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Plotting with confidence: Graphical comparisons
of two populations

By KJELL A. DOKSUM
Department of Statistics, University of California, Berkeley

AND GERALD L. SIEVERS
Department of Mathematics, Western Michigan University, Kalamazoo

SUMMARY

Statistical methods that give detailed descriptions of how populations differ are con-
sidered. These descriptions are in terms of a response function A(x) with the property that
X + A(X) has the same distribution as ¥. The methods are based on simultaneous confidence
bands for the response function computed from independent samples from the two popula-
tions. Both general and parametric models are considered and comparisons between the
various methods are made.

Some key words: Behrens—Fisher model; Confidence bands; Empirical probability plot; Nonlinear
model ; Q—Q plot; Response function ; Shift function ; Two-sample problem.

1. INTRODUCTION

We consider the problem of comparing two populations with distribution functions #
and G on the basis of two independent random samples X, ..., X,, and¥;, ..., ¥, respectively.
Instead of the usual shift model where F(x) = G(x +0) for all z, we treat the general case
where F(x) = G{z+ A(z)} for some function A(z). If the X’s are control responses and the
Y’s are treatment responses, A(z) can under certain conditions be regarded as the amount
the treatment adds to a potential control response x (Doksum, 1974). Since it gives the
effect of the treatment as a function of the response variable, we call it the response function.
Under general conditions it is the only function of x that satisfies X +A(X) ~ ¥, where
~ denotes distributed as. Thus A(.) is the amount of ‘shift’ needed to bring the X’s up to
the Y’s in distribution and it is also referred to as the shift function.

Assume that F and @ are continuous. Let F-1(u) = inf{z: F(x) > u} be the left inverse
of F. Then we can write .
Ax) = @YF (x)} —.

If in fact a shift model holds, that is, F(x) = G(x + ) for some constant 6, then A(z) = 6.

A natural estimate of G-YF(x)} is G, Y{F,,(x)}, where F,, and @, denote the empirical
distribution functions based on the X and Y samples. The @-@ plot considered by Wilk &
Gnanadesikan (1968) is essentially G,1F,, evaluated at the X order statistics. Doksum
(1974) referred to it as the empirical probability plot and derived the asymptotic distribu-
tion of A(z) = G Y{E,,(x)} —=.

Suppose that a beneficial treatment leads to large responses. Then certain natural
questions arise: (i) Is the treatment beneficial for all the members of the population, i.e. is
A(x) > 0 for all z? (ii) If not, for which part of the population is the treatment beneficial,
i.e. what is {x: A(x) > 0}?

This kind of model in effect also yields information about how the treatment works and
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about which statistical analysis is appropriate. Thus the following questions are of interest:
(iii) Does a shift model hold, i.e.is A(z) = 6, for some 6 and all ? (iv) If not, does a shift-scale
model hold, i.e. is A(x) = a + Bz, for some o and £ and for all x?

These questions can be answered by giving a confidence band [A(x), A*(z)] for A(x),
simultaneous for all z. Thus (i) is answered in the affirmative if A, (x) > 0 for all , (ii) has
solution {z : Ay (x) > 0}, (iii) is rejected if no horizontal line fits in the confidence band, and
(iv) has a negative response if no straight line fits in the band. Note that the first two
answers only required a lower confidence bounda,ry Ay ().

Such confidence bands have been considered by Doksum (1974), Switzer (1976), and
G. L. Sievers in an unpublished report. Switzer and Sievers derive a band based on the
two-sample Kolmogorov—Smirnov statistic and thereby obtain the exact confidence co-
efficient of the band of Doksum (1974). Similar bands have been considered by Steck,
Zimmer & Williams (1974) in connection with the acceleratlon function’ GF-1. Here we
consider bands based on statistics of the form

sup | F(@) — Gn()| [P{ Hy ()}

an<z<
where N = m+n, A = m/N and Hy(x) = AF,,(x) + (1—A) G,().
Efficiency comparisons are made between such bands in terms of squared ratios of
widths, and it is found that the choice of y(u) = {u(1—u)}} leads to an efficient band.
If a location-scale model can be assumed, a band which improves on thé above general
bands is constructed from order statistics and its asymptotic efficiencies with respect to
‘the general bands are given.
For the normal Behrens—Fisher model, the likelihood ratio band is derived when n = m,
and it is shown to be much more efficient than the general bands in the normal model. A
band based on the maximum likelihood estimate of A(x) is also considered for this model.

