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Summary 

This paper reviews the range of graphical methods available for use with nonparametric procedures, 
and provides examples of the use of many of the methods under the broad groupings: two-sample 
procedures, one-sample procedures, association and regression procedures, and miscellaneous 
procedures. An annotated bibliography is also provided. 

Key words: Ansari-Bradley test; Association; Butler test; Centre of symmetry; Hazard ratio; 
Hodges-Lehmann estimate; Kendall's tau; Kolmogorov-Smirnov test; Linked vector plot; Location 
difference; Mann-Whitney-Wilcoxon test; Olmstead-Tukey test; P plots; P-P plots; Pair chart; 
Parameter space plot; Plotting methods; Proportional hazards; Q plots; Q-Q plots; Rank correla- 
tion; Runs test; Scale difference; Shift function; Simple linear regression; Spearman's rho; Survival 
data; Symmetry function; Tukey quick test; Wilcoxon rank-sum test. 

1 Introduction 

Graphical methods for display of data and as computational devices have a long history 
(Fienberg 1979); with the ready availability of high-speed computers these applications 
have been magnified manyfold, the greatest impact being in the analysis of large data sets 
and of multivariate data. The field of nonparametric statisticst has been a particularly 
fertile place for graphical methods to flourish. Many of the early methods were designed 
to simplify computation of such statistics as an estimate of centre of symmetry (the median 
of all the sample midranges) or the sample value of Kendall's tau, both of which are 
relatively tedious to calculate otherwise, even from small samples. More recently, power- 
ful statistical techniques based on the sample distribution function utilise graphical 
displays both for informal and formal inference about underlying models, for example 
Wilk & Gnanadesikan (1968), Doksum (1977), to elucidate the nature of association 
between variables (Taguri et al., 1976), and to highlight the structure of multivariate 
distributions (Tukey & Tukey, 1981). 

In this paper, we survey the range of graphical methods used in nonparametric statistics, 
and illustrate many of them. The descriptions of the methods in the next section are 
categorized as follows: ? 2.1 Two-sample procedures, (i) Location difference, (ii) Scale 
difference, (iii) Location and scale difference, other two-sample comparisons, general 
difference; ? 2.2 One-sample symmetry procedures, (i) Centre of symmetry, (ii) General 
assessment of symmetry; ? 2.3 Association and regression procedures, (i) Association, (ii) 

t This will be taken to mean the study of those statistical situations in which no underlying parametric family 
of distributions is assumed; that is, the family of distributions under consideration cannot be indexed by a finite 
number of parameters (and hence is a nonparametric family). 
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26 N.I. FISHER 

Regression; ? 2.4 Miscellaneous procedures, (i) k-sample procedures, (ii) Contingency 
tables, (iii) Analysis of covariance, (iv) Angular data, (v) Other multivariate procedures, 
(vi) Time series. 

Examples are given of almost all the two-sample procedures (? 2.1). Because of the 
close relationship between the two-sample homogeneity problem and one-sample sym- 
metry problem (see introduction to ? 2.2) several of the procedures in ? 2.2(i) are simple 
adaptations of those in ? 2.1(i) and so have not been illustrated. Most of the methods 
referred to in ? 2.3 are illustrated; however the various methods referenced in ? 2.4 are 
not, partly due to space considerations, but also because some idea of how a particular 
method works can be gleaned from related material illustrated in other sections, ? 2.4(i), 
(iii), (vi), and because one example would be hopelessly inadequate as an advertisement, 
? 2.4(v). 

This last point brings us to the question of data sets. The decision of whether to create 
an artificial data set which attempts to demonstrate all possible uses of a given technique 
or whether to use an available data set (experimental or observational) which probably 
will not display the technique to best advantage is not easy to make. In this paper, the 
latter course has been adopted in all cases but one, because there is intrinsic interest in the 
data. Thus, many of the examples serve only to highlight a few aspects of the methods, and 
the reference sources in the Bibliography should be investigated to form a proper apprecia- 
tion of them. (The only occasion on which artificial data have been used is during the 
discussion of some methods associated with simple linear regression, where a very small 
sample size (5) has been used to simplify the diagram.) 

