complex
cases, but the task of the scientist is seen to be one of
making decisions not inferences.

The Neyman–Pearson theory is generally held to
improve on Fisher’s in that the choice of hypotheses
indicates the statistic to be employed and this is re-
garded as eliminating an arbitrary element in Fisher’s
approach: how to decide on the test statistic. This view,
however, depends on the assumption that hypotheses are
somehow more primitive than statistics, analogous to
the way in which well-chosen axioms are more funda-
mental than theorems. In Fisher’s view this assumption
is false. According to him, null hypotheses are more
primitive than statistics — but statistics are more primi-
tive than alternative hypotheses13. In practice any
attempt to operate the Neyman–Pearson theory in a way
that leads automatically from hypotheses to statistic
involves a high degree of mathematical abstraction and
the reduction of the problem to a set of alternatives
known a priori to be false. The problem of the (partial-
ly) arbitrary choice of test statistic is then replaced by
one of the (partially) arbitrary choice of alternative
hypothesis, which is usually obscured by a mathemat-
ical gloss. For example, depending on the alternative
hypothesis a probit or logistic analysis of binary data
might be indicated. But you could not know which of

these alternative hypotheses was true and only prior
experience with test statistics could suggest to you
which was a better choice. A similar problem occurs in
formal Bayesian analyses, but it is often claimed that the
model is only a convenient approximation. For the
Bayesian, with enough determination, any choice
between models can be reduced to a question of a choice
of prior probabilities, which is a purely personal matter.

In many practical applications, statistics used for sig-
nificance testing and hypothesis testing are the same,
and a hypothesis test can be carried out via a P-value, so
that if, for example, the P-value is noted to be , 0.05
(e.g. 0.037) then the null hypothesis may be rejected at
the 5% level. At the end, a function that has many pos-
sible values (the P-value function) is mapped onto a
function which has only two (the decision function). In
the hypothesis-testing framework it could then be
argued that the P-value is only a means to an end, and
irrelevant once the dichotomy has been made.

This argument depends, however, on what might be
referred to as the ‘myth of the single processor’. It
assumes that a statistical hypothesis test is either carried
out by a scientist on his own behalf only or, if per-
formed on behalf of others, for example all scientific
posterity, that he has been mandated to make the deci-
sion on their behalf as well and that he has the right to
determine the size of the test to be used. If, however,
Neyman operates tests with a size of 0.05 and Pearson
operates with a size of 0.01, then knowledge that
Neyman has rejected the null hypothesis is not sufficient
to enable Pearson to make a decision. Similarly, if
Pearson’s result is simply that he does not reject the null
hypothesis then this does not yield a decision for
Neyman. In the case of continuous statistics they should
communicate P-values to each other. (See, for example,
Lehmann, Ref. 14, p. 70). In the case of discrete statis-
tics they should communicate the P-value for the
observed result and for the next most extreme result or,
equivalently, the ‘mid-P’15,16 and the probability of the
observed result under the null hypothesis.

In short, it is not surprising that Johnstone17, in his
survey of classical statistics as actually applied, found
Neyman–Pearson theory, but Fisherian practice. The
two will always be difficult to separate.

The Jeffreys–Lindley paradox
‘Nothing in this world . . . is probable unless it
appeals to our own trumpery experience.’
(Wilkie Collins, The Moonstone)

In an important paper that appeared in Biometrika in
1957, and which has been much cited, Lindley18 elab-
orated an objection to the Fisherian test of significance
originally due to Jeffreys19. Lindley took the example of



a simple random sample (x1, x2, . . . xn) from a normal
distribution of mean q and known variance s2. He sup-
posed that the prior probability that q = q0, where q0 is
the value under the null hypothesis, was c. He further
supposed that the remainder of the prior probability was
distributed over an interval I which included q0. He then
showed that if the value of the sample mean was signifi-
cant at the a percentage point so that

x
_

5 q0 1 las / n

‘where la is a number dependent on a only and can be
found from tables of the normal distribution function.’
(p. 187), then the posterior probability that q = q0 was
given by

1 2 1 2
2 l 2 l

2 a 2 a
c
_

5 ce /{ce 1(1 2 c)s (2p / n)} (1)

Lindley then pointed out that a consequence of the for-
mula (1) is that as n increases, c

_
approaches one and

that therefore, whatever the value of c, a value of n
could be found such that if the sample mean were sig-
nificant at the a level the posterior probability that q =
q0 would be (100 – a)%.