2. NONPARAMETRIC SIMULTANEOUS CONFIDENCE BANDS FOR THE RESPONSE FUNCTION

In the nonparametric case, it is natural to construct confidence bands for A(x) using
pivots based on the empirical distribution functions F,, and G,."The key to finding such

pivots is that G, ,, defined by
Gan¥) = G.{AW) +5}

is distributed as the empirical distribution of a sample of size n from F'. Note that
G{A®) +y} = [no. of Y; < G-YF(y)})/n = [no.of F-H{G(X;)} < yl/n
and that F—l{G'( Y)} has distribution F.
Now if ¢(F,, G,) is a distribution-free level & test function for H,:F = @, then
’ {A()¢( m’GA,n) = O} (1)
is a distribution-free level (1 — o) confidence region for the response function A(.).

These regions will reduce to simple bands if we consider distribution-free test statistics
T(F,,@G,) with the property that the inequality 7'(F,,, G,) < K is equivalent to

h*{Fm(x)} = n(x) = k*{ m(x)} (2)
for all , for some functions A, and h*. Typically these functions are nondecreasing. For
instance, let N. = m +n, M = mn/N and suppose

T(Fy,Gy) =Dy = Mt Supa:lFm(x) - Gn(x)"
the Kolmogorov—Smirnov statistic. Then ky(z) = —K/M? and h*(x) = « + K| M?.
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From (2), we derive confidence bands as follows. Let G,;1(u) and G, T(u) = sup {z: G, ()
< u} be the left and right inverses of &, and suppose that K is chosen so that
rrr_AT(F,,G,) < K} =1—a. (3)
Then, simultaneously for all «,
1—a = prp_{T(F,, 6,) < K} = prp, {T(F, Ga,0) < K}
= ol {Fp(@)} < G n(®) < BHE, @)}]
— Py, ol @)} < GufA@) +2} < BHE,@))]
= prp (G [h{ (@)} ] — 2 < A(x) < GRI[A*{F,,(2)}] —2).
Thus we have the following theorem.
THEOREM 1. If (2) and (3) hold, then
[ had B @)} —, GrIR*(E (@)} — ) (4)

as x ranges from — oo to o0 gives a level (1 — o) simultaneous, distribution-free confidence band

for the response function A(x).
Now suppose that K , has been chosen from the Kolmogorov-Smirnov tables (Pearson

& Hartley, 1972, Table 55) so that pry_o(Dy < Kg,) = 1—c.

Remark 1. A level (1—«) simultaneous distribution-free confidence band for A(x)

(—o0 < & < 0) is given by
[G'I—Ll{Fm(x) - KS,a/M%} -, G;I{Fm(x) + KS,@/M%} - x)'

This band, which we call the § band and denote by [Sy(z), S*(x)), was obtained by
Switzer (1976) and by G.L. Sievers and should replace a similar band given by Doksum
(1974).

Let [t] denote the greatest integer less than or equal to ¢; let () be the least integer greater
than or equal to £; let X (1) < ... < X(m)and Y (1) < ... < ¥Y(n) denote the order statistics
of the X and Y samples, and define Y(j) = —co (j < 0) and Y (j) = oo (j = n+1). Then the
band (4) can be expressed by

i -[r(Gn (i) @) o

for xe[X(), X(#+1)) (¢=0,1,...,m) with X(0) =—oc0 and X(m+1)=co. This rep-
resentation was used to produce Fig. 1 where the S band,

[8, (x), 8*(x)) = [Y{<n (-’”-b —Ks,a/M%)>} —z, Y{[n (”% +Ks,a/M%)] + 1} —x),

is given for X and Y samples from N(0, 1) and N(1, 4) distributions, respectively. In this
figure, m = n = 100 and & = 0-05.
The general method can also be applied to a weighted sup norm statistic

F(®) = Gy(2)]|
Wy = Wiy(Fypy Gry) = M [Fn() = G ()] 6
N N( " ) {x:as;?'l}.)(x)<b) T{HN(x)} ( )

where Hy(z) = AF,(z)+(1—A) G,(x), A = m/N and 0 < a < b < 1. However if we choose
P(t) = {t(1—1)}}, then we give approximately equal weight to each x in the sense that

M¥F,(x)— G, (x)}/P{Hy(2)}
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has asymptotic variance independent of z. If we consider one-sided test statistics,
without the absolute value, in'the class (6) with 0 < @ < b < 1, this choice of ¥ asymp-
totically maximizes the minimum power when testing H,: F = G against H, : F(x) —G(z) > &
for some z (6 > 0) (Borokov & Sycheva, 1968).