Following the survey of graphical methods is a section containing some general 
remarks, particularly about the broad applicability of the methods, and then a Bibliog- 
raphy, in which each reference has been annotated briefly. J.W. Tukey's book Exploratory 
Data Analysis is not included here, nor are any of its tabular/graphical methods discussed 
in the survey: it did not seem sensible to remove them from their natural habitat and 
display them in isolation, because of the unity of development of the book. 

2 Survey of graphical procedures 

2.1 Two-sample procedures 

The class of procedures to be discussed can be divided conveniently into two groups, those 
designed for a particular estimate or test (e.g. the Mann-Whitney-Wilcoxon estimate of 
location shift), and those which are of more general applicability (P-P, Q-Q and H-H 
plots, the pair chart, and confidence procedure based on the shift function). All discussion 
of the latter group will be given in ? 2.1(iii), although they are relevant to ? 2.1(i), (ii). 

The two random samples will be denoted by X1, .. , X,, and Y1,... , Yn, drawn from 
underlying populations with distribution functions F and G respectively; the sample 
distribution functions are denoted by F, and G, respectively. The X-order statistics will 
be written as XI),. .. , X~,, (with Xr< X<2) < ...) and similarly for the Y's. 

(i) Location difference. Suppose it is known that G(x) = F(x + 0) for some unknown 0. 
The Hodges-Lehmann estimate of 0 based on the Mann-Whitney-Wilcoxon test is simply 
6~ =med {Xi - Y, 1 i ~<m, 1 <j ~<n}. A variety of graphical methods have been pro- 
posed to compute 0 and an associated confidence interval for 0. To illustrate them, we 
consider estimating the difference in bowling skills of two competitors in the 1935 
Willimantic Duckpin Bowling Sweepstakes, based on the data in Table 1. 

For the first method, construct the set of points {(x, ,Y),1 4i <1 m, 1 j <n} as the 
intersections of two families of parallel lines, one family parallel to the x axis and the 
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Graphical methods in nonparametric statistics 27 

Table 1 

Scores on various string numbers of two entrants in the Willimantic Duckpin 
Bowling Stakes; Willimantic, Connecticut, February 16, 1935 

String number 
4 5 6 7 8 9 10 11 

X: Entrant 8 107 135 116 120 136 117 102 131 
Y: Entrant 12 131 121 118 110 130 108 114 101 

Source: Hartford Courant, February 17, 1935. As reported by Waugh, 
A.E. (1944), Laboratory Manual and Problems for Elements of Statistical 
Method, New York: McGraw-Hill. 

other to the y axis, as shown in Fig. la. (The data have been reduced modulo 100 for 
convenience.) Consider the line x - y = c, which makes a 450 angle with the x axis, and 
choose initially c > 36. As c is decreased, the line passes sequentially through the points 
(Xi, Yi) in an order corresponding to decreasing values of the elementary estimates 
Xi - Y. In this way, the median value(s) of {X, - YJ} is (are) readily obtained; for mn 
even, as in this case, the 32nd and 33rd of the ordered differences are averaged to yield 

0w= 
4.5. For a 95% confidence interval for 0, obtain the critical values 14 and 51 from 

tables of the Mann-Whitney-Wilcoxon test (see for example Noether, 1971) and count in 
from each end, as above. (If mn is large, a reasonable estimate of 0 is the midpoint of the 
confidence interval; see for example Hollander & Wolfe 1973.) 