Actually, as Bartlett20 pointed out, formula (1), which
is as presented by Lindley18, is rather curious in that it
is not dimensionless, but depends on the units of s,
which therefore needs to be expressed as a fraction of I.
To make this explicit, it needs to be rewritten in this
form:

1 2 1 2
2 l 2 l

2 a 2 a
c
_

5 ce /{ce 1(1 2 c)
I
s

(2p / n)} (2)

Once this is done it can be seen that the actual value of c
_

depends not only on c, the prior probability of the null
hypothesis, but also on the conditional probability dens-
ity over the region specified by the alternative hypothe-
sis. The paradox still applies but is no longer
‘automatic’; two Bayesians having the same prior prob-
ability that a hypothesis is true and having seen the
same data can come to radically different conclusions
because they differ regarding the alternative hypothesis.
(A particularly sharp example is given later in this
paper.) Now, this is not illogical. Indeed, from a
Bayesian perspective it is perfectly reasonable. What is
unreasonable is to regard the sort of ‘contradiction’
implicit in the Lindley paradox as a reason in itself for
regarding P-values as illogical for, to adopt and adapt
the rhetoric of Jeffreys (Ref. 19, p. 385), 

‘it would require that a procedure is dismissed
because, when combined with information which

it doesn’t require and which may not exist, it dis-
agrees with a procedure that disagrees with itself.’

The lesson from the Lindley paradox is this: knowledge
about hypotheses may make P-values inappropriate16.
Before leaving the Lindley paradox, it is worth drawing
attention to one other feature. From time to time certain
Bayesians have felt it necessary to explain why, despite
that the test of significance gives significance too easily,
nevertheless, frequentists using P-values come to rea-
sonable conclusions (in the sense of agreeing with
Bayesian conclusions). The explanation usually given is
that they tend to instinctively act as Bayesians, requiring
a stricter level of significance for larger samples. This
explanation is:

l irrelevant in Bayesian terms and 
l wrong in frequentist terms. 

The reason that it is irrelevant in Bayesian terms is that
it is no requirement of Bayesian inference that one
Bayesian’s conclusions should agree with anothers, let
alone with a frequentist’s. Coherence is the only stand-
ard by which probabilities are to be judged. Pure
Bayesianism is a theory of how to remain perfect.

The reason that it is wrong in frequentist terms is that
it presupposes that the Jeffrey–Lindley Paradox 

l occurs frequently and 
l can be recognised as having occurred. 

Now, as regards the first point, the opinion of the lead-
ing Bayesians is that the Fisherian test of significance
gives significance too easily. If this really is true, then
whenever (or at least usually, whenever) the frequentist
concludes that a result is not significant he must be
agreeing with the Bayesians. On the other hand, what
the frequentists claim about significance is still true
whether or not the Bayesians are right in regarding these
claims as irrelevant. As Fisher put it, ‘A man who
‘rejects’ a hypothesis provisionally, as a matter of habit-
ual practice, when the significance level is at the 1%
level or higher, will certainly be mistaken in not more
than 1% of such decisions. For when the hypothesis is
correct he will be mistaken in just 1% of these cases,
and when it is correct he will never be mistaken in rejec-
tion.’ (Ref. 12, p. 45.) Hence, if the world is full of true
null hypotheses, and if tests really do give significance
too easily then, using the more common standard, at the
most he can only disagree with the Bayesians 1 in 20
times. (Assuming that they never reject a hypothesis. If
they occasionally reject a hypothesis the rate of dis-
agreement is lower.) If, on the other hand, some null
hypotheses are false, then the rate of rejecting them
must increase, but if the increase leads to an increase of
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the rate of disagreement with Bayesians then this
increase must be made up of cases where the frequentist
is right and the Bayesian is wrong (if right to be wrong).
As regards the second point, the frequentist may argue
that the Lindley paradox can only be recognised as hav-
ing occurred using prior information that doesn’t exist.
Any Bayesian who recognises that the paradox has
occurred cannot guarantee that another Bayesian will
not disagree with him.

An example of Howson and Urbach’s
‘A hair perhaps divides the false and true.’ [E.
Fitzgerald, The Rubaiyat of Omar Khayam (5th
edition)]

In this section an example taken from Howson and
Urbach’s famous book21 will be considered to show that
where intuition conflicts with the result of a test of sig-
nificance, intuition may be wrong. The book summar-
ises many powerful Bayesian criticisms of frequentist
methods. For a critical review, see Senn22. For a more
sympathetic review see Gilles23.

Howson and Urbach (Ref. 21, p. 136.) consider the
example of a die, which is rolled 600 times and shows
100 sixes, fives, fours and threes but 123 twos and 77
ones. They then point out that the Pearson–Fisher c2 stat-
istic is 10.58, which, on five degrees of freedom, is not
significant. As they put it, ‘one is, therefore, under no
obligation to reject the null hypothesis, even though that
hypothesis has pretty clearly got it badly wrong, in par-
ticular, in regard to the outcomes two and one’ (p. 136,
my italics).