To apply Theorem 1, we need to solve the mequahty |Wy(F,rs Gr)| < K for G,,. When
Y(t) = {#(1 —¢)}} this inequality becomes

{Gn(@) — Fp(2)}? < KAAF,,(x)+ (1-Q) G, ()} [1 - {Um(w)+(1 ) Gy (@) }]/M
for z such that a < m(x) < b.

Let ¢ = K?/M, u = F,(x) and v = G, (x); then the inequality can be written as d(v) < 0
where

d(®) = {1+c(1—2)%} 2 —{2u—c(1—A) (2A% — 1)} v + 42 — cAu + cA%u2.

Since the coefficient of v? is positive, d(v) < 0 if and only if v is between the two real roots
of the equation d(») = 0. These roots are

i
h(w) = u+ic(1-21)(1— 2/\1u-|)-:(%{02/(\1)2 A)?+ dou(1 —u)} ™

It follows that with probability (1—a), G, () is in the band -
WAF, (@)} < Gp@) < WH{E,(2)}
forallze{x:a < F,(x) < b}.
Applying Theorem 1, we have shown the following.

Remark 2. Let prp_qo(Wy < K) = 1—a; then the level (1—a) simultaneous confidence
band for A(x) based on Wy, with yr(f) = {t(1—¢)}} is :

[GRA A ()} ] -2, G,I[AH{E,(x)}]—2), zec{r:a < F,(x)< b}

We refer to this band as the W band and write it [W,. (), W *(x)). As with the 8 band, it is
computed from the order statistics by using (5). Monte Carlo values of K are given by
Canner (1975) when a@ = 1—b = 0. Figure 1 gives this band for X-samples and Y-samples
from N(0,1) and N(1,4) distributions, respectively. Here m =mn = 100, a = 0-05, and
K = 3-02 is obtained from Canner.

Fora > 0,b < 1, asymptotic critical values K are given by Borokov & Sycheva (1968).

A third band can be obtained by considering the Renyi statistic

-RN = Mif sup lFm(x) — Gn(x)l .

z e{w: Fm(@)=0) Hy(x)
This statistic is reasonable when one wants to give more weight to smaller 2’s. If the X’s
and Y’s are lifetimes, small 2’s correspond to high risk members of the population. If one
wants a band which is accurate for these «’s, the band based on Ry could be considered.
The inversion of this statistic is straightforward.

Let » denote the level « critical value for R v and define
1+ Ar[ M3
2
hip(w) = {1 A=) ¢/M%}

then the B band [R,(x), R*(x)) is obtained by substituting A% for h, and h* in (5); « is
required to be in {x : F,(x) > c}.

Asymptotic critical values r can be obtained from the tables of Renyi (1953).
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3. COMPARISON OF THE NONPARAMETRIC BANDS
We compare the bands in terms of their widths and their limiting widths

Wy, o(¥) = MIGLT[AME, (2)}] — MG [l F(2)}],  wa(®) = im0, 4(@),

where the limit here and below is in probability. When computing this limit, it is convenient
to introduce the notation » = F,(x) and ¢ = M—%. Moreover, to emphasize the dependence
on ¢, we write Hy (¢, u) for hy(u) and H*(e, u) for h*(u). Now

Wt,o = €G- HH e, u)}— 6-H(u)] — e [G-1{H (6 )} — G- (w)]
+ € UG, I{H* (e, u)} — G-I{H* (e, u)}] — e G {Hy (€, u)} — G { Hy (e, u)}]
+e G (u) — G~(u)}

5
=3 Ii,
=1

say.

The limit of w,, ,(u) is infinite unless @ is strictly increasing at G—(u). We make this
assumption; thus J; = 0.