This method was first proposed by Moses (1953) and subsequently reported by Moses 
(1965), and is discussed in many places: Conover (1971) (which includes some discussion 
of the continuity assumption in relation to estimation), Daniel (1978), Gibbons (1971), 
Hollander & Wolfe (1973), and Noether (1971) (which includes a discussion on ties). 
Jaeckel (1969) mentions generalizations of the estimator median {X, - Yj}, in which the 
differences X - Yj are differentially weighted: the graphical computation of such an 
estimator from Fig. la then involves cumulating the weights assigned to the intersections 
until half the total assignable weight has been obtained. 

The second method for calculating 0w 
involves setting out the ordered samples as shown 

in Fig. Ib, and computing the leading diagonal of differences (entrant 1-entrant 2). Notice 
that, as one proceeds across a row to the right, or up a column, the differences cannot 
decrease (because of the ordered marginal numbers). 

(a) (b) ENTRANT 8 

31 102 107 116 117 120 131 135 136 

30 / 101 1 a 

108 -1 

-21 - 110 6 
4 18 
L 

/ / /1 •- 
114 3 b 

" 
z 

8 121 10 1 

130 d 5 c 

_ _ _2 z3 _2_ T 131 e f 5 
2 7 16 •7 20 31 35 36 x 

ESTIMATE OF ! 
DIFFERENCE UPPER 95% LIMIT 

ENTRANT 8 

Figure 1. Determination of the Mann-Whitney-Wilcoxon estimate of location difference. (a) Moses' method (b) 
Hoyland's method. Data: scores by two entrants in Duckpin Bowling (Table 1). 
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100 
ENTRANT 8 

102 107 116 117 120 131 135 136 

101 108 110 114 118 121 130 131 

100ENTRANT 12 
100 

Figure 2. Sliding papers method for determining Hodges- 
Lehmann estimate of location shift, and for performing Tukey's 
quick test. Data: scores by two entrants in Duckpin Bowling 
(Table 1). 

Thus the value 3 in cell (4, 4) is the smallest of the 20 values in the 4 x 5 rectangle of 
which it is the bottom left-hand cell, and necessarily less than the values in the four other 
rectangles whose bottom left-hand cells are (3, 3), (6, 6), (7, 7) and (8, 8). The total 
number of distinct cells in these rectangles is 32. Hence 3 < 32nd largest value; similarly, 
3 >~29th smallest value. By similar argument, 6 C 27th largest value, 6 > 35th smallest 
value, and 5 ~ 29th largest value, 5 3 32nd smallest value. We seek the 32nd and 33rd 
ordered values, which must lie in the range (3, 5), using the above inequalities and the fact 
that two 5's are already displayed. The only cells with possible values at least three but 
less than 5 are those labelled a, b, c, d, e and f; these values are 6, 6, 1, 4, 0 and 4 
respectively. It is then easy to calculate that 4 is the 32nd ordered value, and hence that 5 
is the 33rd. Similar calculations can be used to find the differences corresponding to the 
95% confidence limits for 6. 

This tabular method was first published by Hoyland (1964), and is also described by 
Lehmann (1975); after a little practice, it is simple and reasonably efficient to use. 

To implement the third method of calculating 0w, 
mark the values of each sample along 

separate slips of paper as shown in Fig. 2, together with a common reference mark (100 in 
Fig. 2). Starting with the X slip completely to the right of the Y slip, move the Y slip 
gradually to the right, and add one (1) to a mental counter (initiallized at 0) each time a Y 
value moves past an X value. When the counter reaches 32 note the difference between 
the reference marks, and similarly when the counter reaches 33: the average of the 
differences is 

0w. Alternatively, obtain the differences from the particular (Xi, Yj) pairs 
yielding the 32nd and 33rd counts. The differences required for a 95% confidence interval 
are similarly determined. 

This method (perhaps as mechanical as it is graphical) was the one proposed by Hodges 
& Lehmann (1963) in which the family of Hodges-Lehmann estimators was introduced. It 
can also be used as a way of approximating the Hodges-Lehmann estimate based on the 
two-sample normal scores test. 