Before going on to discuss this example in more
detail, I note certain features that will not be primarily
relevant to the discussion. The first is that the geometry
of the die makes it a priori unlikely that if biased it
should produce an excess of twos and a deficit of ones,
whilst maintaining a rate of occurrence of other values
that would be expected from a fair die. In fact, any
Bayesian who had read Jeffreys’s chapter on signifi-
cance tests might expect a rather different apparent bias
in a die for, ‘in the manufacture of the dice small pits
are made in the faces to accommodate the marking
material, and this lightens the faces with five or six spots
displacing the centre of gravity towards the opposite
sides and increasing the chance that these faces will set-
tle upwards.’ (Jeffreys, Ref. 19, p. 258.) This is, perhaps,
an example where a single test on five degrees of free-
dom makes too little use of the likely nature of depart-
ures from fairness and I am not sure that Fisher himself
would choose to analyse these results in such a way.
(Fisher24 did, of course, analyse Weldon’s famous data
as did Jeffreys19 after him, but the data are rather differ-
ent from the Howson–Urbach ‘example’. An interesting

discussion of Weldon’s data has been given by Kemp
and Kemp25.) Nevertheless, this particular point is not
essential to the discussion and will not be pursued fur-
ther, except to note that Howson and Urbach21 them-
selves seem to have avoided thinking about the problem
explicitly in terms of alternatives deemed reasonable a
priori and the same will be done here. The second point
is that the criticism proposed here is, in a sense, the
opposite of Lindley’s. 

Lindley’s attitude is that significance is given too eas-
ily by the Fisherian significance test, especially if the
sample size is large. This is also the point of view of
Matthews, who has gone so far as to claim that the rea-
son that scientists find that some of their claims are not
confirmed subsequently is because they have been rely-
ing on significance tests10,11,26. Here, however, the test is
being criticised for not giving significance easily enough.

The third point is that Howson and Urbach confus-
ingly cite a paper of Good’s27 on goodness-of-fit tests in
support of their argument. However, Good’s paper deals
with a different matter altogether: that of determining
goodness-of-fit when the values are continuous and the
number of categories (histogram bins) has been deter-
mined arbitrarily. What can we say about the example of
Howson and Urbach21? The problem, of course, is that
we have six parameters to fix, q1, q2, … q6 subject only
to the constraint that they should all add to 1 and this
gives a large constellation of possible likelihoods to
examine. We can, however, compare the value of the
likelihood under the null hypothesis with the largest
value it can possibly obtain.

The likelihood is proportional to:

q1
77 3 q2

123 3 q3
100 3 q4

100 3 q5
100 3 q6

100 (3)

Under the null hypothesis we must substitute 1/6 for
each of the parameters. To obtain the maximum we sub-
stitute the observed ratios for the parameters. Clearly, if
we then calculate the ratios of these two likelihoods,
only the terms for parameters q1 and q2 are relevant
since the observed ratios for the others are, in fact, 1/6.
The ratio then reduces to

(77/100)77(123/100)123 °2 208.

However, for a Bayesian to accept this as overwhelming
grounds for disbelieving the null hypothesis has several
consequences. Suppose, for example the results of
rolling the die had been 89 ones, 113 twos, 111 threes,
85 fours, 116 fives and 86 sixes. For this second example
the ratio of the likelihood is 234 to 1 and the
Pearson–Fisher c2 is 10.88. If, therefore, the Bayesian
accepts the first example as definitely exposing the null
hypothesis as scarcely credible (s)he must then either:



l regard the null hypothesis as even less credible for
the second example

l claim that these ratios are not particularly relevant
or

l produce an argument in terms of priors as to why
the null hypothesis is, after all more credible for
the second example.

What can the classical statistician say about this ex-
ample? (S)He can point out that twice the log of the
likelihood ratio has approximately a c2 distribution, so
that the likelihood ratio c2 for the first example is 10.7.
For the second it is 10.9. We may now note the following
points:

l The likelihood ratio c2 is very similar to the
Pearson–Fisher c2.

l None of these c2 are significant at the 5% level.
l If you accept that for example 1 the ‘null hypothe-

sis has pretty clearly got it badly wrong’ and if
you accept likelihood as your guide, you will,
whenever you roll a fair die 600 times, come to
this conclusion with a probability in excess of 1/20.

Now, it must be conceded that the third point is not ne-
cessarily unreasonable. You may, indeed, believe the
world to be full of curiously biased dice. I suspect, how-
ever, that many people will, at first sight, find the first
example gives more convincing evidence against the
null hypothesis than the second. The reason they will do
so, is not that they are Bayesians with strange priors,
rather than frequentists, but that if they are Bayesians
they are bad Bayesians and if they are frequentists, bad
frequentists.