Suppose furthermore that @ has a continuous, nonzero derivative g. Using the arguments
of Doksum (1974, pp. 272-3) and a random change of time argument (Billingsley, 1968,
Pp. 144-6), we find that I + I, converges in law to

A[U{F (x)}/g{A(x) +} — U{F (@)}/g{A () +}]
on every interval [F~1(8), F1(1—4)] (0 < 8 < }), where U denotes the Brownian Bridge
on D[0, 1], and A = lim (m[N) (0 < A < 1). It follows that I;+ I, converges in probability to
zero. We add the assumption that Hy (e, v) and H *(e, ) converge to u as e~ 0+, and that
H, (e, u) and H*(e, w) have right-hand derivatives k4 (0, u) and k*(0, u) with respect to ¢ at
€ =0 that are continuous in u.
Then we can compute the limits of I, and I, as follows:

. e GHH*(e, u)}— G~H{H, (0, u)} _ h*{0, F(x)} . _ hy {0, F(x)}
Jo b=l : T a2 e @
To summarize, we have Theorem 2.

THEOREM 2. Under the above stated conditions, the asymptotic widths of the bands (4) are
given by
R0, F(x)} — hy{0, F (2)}
glG—F ()}] )
Let the asymptotic relative efficiency of two bands be the square of the ratio of the
reciprocals of their asymptotic widths. Thus for two bands based on functions {h (%), b *(u)}
and {k, (u), k*(u)}, we have that the efficiency is

e (@) = [k *0, F(x)}— k{0, F(:zz:)}]2
mIET T | B*{0, F(x)}— ke {0, F(2)}]
If we think of this efficiency as a function of the quantiles x, = F~(q) of F', we see that it is
independent of the form of F and G.

In the case of the S band, Hy (e, u) = u— Kg ,eand H*(¢,u) = u+ Kg, ,¢; thus its asymp-
totic width is

W, (%) =

Wg, ,(%,) = g{%% (0<g<1).
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In the case of the X band, we replace ¢ by K22 in (7) and differentiate with respect to €
to obtain A, (0, %) and A*(0, »). This yields

—q)¥
ol = 2L @< g <)

as the asymptotic width of the W band. Thus the asymptotic efficiency of the § band to the
W band is

eS,W(wq) = (KW,a/KS,a)2 Q(I_Q) (a <4< b)3
where Kg , and Ky, , denote the asymptotic critical values of the Dy and W), statistics,
respectively. “

Using the results of Borokov & Sycheva, we obtain the approximation to the asymptotic
Ky, given in Table 1. Combining this with the asymptotic tables for Dy, we obtain the
efficiencies given in Table 2. The values for ¢ > 0-5 are the same as those for 1 —g¢. Different
values of « yielded similar results. We find that the S band is better in the centre of the X
distribution at the expense of being worse in the tails up to + z,. Technically, the asymptotic
efficiency is infinite for  outside +,. However, the § band is only valid for F,(z) in
(Kg, ol M, 1—Kg ,[M). When m = n and & = 0-01, K ,[s/M > 0-1 for n < 531, while for
a=01,Kg,[JM > 01forn < 297.

Table 1. Asymptotic critical values of Wy; b =1—a

Y 0-2 0-1 0-04 0-02
a

025 2-109 2-482 2879 3-138
0-1 2-482 2-789 3-138 3:371

Table 2. The asymptotic efficiency eg y(x,) of the S band
‘ to the W band when oo = 0-1

(@ a=1-b= 025

\¢ . 0-25 0-30 0-35 0-40 0-45 0-50
AN
0-1 0-78 0-87 0-94 1-00 1-02 1-04
®) a=1-b=01
\¢ 0-1 0-2 0-3 0-4 0-5
AN
0-1 0-47 0-83 1-09 1-25 1-30

Table 3. Approximate values of the asymptotic efficiency, a = 1—b =0

\q\ 0-01 0-05 0-1 0-2 0-3 0-4 0-5
a

0-05 0-06 0-26 0-50 0-89 1-17 1-34 1-39
0-01 0-05 0-24 0-46 0-82 1-08 1-24 1-29

Canner (1975) gives Monte Carlo critical values of Wy with @ =1—b =0 when
n =m = 2000 (¢ = 0-05) and » = m = 1000 (¢ = 0-01). Using these in place of asymptotic
critical values, we obtain the approximations in Table 3. These values are close to the
values of Table 2 with @ = 0-1.