Note that there is a fourth method of computing •w: 
in ? 2.2 below, Tukey's method of 

computing the Wilcoxon estimate of the median of a symmetric distribution is described. 
It can easily be adapted to a method of computing Ow. 

Before discarding the slips of paper so carefully prepared above, one may with 
negligible effort perform Tukey's 'quick, compact, two-sample test to Duckworth's 
specification' (Tukey A1959t). The test requires that the smallest and largest observations 
among X, . . ..., X,, Y1..., Y, belong to different samples. This being the case, suppose 
that Y(1) is the smallest and X(m) the largest. Count U = number of X's> Y(,), L = number 
of Y's < X(1), set T = U + L, and reject the hypothesis 0 =0 at approximately the 

$ Dates prefixed with the letter A indicate references in the auxiliary reference list. 
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Figure 3. Bhattacharyya's method for determining the Hodges- 
Lehmann estimate (based on the Ansari-Bradley test) of scale 
difference. Data: two methods of determining total serum iron 
bonding capacity (Table 2). 

5%/1%/0.1% level accordingly as T>7/10/13. (From Fig. 3, T=2+ 1= 3.) This is the 
most compact version of Tukey's procedure, and it relies on the ratio of the sample sizes 
being no greater than 4:3, and on neither U nor L being zero. Much more discussion of 
all aspects of this procedure is given by Tukey (A1959), including point and confidence 
interval estimates for 0. The graphical device is due to Sandelius (1968), who discusses 
Hodges-Lehmann estimation of 0; the method is also described by Conover (1971). 
Adaptations of Tukey's test, for which Sandelius' device is also applicable, have been 
published by Rosenbaum (A1965) and Neave (A1966). 

The interval estimates of 0 based on the Mann-Whitney-Wilcoxon test also provides a 
test of hypothesis for 0. However the Mann-Whitney-Wilcoxon test statistic itself, and 
also Tukey's quick test statistic T may be computed directly (and very simply) using a pair 
chart; see Quade (1973) and discussion in ? 2.1(iii) below. Klotz (1966) used the pair 
chart to enumerate the distribution of the Mann-Whitney-Wilcoxon test statistic in the 
presence of ties. Hettmansperger & McKean (1974) present as a teaching aid a graphical 
method for illustrating the relationship between a hypothesis test and a confidence 
interval for 0 using the Mann-Whitney-Wilcoxon test. It involves plotting the differences 
Xi - Yj along the x axis and the distribution of the test statistic up the y axis, and then 
exhibiting the correspondence between tail probabilities and extreme values of X - Y-. 

(ii) Scale difference. Let (01, a,) and (02, a2) be pairs of location (median) and scale 
parameters for the populations underlying the two samples and suppose that 

G(x) = F( (2 - 01)+ 02) F((x - 0)/A) 

say. The Hodges-Lehmann estimates of A (the ratio of scale parameters) based on 
the Ansari-Bradley test, the Siegel-Tukey test and Sukhatme's test, were studied by 
Bhattacharyya (1977), who presented a graphical method for their computation. As 
an example, we illustrate the method for the Ansari-Bradley estimate A (see below) for 
the data on two methods of determining total serum iron bonding capacity (Table 2); 
the medians 01 and 02 are unknown. 

Plot the data similarly to Fig. la, and insert the lines corresponding to the separate 
sample medians (X and Y) as shown in Fig. 3. The (Xi, Y) intersections in the 
top-right-hand and bottom-left-hand corners determined by the medial lines are called 
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30 N.I. FISHER 

Table 2 
Results of two methods of determining total serum iron-bonding capacity without 
deproteinization 

X: Ramsey 
method 297, 311, 323, 330, 333, 337, 345, 348 
(m = 8) 

Y: Proposed 
method 302, 307, 310, 311, 320, 322, 326, 332, 348, 397 
(n = 10) 

Source: Table 3, Jung, D. H. & Parekh, A.C. (1970), A semi-micromethod for the 
determination of serum iron and iron-binding capacity without deproteinization, Am. 
J. Clinical Pathol. 54, 813-817. 