What I think happens with this example is the follow-
ing: the problem is redefined once the data are in. The
extremely good fit for the numbers three to six causes
their evidence to be mentally dismissed as irrelevant, as
is the fact that the total of one and two is exactly as
expected for a fair die and the problem, which was orig-
inally one of testing the fairness of the die against any
possible departure, is replaced by one of testing its fair-
ness against the specific departure observed. In frequent-
ist terms this is easily explained: a c2 with five degrees
of freedom is illegally reduced to one with one degree
of freedom. In Bayesian terms one could say that some
principle of total information is being violated: the 400
rolls of the die that give good support to its fairness are
ignored and only the 200 that do not are accepted. Alter-
natively, the problem may be regarded as being one of
using the data twice: once to define the hypotheses and
then again to assess them. As Jeffreys’s correspondence
with Fisher shows, he would regard the problem as being
one of debating, ‘a motion not before the House’28.

In fact, one can go further: a Bayesian analysis would
probably not conclude that the die is biased, especially
if what Cox has called a ‘plausible hypothesis’29 and
what Berger and Delampady refer to as a ‘point hypoth-
esis’30 is being tested. (Berger and Delampady also con-
sider a more general class of precise hypotheses that
includes point and small interval hypotheses.) For such
a Bayesian hypothesis test, a lump of prior probability
would be placed on the die’s being perfectly fair and the
rest of the probability would be smeared over the rest of
the possibilities. It is this smearing that causes the
Bayesian significance test to be so conservative com-
pared with the frequentist one. Although the likelihood
ratio of 208 noted seems particularly impressive, we
must not forget that the parameter combination under
the alternative is, of course, that corresponding to the
maximum likelihood solution. By definition, for every
other parameter combination under the alternative there
is less evidence against the null and the proportion of
the parameter space for which the ratio of likelihoods is
, 1 (that is to say in favour of the null hypothesis) is
enormous. Of course, depending on the prior, some of
these combinations would be believed unlikely. Never-
theless, careful consideration of this point suggests that
Howson and Urbach would be hard put to come up with
a prior that did suggest that the null hypothesis pretty
clearly had got matters wrong in the case of their die
without rendering the Bayesian test of significance vul-
nerable to failure to detect other curious patterns of
departure. Your prior probability has to add up to one
and you have to spend it wisely.

Consider, for example, an extremely interesting pro-
posal of IJ Good’s regarding the analysis of data from
multinomial distributions31. Good suggests that one
might use a symmetric Dirichlet distribution with para-
meter k as a prior over the region of the alternative
hypothesis for the purpose of constructing a Bayes fac-
tor for comparing null and alternative. He calls such a
probability model, a prior conditional on a given value
for a parameter, a ‘Type II model’. The probability dis-
tribution of the data conditional on a given combination
of prior parameters is a ‘Type I model’. As Good points
out, in practice, to use such a Type II Bayes factor (the
likelihood ratio might be regarded as the maximum
Type I factor) we have to commit ourselves to a particu-
lar value of k. We may feel happier by going to an even
higher level, Level III, at which we also postulate a prior
distribution for k. This would enable us to produce a
Type III Bayes factor. In practice, however, this may be
difficult and we might prefer to examine the Type II
Bayes factor instead as a function of k, possibly paying
particular attention to its maximum.

Suppose that we have such a Level II symmetric prior
with parameter k for a multinomial Type I probability
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distribution. Good shows31 that the Type II Bayes factor,
F(k) is given by:

t ni21 N21

F(k) 5 [ P P {1 1 j / k}] / P {1 1 j / (tk)} (4)
i51 j51 j51

where ni is the frequency in cell i, t is the number of cells,
N is the total of the frequencies and, by convention,

ni21

P {1 1 ( j / k)} (5)
j51

is to be assigned the value 1 when ni 5 0 or 1.
Figure 1 shows a plot of F(k) against k for the ex-

ample originally considered by Howson and Urbach2

and for the alternative example suggested above. It will
be noted that:

l Just as was the case for c2 and likelihood ratio stat-
istics, and whatever the value of k chosen for the
prior, the Type II Bayes factor is more against the
null hypothesis for the second example than that
originally considered by Howson and Urbach.

l Concentrating on the Howson and Urbach ex-
ample, however, we note that unless k is . 20 then,
according to the logic of the Bayesian significance
test, the results provide no evidence against the
null hypothesis. For example for k # 5.7, the pos-
terior odds of the die’s being fair are $ 10 times
what they were to start with.

l The maximum value of F(k) is attained at about
k 5 88, at which point it equals about 2.5. In other
words, if you start with odds of evens that the die is
fair, then under the least favourable value of k for
the null hypothesis, your posterior odds on the die
being biased will be about five to two.