We also computed the efficiencies for finite sample sizes, i.e. reciprocal ratios of widths
for actual samples, using Canner’s critical values and computer generated samples. Some
results are given in Table 4 for X samples from a N(0, 1) distribution and ¥ samples from
a N(1,0%) distribution. These results are qualitatively close to the asymptotic results but
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favour the W band more. They vary little from sample to sample or from distribution to
distribution.

Taken together, the tables show that in terms of width the W band is preferable to the S
band. The § band is better in the centre of the X distribution at the expense of being much
worse in the tails. This is also clear from Fig. 1. It is interesting to note that in this figure,
the W band leads correctly to the rejection of a shift model while the § band does not; see
(iii), § 1. The S band has the advantage of being simpler and its critical values are more
extensively tabulated. It is preferable if the central part of the X distribution is of more
interest than the tails.

Table 4. Finite sample size efficiency of the S band to the W band; & = 0-05

(@) m =n =50

q 0-1 0-2 0-3 0-4 05 0-6 0-7 0-8
A
0-5 00/00 0 0 0-61 1-01 1-00 0-76 00[00
2-0 00/00 0 0 0:61 1-18 1-:00 0-66 . 00[00
b) m =n = 100
N 005 01 02 03 04 05 06 07 08 09
oy \
05 00/00 0 0 0-87 0-97 1-18 1-18 0-80 0-65 OO/Ob
2-0 00/00 0 0 0-80 0-90 1-14 1-19 1-09 0-56 oo/oo

For the R band, Theorem 2 yields the following asymptotic width

2K R,a9 )
1
wR,a(xq) g G_l(q (C <g< ):
where Ky, , is the asymptotic critical value of the Reﬁyi statistic By. Using the results of
Renyi (1953), we obtain the asymptotic Kz , of Table 5. Combining this with the corre-
sponding entries of Table 1, we compute the efficiencies of Table 6. The W band is preferable
to the R band except when only small z, are of interest.

Table 5. Asymptotic critical values of Ry

\¢ 0-2 0-1 0-05
0-1 - 3921 5-881 8:545

0-05 4-484 6-726 9:772

Table 6. Asymptotic efficiency of the R band to the W band;
a=01,a=1-b
& 0-05 01 0-2 025 03 0-4 0-5 0-6 0-7
5 :

a
0-1 0-056 [e4) 0-96 0-43 0-32 0-25 0-16.  0-11 0-07 0-05
0-1 [e4) 2-02 0-90 0-67 0-52 0-34 022 015~ 0-10

0-25 0-2 [e4) 0 0 1-20 0-93 0-60 0-40 0-27 0-17

4. THE LOCATION-SCALE MODEL

In this section, we consider the model where
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for some continuous distribution function H. Then G—X(u) = pty + 0, H-1(z) and

A@) = po+ 05 (X — py) [0y — 2.

In this model it is common to treat u,—u, as the parameter of interest. However, as
seenin § 1, A(x) will yield additional information about how the populations differ.

Since A(x) is linear in , a simultaneous band can be constructed by specifying intervals
of values for A(x) at just two points . Thusifz, < 2,and

PriTi < A(w) < T*, 8y < Alxy) < 8% =1-a0,

then for z €[x;,x,], the upper boundary would consist of the line connecting the points
(@1, T*) and (x,, 8*), while the lower boundary would be the line connecting (x;, %) and
(%5, 8%). For # > x,, the upper boundary would be the line through the points (z,, T,) and
(%5,8%), and so on. Here z; and 2, may be random; in the following, they are order
statistics.

Remark 3. Suppose that a location-scale model holds. Let 7, 4, and s, (k= 1,2) be
integers such that

ool ¥ (r) < X(6) < Y(sy) (b= 1,2)} = 1—a. (8)
Then a simultaneous (1 — a) confidence band for A(x) is determined by
Y(ry) — X (i) < MX (@)} < Y(s)— X () (k= 1,2). (9)

The choice of integers r, i, and s, satisfying (8) could be made using the bivariate hyper-
geometric distribution, although convenient tables do not seem to be available.

Alternatively, Switzer (1976) has suggested a conservative procedure using the Bon-
ferroni inequality and the hypergeometric distribution. A third possibility, when sample
sizes are large, is to use a bivariate normal approximation. To do this, let Z, be the number
of ¥; < X(4;), and Z, the number of ¥; > X(i,). Then the probability in (8) equals

Prrg(r1 < Z; < 8,—1, n—8,+1 < Z, < n—1y),
and can be approximated using Lemma 1.