The data are simple random samples drawn from the relevant part of Table 3. 

relevant pairs: then A =med {(X, -X)/(Yi - ), all pairs (Xi, Yi)}. To compute A, locate 
the line which passes through (X, Y) such that half the relevant pairs lie between it and 
the vertical axis, and the other half between it and the horizontal axis. In this example the 
number of relevant pairs is even (40), so two such lines are determined, with inverse 
slopes A1 and A2 as shown. Then A = 2(A1 + A2). There are slight modifications if 01 and 02 
are known. 

When the scale difference problem can be reduced to the location difference problem 
(e.g. when the medians are known and the variables necessarily positive) some of the 
procedures in ? 2.1(i) can be applied, as discussed by Hollander & Wolfe (1973, p. 101) 
and Shorack (1966). Shorack also gives a graphical procedure (based on a method due to 
P.K. Sen) to obtain point and interval estimates of the ratio of scale parameters when this 
reduction is not possible. The usual setting is that of estimation of relative potency in 
which, for example, X1,..., X,, are responses to doses of a test drug and Y1,..., Y, 
responses to doses of a standard. If we assume that G(x) = F(px) (p >0), Shorack's 
modified version of Sen's estimator is obtained as follows. Set 

S(m, n; d)= I[ Yi 
< dX ], i=1 j=1 

where I[A] is the indicator function of the set A; under the null hypothesis that p = 1, 
E[] = lmn. Then define 

f inf {d: 40(m, n; d) = 
?(mn 

+ 1)} mn odd, 
geometric mean {d: 4(m, n:t) = mn} mn even, 

where geometric mean (a, b) = V(ab) for an interval. As a test statistic, the distribution of 
4 is the same as that of the Mann-Whitney-Wilcoxon statistic, hence confidence limits 
(a, ?) for p can also be calculated. The graphical computation of p , a and piu is 
exemplified in Fig. 4, using a well-known data set published by D.J. Finney on the 
tolerances of cats to Strophanthus A and Strophanthus B. (The data are reproduced here 
as Table 3, and were also used by Shorack.) Construct the set of intersections (Xi, Yj) as in 

Table 3 
Fatal doses of two tinctures of Strophanthus applied to two samples of 
cats 

X: Strophanthus A 1.24 1.44 1.55 1.58 1.71 1.89 2.34 
Y: Strophanthus B 1.20 1.47 1.85 2.00 2.20 2.27 2.42 

Source: Table 2.1. Finney, D.J. (1964), Statistical Method in 
Biological Assay, 2nd edition, London: Griffin. 
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Figure 4. Shorack's method of determining Sen's estimate of relative potency. Data: two drugs administered to two 
samples of cats: Strophanthus A and Strophanthus B (Table 3). 
Figure 5. Basis of P-P and Q-Q plots. For two distribution functions F and G, if F(x) -G(x) then 
(i) corresponding to each quantile q, F(q) and G(q) should be equal, and (ii) corresponding to each cumulative 
probability p, F-`(p) and G-l(p) should be equal. 

previous examples and find the line through the origin which passes through an intersec- 
tion (X*, Y*) say and which divides the mn intersections into equal groups above and 
below the line. The slope of the line is p and is conveniently computed as Y*/X*; 
confidence limits are computed similarly. Had mn been even, the two central lines would 
have yielded estimates A1 and 2, and the overall estimate A = /(2). 

This procedure is also discussed by Hollander & Wolfe; Shorack also describes a 
modified estimator for situations in which the data (Xi, Yi) form matched pairs and hence 
have a joint distribution H(x, y) 0F(x)G(y). Several two-sample statistics to detect 
dispersion difference can be calculated from the pair chart (Quade, 1973) described in 
? 2.1l(iii) below. 