The statement by Howson and Urbach that ‘the c2 test
has pretty clearly got it badly wrong’ seems, in the
light of these results, rather extreme, to say the least.
If that is what they think of the c2 test there must be
lots of Bayesians (those with the wrong values of k)
who would get it even more badly wrong than the c2

test. Of course, if you believed a priori that this die
might be one that some philosophers, who were plan-
ning to show the c2 test in a bad light, were intending
to roll, then you might be able to arrange to have a
prior with peaks at all 30 possible combinations (1
and 2, 2 and 1, 1 and 3 and so forth) of probabilities
of 77/600 and 123/600, these being the limits that just
aren’t significant and probability zero elsewhere
(except on the null). Such a prior would yield a Bayes
factor of about 7.5 against the null hypothesis for the
philosopher’s die. This is impressive, but of course the
prior leaves you very vulnerable if other sorts of indi-
viduals, say statisticians, are tampering with dice. If
you believed that it was possible that the philosophers
had actually falsified the data themselves, then much
more impressive odds could be arranged. For a real
die, however, the c2 result observed does not seem
exceptional22.

An example of Lindley’s
The danger the significance test appears to be avoiding
in the previous example is that of over-reacting to
chance events. A formal Bayesian analysis can, of
course, deal with this problem, but it requires updating
of a prior established before encountering the data and
this prior then commits the analyst to a particular given
posterior for every data-set, not just the data-set seen. It
appears to be rare that a Bayesian will actually commit
him or herself to a single prior beforehand. More popu-
lar nowadays seems to be what might be described as
subjunctive Bayes: a range of different priors are
assayed and the posteriors they give rise to are exam-
ined. The analysis is then of the ‘what if’ form. ‘What if
this had been our prior? Why, then this would be our
posterior.’

This form of statistical analysis has many attractions,
but also some dangers, and is rather difficult to justify in
terms of Bayesian coherence. It seems to be a retreat
from pure subjectivism but pure Bayesianism is subjec-
tive but not subjunctive. However, Lindley himself, in a
paper that starts with a detailed examination and criti-
cism of the Fisherian test of significance, has published
his prior for a lady tasting wine32. Since this is a
Bayesian attempt to provide an alternative solution to
the sort of problem for which significance tests have
famously been illustrated33, it seems reasonable to
examine how successful Lindley’s purely subjective
Bayesian solution is.
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Howson and Urbach Modified example
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Fig. 1 Good’s Type II Bayes factor for the Howson and
Urbach die-rolling example.



Lindley supposes that a lady who has a qualifica-
tion in wine-tasting claims to be able to tell claret
from Californian wine with the same grape mix. She
is given six pairs of glasses in a blind experiment and
asked to distinguish which member of each pair is
French and which is Californian. Lindley’s prior for
her probability of correct identification is given by
f(q) 5 48(1 2 q)(q 2 1�2), 1�2 , q , 1. This is a beta
distribution, modified to cover the range 1�2 , q , 1
and its mode is at 0.75. The probability density function
is shown in Figure 2.

Lindley then shows how this prior belief may be
updated in a Bayesian approach given any particular
result of the experiment. (He proposes testing the lady
with six pairs of glasses.) For example, if the lady gets
five pairs right and one wrong, then the probability dis-
tribution for 6 is proportional to (1 2 q)2 q5 (q 2 1�2).
This analysis is, of course, beyond reproach in the sense
that if coherence is your guide then, having once
expressed the prior, the posterior probability statements
must be as given by Bayes’ theorem.

Lindley goes further, however, he actually expresses
the hope that the reader will agree with him regarding
the prior. However, my prior, to the extent that I can
identify it, is almost the opposite of Lindley’s. I think,
that either the lady is justified in her belief in her dis-
criminatory powers or she is misguided. If the former is
the case, then I believe that she will repeat the trick of
identifying the correct member of a pair with high prob-
ability; if not, she is guessing and will have a probability
near one half. Her qualifications merely make the for-
mer more likely than it would be otherwise. Like
Lindley, in a previous examination of this problem34 I
would also allow a small probability for her having a
fine palate but a poor knowledge, so that she consistent-
ly labels the wrong member of the pair as Californian.
Thus I require a prior with a considerable lump around
0.5, a considerable smear in the vicinity of 0.95 (say)
and a smaller smear near 0.05. Something of the sort is

illustrated in Figure 3, where the rectangle in the middle
is supposed to represent a lump of probability on the
exact value 0.5. (An alternative might be to regard this
as a further concentrated smear of probability density
very close to 0.5.)

Let us imagine a suitable way of deciding if you can
accept Lindley’s prior. Suppose that we can arrange to test
the lady 20 times over a suitable period. Just to make it
interesting suppose that you will be given £100 000
at no cost to you if you can correctly predict which of
the following mutually exclusive and exhaustive events
will occur. 

l Event A: the lady guesses correctly for 12 to 16
pairs of glasses inclusive. 

l Event B: the lady guesses correctly for 0 to 11 or
17 to 20 glasses inclusive. 

If you prefer to bet A, then at least as regards this con-
crete test, you are with Lindley, whose predictive prob-
ability of event A should be

16 1 NS # 48(1 2 q)(q 2 1�2) ( ) qX (1 2 q)N2X dq 5 0.53
X512 1/2 X

(6)

It is a necessary but not sufficient test of the suitabil-
ity of Lindley’s prior for you that you must prefer bet A.
If you prefer B, then you cannot accept his prior.