LemMa 1. For 0<fy < By <1, let 4 =[mpJ+1(k=1,2), let & =p1, La=1—p,,

and let
Ve = M¥(Zyfm— &) {B,(1— Ji/A)

If F = @, then (V,V;) has a standard bivariate normal limiting distribution with correlation
p=—{B(1=B)E[(1- ) Ba}t.

The lemma is proved by noting that the conditional distribution of (Z,, Z,) given X (i,),
X(ip) is trinomial and after standardization, asymptotically bivariate normal. Since
B{Z,| X (i) (¢ = 1,2)}is asymptotically normal, an application of Theorem 2 of Sethuraman
(1961) or a bivariate version of Héjek & Sidék (1967, problem 6, p. 195) gives the result.

The following remark gives a particular application of the lemma..

Remark 4. Let i, = [mB]+ 1 and i, = [m(1— B)]+ 1 for some § € (0, }). Then an asymptotic
(1 —a) simultaneous confidence band for A(z) is determined by (9) with

(=3[ = f—c.{f(L=P)M}, (s1—%)[n = B+c.{f(1—pB) M}, (10)

for r, =n+1—s, and s, = n+1—7;, where c, satisfies pr {|V;| < ¢, (k= 1,2)} = 1—a for
(V1; V2) standard bivariate normal with correlation p = — /(1 — f).
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If Ly, (x) denotes the width of this band at «, and if H has a density &, then

2c,{(B(1 —/3)}1}0-2{|zp—zﬂ| |zq—zl—ﬂ|}
L ()M —>—= -+ = L(z),
e I O™ I =iy e
say, for x = 042, +p, with § < p < 1— g and 2, the pth quantile of H. The convergence is
in probability. .
If the density () is symmetric about 0, then

L(z) = 20{f(1 - B oyfh(zs) (B<p <1-p).

We call the band determined by (9) and (10) the O band, the order statistics band, and
compare it with the W band of §2. In the location-scale model, the asymptotic
width of the W band is 2Ky, ,{p(1—p)} 03/k(2,). When H is normal, we obtain the asymp-
totic efficiencies given in Table 7. These efficiencies will not be much different for other
reasonable ‘bell-shaped’ k. Thus we conclude that if a location-scale model can be assumed,
a considerable gain in efficiency is possible by using the O band provided only that A(z,)
and h(z,_4) are not too close to zero.

Table 7. The asymptotic efficiency of the O band to the W band
with a = 1—b = f in the normal model 0; a = 0-1

Q 0-10 0-20 . 025 0-30 0-40 0-50
B : ' :
0-10 2:05 | 1-43 1-30 1-22 1-13 1-10
0-25 —_ —_ 1-64 1-53 1-42 1-38

5. THE NORMAL MODEL

If we let H in the location-scale' model be N(0, 1), then we have the Behrens—Fisher
model. In this case we can write A(x) = ax+b—x, where a = 0,/o; and b = py— pt, 05/0;.

In the case that m = n, we will construct the likelihood ratio test for the hypothesis
Hy:a = ay, b = b, for fixed a,€(0,00) and b, € (—00,00). The collection of all (a,, b,) that is
accepted by this test for a given set of data provides a confidence region for (a, b) that is an
ellipsoid. This ellipsoid will be translated into a likelihood ratio simultaneous confidence
band for A(z).

If L denotes the likelihood function, then
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The maximum for unrestricted p,, sy, 07y, 0 is well known. Substituting 0% = a0? and

B = bo+ ag fty, the maximum of L under H, is found using standard methods. Let (%, 7, 82, S2)

denote the usual unrestricted maximum likelihood estimate of (uy, s, 0%, 03), then the

likelihood ratio is \
(a5 83)im (S3)im
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Ay =sup g, Lfsup L =

where A =m|N.

The space of (i, ftg, 04, 05) With 0y = a0, and gy = by+ ay 4, is linear with 2 dimensions.
Thus, under H,, by classical results, —2log A, has a limiting chi-squared distribution with
two degrees of freedom. '

Let 2%(1 — ) denote the (1 —a)th quantile of this distribution and let

K, = exp{z*(1—a)/N};
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then the acceptance region of the test when m = nand A = } is

{30851+ 358 + (T — bo — a0 %)%}/ (268, 8;) < K.