A comment of Goodman’s
In an interesting paper in Statistics in Medicine,
Goodman has calculated the probability of repeating a
significant result (at the 5% level) given a particular
P-value given two different sets of assumptions35. First,
that the true difference is the observed difference from
the first experiment and second on the assumption that
there was an uninformative prior for the treatment effect
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prior to the first. For both of these cases, if the P-value
is 0.05 the probability of a repetition is 50%. If the
P-value is 0.01 the probability of a repeated significant
result is 0.73 and 0.66 respectively.

This demonstration is useful, but one should be care-
ful in regarding it as showing the unsuitability of P-
values. For example, Goodman does not mention that this
property is shared by Bayesian statements. This is obvi-
ous when one considers the history of P-values. One-
sided P-values were calculated long before the Fisherian
revolution and given a Bayesian interpretation as the
probability that the true treatment difference was in the
opposite direction to that observed given a uniform prior.
(For example, the probability that the treatment was, after
all, inferior to placebo even though the difference in this
trial was in favour of treatment.) This means that, under
this interpretation, the one-sided P-value is the Bayesian
probability that a trial of infinite size would produce a
treatment effect in the opposite direction to that
observed. In other words, there is a 95% probability that
an infinitely large trial would show that treatment was
superior to placebo if the one-sided P-value in favour of
the treatment is 5%. Such a demonstration, being based
on an infinite trial would be conclusive.

But the repetition probability that Goodman considers
differs from this probability in two important ways36.
First, the trial to come is not of infinite size and second
the probability is not for the event that the sign of the
treatment effect from the second trial is concordant with
the first. Instead, what Goodman requires is the prob-
ability that the ‘evidence’ from the second trial taken
alone should have the same value as that from the first.
But two trials, both significant at the 5% level, are more
impressive than one and what Goodman is requiring is
that a single significant P-value should carry with it the
near certain promise that a second will follow. This is,
however, a highly undesirable property. The inferential
value of one trial is the value of one trial, not the value
of two. Anticipated evidence is not evidence, nor do we
want it to be. To expect that it is, is to make exactly the
same mistake that physicians make in saying, ‘the result
was not significant, p 5 0.09, because the trial was too
small’.

In fact, P-values are not unreasonable objects from a
Bayesian perspective, given an uninformative prior,
therefore Goodman’s demonstration of their behaviour
under these circumstances cannot be taken as a relevant
(Bayesian) criticism of their behaviour. This is not to
say that their use is justified to the Bayesian, although
those who favour subjunctive Bayes (see above) may
find a use for them. However, their unreasonableness
depends on an uninformative prior being inappropriate.
Changing the prior will make a posterior statement in-
appropriate. In this sense, P-values can be rendered

inappropriate to the Bayesian because posterior state-
ments can be inappropriate, not because P-values are not
Bayesian statements. In moving away from P-values,
however, it must be understood that sharp disagreement
between Bayesians is possible.

Consider an example. Two scientists are jointly
involved in testing a new drug and establishing its treat-
ment effect, d, where positive values of d are good. The
variance of the response in this group of patients is
known to be about one. Scientist A has a vague prior
belief regarding d, which is described by a normal
distribution with mean zero and standard deviation 25.
Scientist B has exactly the same distribution as regards
positive values of d, but is less pessimistic than A as
regards the effect of the drug. If it is not useful, she
believes that it will have no effect at all. Thus, the two
scientists share the same belief that the drug has a posi-
tive effect. Given that it has a positive effect, they share
the same belief regarding its effect. They share the same
belief that it will not be useful. They differ only in belief
as to how harmful it might be.

A clinical trial is run with 70 patients per group and
the observed value of d is found to be d 5 0.28, corres-
ponding to a standardised difference of 1.65 and a one-
sided P-value of about 0.05. What is the probability that
the drug does not have a positive effect? The answer is
1/20 (Scientist A) but the answer is also 19/20 (Scientist
B). (Details available on request.) Not only do the two
scientists not agree, but from a common belief in the
drug’s efficacy they have moved in opposite directions.
(It is interesting to note that the less pessimistic of the
two scientists ends up being the more sceptical. But one
should be careful: utility has not been included in the
formulation.)

Sample size: a serious difficulty
It needs to be stressed that, although the rank order cor-
relation between P-values and likelihood ratio can be
perfect for tests based on continuous statistics, provided
the precision is constant, as is, in fact, implied by the
Neyman–Pearson lemma, this is not true where preci-
sion varies. This is, of course, well known to Bayesians,
but is worth repeating.

Consider a clinical trial of a treatment effect D, com-
paring two groups where it is desired to test H0: D 5 0
against H1: D 5 d, d . 0 using a test of size a. Let d be
the observed difference, assumed normally distributed,
and suppose that the known variance is one. In that case
the critical value, c, of d is:

c(n) 5 za 2/n (7)

where za is such that 1 2 F(za) 5 a and F(.) is the nor-
mal distribution function. The log of the ratio of the

Ö
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likelihood under H1 compared to H0 as a function of d is
given by:

L(d) 5 (2n / 4)(d2 2 2dd ) (8)

This is an increasing function of d. Substituting, how-
ever, a critical value (7) for d in (8) and then looking at
the log of the ratio of likelihoods as a function of n we
have

L(n) 5 (2n / 4)(d2 2 2dza 2/n ) (9)

(9) is not, however, a monotonic function of n. Figure 4
plots both critical value c(n) and the log ratio of likeli-
hoods L(n) for this example, for the case where A 5 1.
It will be seen that, although the critical value is a
decreasing function of n, L(n) increases at first but then
decreases. Further discussion of this can be found in
chapter 13 of Statistical Issues in Drug Development.37

In fact, contrary to what is often stated about the
Neyman–Pearson theory, it seems most problematic
when used to compare two simple hypotheses. A good
discussion of this is given by Howson and Urbach (Ref.
21, chapter 7). This carries over to P-values if these are
used in comparing the null hypothesis against a simple
alternative. The consequence of this is that P-values can-
not be used to compare across samples of different sizes
if the alternative hypothesis is known. As Barnard puts
it, ‘P-values are useful in situations where the problems
discussed are relatively unstructured’ (Ref. 16, p. 610).
In fact, I cannot think of any case where the alternative
hypothesis is known in drug development, although
some similar inferential problems can arise in equiva-
lence trials if an attempt is made to apply
Neyman–Pearson theory for very low precision (Ref.
37, chapters 15 and 22).

One cheer for P-values?
‘I found an altar with this inscription. TO THE
UNKNOWN GOD’ (Acts, ch. 17, v. 23)

‘On the whole it may be admitted that the pedestrian
should cant’ a map but . . . he should always
cherish the thrilling and secret thought that it may
be all wrong.’ (GK Chesterton)

The lesson should be clear. Tail area probabilities are
not appropriate for comparing two precise hypotheses.
For comparing what Cox has called dividing
hypotheses29, hypotheses of the form H0: t . 0 and H1:
t . 0, they may have a use. Indeed, they even have a
Bayesian interpretation. A one-sided P-value then corres-
ponds to a posterior probability that t . 0 given a uni-
form prior. As a piece of subjunctive Bayesian
reasoning this may be of interest. Indeed, it is precisely
with this prior in mind that Student, who was a
Bayesian, felt that it was important to go to the consid-
erable labour of tabulating the integral of his distribu-
tion, rather than merely providing the formula for its
density38.

On the other hand, if you are perfect, any use of any
inferential device other than that of Bayesian updating
of your subjective prior cannot be recommended. How-
ever, you should be aware that phrases such as ‘back to
the drawing board’ are forbidden to you. Furthermore
you cannot become perfect. If you are incoherent you
remain incoherent: the number of incoherencies can
only grow with time, unless the striking out of priors is
acceptable. However, to accept that striking out of priors
is legitimate is to accept that the striking out of posterior
statements is also legitimate (since all priors are also
posteriors with respect to some other experience) and
hence that Bayesian updating is not necessary.

If, on the other hand you see statistical inference as
providing a set of tools, not an all-embracing method,
and believe that being locally Bayesian can be an excel-
lent thing but that being globally Bayesian is almost
impossible, then means of checking assumptions
become interesting. One such means is the P-value and,
indeed, the pioneering neo-Bayesian IJ Good accepts
such a (limited) role for it27. It is best regarded, in my
view, as ‘the sceptic’s concession to the gullible’. The
gullible concentrates on the particular, peculiar pattern
observed, as in the die-rolling example. Good points out
that in code-breaking circles such an observed, but not
anticipated, pattern was referred to as a kinkus. The psy-
chological danger to which the gullible is vulnerable is,
effectively, to adopt the maximum likelihood solution as
the alternative hypothesis. The prior probabilities have
not been specified. (And people tend not to specify their
priors. It is my view, however, that attempting to be a
subjective Bayesian and not specifying your priors prior

Ö
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to seeing the data can be very dangerous.) Therefore, the
option of integrating the likelihood over the region of
the alternative is not available. All that the sceptic can
counter with is a warning as to what the general conse-
quences will be of a behaviour that regards this sort of
thing as significant.

For this purpose, a different type of measure altogether
is needed. The P-value measure can be regarded as a
sort of crude surprise index. Indeed, Matthews himself
uses it in this way without even noticing that he has
done so26. In referring to an experiment of Millikan’s
and comparing his determination of the charge of the
electron to the modern value he says ‘. . . the discrepan-
cy is so large that the probability of generating it by
chance alone is less than 1 in 103’. Matthews’s purpose
here is to draw attention to the effect of subjectivity in
science and he uses a surprising result to do so, but his
one in 103 is nothing more nor less than a P-value.