Write by = b,+ a,Z; then the collection of (a,, by) for which H, is accepted is the inside of

an ellipse, namely
2(8100— K, 8, + (7 —bp)* < 283(KZ —1). (11)

Let & denote this ellipse and let
0~ (x) = inf{a,x+by: (ag, by) €S} —x, &F(x) = sup{a,z+b,: (a, by) € E}—x,
then [0—(x), +(x)] is the level (1 —a) likelihood ratio confidence band for A(z). Theorem 3
specifies 0.

THEOREM 3. When n = m, the level (1—a) likelihood ratio confidence band for A(x) in
normal models is given by
T—Z

0+(e) = T+ K. 5 (5
1

Proof. We use the Cauchy—Schwarz inequality in the form

)—xis2[(Kz—1){2+(x—5>2s-12}]%.

[Zagwy| < (ZadZuwh)t, (12)

with equality if and only if w; is proportional to «,. Simply note that (11) is equivalent to
w?+w§ < d?, where w, = \/2(S;a— K, 8,), w, = §—b—a% and d? = 283(K%—1).
If we apply (12) with a, = — (x—%)/(y28;) and a, = 1, the result follows.

Remark 5. The above proof is very similar to the derivation of Scheffé’s simultaneous
confidence intervals for contrasts. The interpretation is also similar: if the likelihood ratio
test of Hy:A(x) = 0 for all x rejects, that is @ = 1, b = 0, then for some x the band does
not contain 0, and vice versa.

When n #+ m, we can use the maximum likelihood estimate

Az) =g7+§—,:(x—a_o)—w

of A(z) to obtain a confidence band for A(z). Let Ty(zx) = M#A(x)—A(x)}. By using a
Taylor expansion of Tly(z) in terms of X, V, 8; and 8,, we find that Ty(x) converges in law to
T(x), say, equal to o,(V, +tV,/4/2), where t = (x—pu,)/oy, and V; and V, are independent
standard normal variables. Write

7 = var {T(2)} = o}(1+42), #° = SH{1+3(e—2)?/S3).

Then we can use sup, | Ty (x)

|# as a pivot to obtain the following maximum likelihood band.

THEOREM 4. An asymplotic (1 —a) simultaneous confidence band for A(x) is given by
M) €7 +22 @—7)— £ Sya(t ) [{1 + e~ 23/ M1
1

for all x, where (1 — ) is the (1 —a)th quantile of the y3 distribution.

Proof. Now Ty(x)/# converges in law to the process (V;+t¥;/y/2)/(1+3#2)3. Hence
sup,|Ty(x)/# converges in law to

sup, {| (V +¥/y/2)| /(1 + $#%)73} = sup,[U(¢)|,
say. By considering the equation I'(f) = 0, we find that for almost all (1, 7;), the maximum
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of |I(t)| is attained at ¢ = ,/2V;/V;, a Cauchy random variable. Thus the maximum is (V3 + V2)3,
which is the square root of a y3 variable. The result follows.

By standard asymptotic theory, the likelihood ratio and maximum likelihood bands
should be asymptotically equivalent. This can be established directly when n = m by using
the first two terms in the Taylor expansion of e? about z = 0 in the expression

K, = exp{z*(1—a)/N}.

The likelihood ratio band is preferable since it is based on a more accurate approximation.
The above expansion also yields the following.

Remark 6. The likelihood ratio and maximum likelihood bands both have asymptotic
width 20, 2(1 — o) (1 + 4t2)3, where t = (x—p,)/o;.

It is interesting to compare this asymptotic width with the asymptotic widths of the
general methods of the previous sections to find out how much these general methods lose
if in fact the correct model is normal. .

We see that the asymptotic relative efficiency of the § band to the likelihood ratio band

in normal models is
(width L band)?

e, L®) = im t e T hand)
_ P21 —a) (1+3#2) _ (1+3*)a3(1-a)
B K%, - 2me"KR,
where ¢(t) denotes the standard normal density. Similar expressions hold for the W and O
bands. Some numerical results are given in Table 8. The efficiency of the S band is surprisingly
low, much smaller than the familiar 2/7 = 0-64.