But one also has to be very clear about the cost of
using this sort of measure. A P-value of 0.025 for a one-
sided test corresponds, in the case of a normally distrib-
uted test statistic with known variance, to a value of
about six of the likelihood ratio37. This is true whatever
the sample size, but the best-supported alternative
hypothesis changes with the sample size, getting closer
and closer to the null as the sample size increases. Thus,
P-values should not be considered alone, but in conjunc-
tion with point estimates and standard errors or confi-
dence intervals or, even better, likelihood functions.

But a P-value of 0.05 does correspond to a very low
standard of evidence. There are two points to make in
connection with this. If you wish to be Bayesian then, as
Jefrreys19 pointed out, there is no independent principle
of parsimony. Simpler models are to be preferred to
more complex ones, because they are inherently more
probable and the parsimony is reflected in, and hence
consumed by, the choice of prior probability (Ref. 19,
p. 119). It thus follows that complex models are to be
preferred to simpler ones as soon as they become more
probable. Hence, as a Bayesian, at least one of the
thresholds of significance you ought to use is a probabil-
ity of 0.5. The probability of 0.95 is already a much
more stringent requirement. I mention this because
some Bayesians in criticising P-values seem to think
that it is appropriate to use a threshold for significance
of 0.95 of the probability of the alternative hypothesis
being true26,30. This makes no more sense than, in mov-
ing from a minimum height standard (say) for recruiting
police officers to a minimum weight standard, declaring
that since it was previously 6 foot it must now be 6
stone.

The second point is that, contrary to what is usually
implied (see for example Matthews26), significant
P-values are rarely used by medical statisticians to

persuade clinicians against their better judgement that
treatments are effective. On the contrary, relying on
‘intuition’, as for example Howson and Urbach stated
they did with their die (Ref. 21, p. 136), scientists are all
too ready to call results significant. In 8 years in drug
development, during which time I was guilty of produc-
ing hundreds of P-values, in addition to thousands of
other statistics, I can only think of two occasions where
I found myself defending a significant P-value against a
contrary judgement. The first occasion concerned an
equivalence trial comparing two doses of a new formu-
lation to a standard. This trial was for internal decision-
making. If a Bayesian formulation had been used, the
presumption of equivalence would have been much
stronger than for the conventional placebo-controlled
trial. Despite apparent equivalence in efficacy there was
a significant difference in a key tolerability measure, to
the detriment of the new formulation. The clinicians
were convinced that this result was of no consequence. I
cautioned against assuming that it was necessarily a
fluke. The further development of this formulation was
later abandoned as a result of spontaneous adverse toler-
ability reports and this was eventually traced to a manu-
facturing difficulty that was causing over-dosing.

In the second case, a rival company’s drug, that had
been studied many times and was believed to have a
duration of 6 h showed a (just) significant effect at 12 h
compared with a placebo. The investigator with whom
the trial had been placed wanted me to reanalyse the
trial using a non-parametric procedure to make this
‘mistake’ go away, claiming that it would jeopardise his
ability to publish. (A rare example of non-significance
being preferred. However, the result for our product was
highly significant anyway.) I refused, pointing out that
this was almost certainly a fluke, but had to be interpre-
ted together with all the other trials. This was certainly a
case where a Bayesian analysis would have been able
to swamp the evidence from this trial, but as the point
estimate and standard error were reported from this
trial the information needed was there for anyone who
wanted to update a prior. (Certainly my posterior distri-
bution would have been useless to them.) Maybe I
over-estimated the scientific maturity of the investigator.
Although the company report produced the analysis
originally proposed in the protocol, the investigator
independently published his account using the analysis
that made the unwanted significant P-value ‘go away’.

In summary, my advice regarding the use of P-values
is as follows.

l Do not rely on P-values alone.
l Use likelihood as well.
l Report point estimates and standard errors (or

confidence intervals).
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l Where extra precision is required, it will be worth
making a more stringent requirement for signifi-
cance rather than consuming all of the increased
precision in increased power.

l Consider also using Bayesian methods.
l If you are in the habit of using P-values, acquire

some familiarity with their behaviour under the
alternative hypothesis39–41.

l If, having used a Bayesian technique and found
little evidence against the null, you nevertheless
find that there is a low P-value, consider if there
might be any feature of the problem you have
overlooked.

Finally, I give the last word to RA Fisher. 

‘. . . tests of significance are based on hypothetical
probabilities calculated from their null hypothesis.
They do not generally lead to any probability
statement about the world but to a rational and
well-defined measure of reluctance to the accept-
ance of the hypothesis they test’. (Ref. 12, p. 47)
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