Table 8. Asymptotic efficiencies of the bands W, 8 and O with respect
to the likelihood ratio band in normal models, t = ®-1(p), & = 0-10,a = 1 —b

Band p =01 p =02 p =03 p =04 p =05
W,a = 01 0-37 0-39 0-39 0-38 0-38
W,a = 025 0 0 0-49 1048 0-48
S 0-17 = 0-33 0-43 0-48 0-49
0,8 =01 0-75 0-56 0-47 0-43 0-41
0,8 =025 — — 0-75 0-68 0-66

Table 9. Finite sample size efficiency of the W band witha = 1 —b =0
relative to the likelihood ratio band, o« = 0-05 and m = n

\? .01 0-2 0-3 0-4 0-5 0-6 0-7 08 - 0-9

n o\
50 0-5 0 0-31 0-34 0-46 0-63 0-62 0-44 0 0
2-0 0 0-35 0-27 0-48 0-53 0-57 0-66 0 0
100 0-5 0-31 0-33 0-28 0-46 0-73 0-51 0-50 - 0-31 -0
2-0 0-33 0-36 0-27 0-33 0-65 0-52 0-57 0-34 0

We also give in Table 9 some finite sample size ‘efficiencies’ computed for the same
N(0, 1) and N(1, 03) samples as in § 3. By multiplying the entries of this table with the
entries of Table 4, we get the corresponding table for the S band. The asymptotic efficiencies
evidently give a good indication of the finite sample size performance of the bands.

The results show that the general bands are quite inefficient if the correct model is
normal. On the other hand, the bands designed for the normal model are quite sensitive to
the normality assumption in the sense that skewness or high kurtosis in the ¥ and @ dis-
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tributions will alter the level of the band. Also note that the O and likelihood ratio bands
cannot be used to test whether a location-scale model holds. Finally, the general methods
W, 8 and O have the advantage that they can be applied to censored data.

6. AN ILLUSTRATION

Doksum (1974) gives an example involving experimental data where a linear response
function and thus a location-scale model is indicated, and where the response function
shows that high risk members of a guinea pig population are affected entirely differently
by a tubercle bacillus dose than low risk members.

Here we give an illustration involving data from an experiment designed to study
undesirable effects of ozone, one of the components of California smog. One group of 22
seventy-day-old rats were kept in an ozone environment for 7 days and their weight gains
y;noted. Another group of 23 similar rats of the same age were kept in an ozone free environ-
ment for 7 days and their weight gains  noted. The results, provided by Brian Tarkington,
California Primate Research Center, University of California, Davis, are given in Table 10.

Table 10. Weight gains of two groups of rats in grams

Control 41-0 384 244 259 219 183 131 273 285 —16:9 260 174
Ozone 10-1 61 204 73 143 155 —9-9 6-8 282 179 —-9-0 —12-9
Control 21-8 154 274 192 224 177 260 294 214 266 227

Ozone 14-0 66 121 157 399 —159 546 —147 441 —9:0
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Fig. 2. The estimate &(x) and the level 0-90 S band for the
response function in the ozone experiment.

Figure 2 gives the estimate A(z) = G;{F,,(x)}—z and the S-band with exact level 0-90.
It is fairly obvious that = — 169 is an outlier. If it is removed, only slight changes occur
in the graphs beyond the removal of the long straight lines on the left of A and 8*. Then A
suggests that, even though ozone reduces average weight gain, large weight gains are made
even larger. Also S* shows that weight gain is reduced significantly for 2 below the control
weight gain 22-5.

From the 8 band, we cannot reject a shift model assumption, even though A strongly
indicates that it does not hold. This may be because the sample sizes are too small leaving
the band too wide. The W band would be preferable, but we do not have the critical values
for the sample sizes of this experiment.

Now A with the outlier left out indicates that the response could well be linear and thus
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the narrower O band could be used. For sample sizes m = n = 22, a good choice of f is
0-296 and then the O band is determined by

—37-3 < A(214) < —19-3 < A(26-6) < 28+0.

Thus, for this experlment the S and O bands are remarkably close and the shift model
-assumption can still not be rejected.

We are indebted to P. Nanopoulos for programming the plots and the finite sample size
efficiencies. The paper was prepared with the partial support of the National Science
Foundation and the Norwegian Research Council. Doksum’s work was partly done
while visiting the Department of Mathematics, University of Oslo, and Sievers’s work
while visiting the Department of Statistics, University of California, Berkeley.
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