(iii) Location and scale differences, other two-sample comparisons, general 
difference. Probably the most powerful and useful graphical methods in nonparametric 
statistics are those based on comparison of the sample distribution functions. Two 
methods of comparing sample distribution functions are easily understood by studying Fig. 
5 (which is based on a similar figure of Wilk & Gnanadesikan, 1968). If G(x) F(x), then 
for any given cumulative probability p, the quantiles F-1(p) and G-x(p) coincide. A 
comparative plot of sample quantiles (F-7(p), Gn-(p)) corresponding to a set of values 
p e [0, 1] is termed a Q-Q plot by Wilk & Gnanadesikan. Similarly, for any given quantile 
q, the cumulative probabilities F(q) and G(q) coincide if F and G are identical. A 
comparative plot of sample cumulative probabilities (Fm(q), G,(q)) is termed a P-P plot. 

The first use of Q-Q plots for comparing two independent samples appears to be in the 
paper by Lorenz (1905); a detailed analysis of their properties is given by Wilk & 
Gnanadesikan (1968), Gerson (1975) and Gnanadesikan (1977). Briefly, a roughly linear 
plot suggests that the underlying random variables have the same distribution, apart from 
possible location or scale differences: such differences may be estimated using the 
intercept and slope of the 'line of best fit'. Typically, Q-Q plots are rather more sensitive 
to differences between F and G in the tails of the distributions than in the centres, for 
random variables with infinite ranges. This is because the quantile is a rapidly changing 
function of p where the density is sparse (Wilk & Gnanadesikan, 1968, p. 5; Gerson, 
1975). 

In practice, to perform a Q-Q plot we select a set of probability levels 0< pi < ... < 
pk <1 and identify the corresponding order statistics, i.e. quantiles, (X[Empi+, YEnpi+1]) for 
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Fig. 6 Fig. 7 
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Figure 6. Quantile-quantile plot. Data: scores by two sets of patients on psychological tests (Table 4). 
Fignre 7. P-P plot, or pair chart, of Cauchy (a, b) versus Cauchy (0, 1), where Cauchy (a, b) has density 
proportional to {1+(x - a)2/b2-1 

1: i ~ k. The situation is simplified if m = n, for one then plots (a subset of) the pairs 
(X(i), Y(j)) for 1 !<i<;n. Generally speaking, probability plots (P-P or Q-Q) can be 
influenced considerably by the vagaries of random sampling for sample sizes much less 
than 30, so any inferences based on plots with substantially fewer data would be very 
tenuous. To a degree, then, this applies to the next example. 

Figure 6 illustrates the use of a Q-Q plot for the data in Table 4, consisting of scores on 
a psychological test administered to a sample of people with uncontrollable cancer and to 
another sample with controllable cancer. There is no strong suggestion of departure of the 
plot from linearity, although a 'best-fitting' straight line through the origin does not quite 
have slope 1 (compare with the P-P plot of the same data, discussed below). 

Plots based on cumulative probabilities have been in use at least as far back as Hazen 
(A1914) for purposes of assessing goodness of fit (see also Hazen, A1930). Again, 
detailed discussion of P-P plots is given by Wilk & Gnanadesikan and by Gerson. By way 
of contrast with Q-Q plots, any departure from the hypothesis F = G will be manifested 
in the P-P plot as a nonlinear appearance of the plot. Further, because of the constraints 
that the plot begins at (0, 0) and ends at (1, 1), it is much more sensitive to differences 
between F and G in their centres rather than in their tails. The way in which certain sorts 
of differences (i.e. location/scale differences) can manifest themselves in a P-P plot is 
illustrated in Fig. 7, which is based on similar plots of Quade (1973). Figure 7 shows the 

Table 4 
FK-scores (with signs changed) on psychological tests administered to two groups of cancer 
patients 

X: Group I -7 -7 -3 -1 5 7 8 9 13 13 13 13 14 
(m = 25) 14 16 17 18 18 18 18 21 22 22 24 25 

Y: Group II - 10 -3 2 3 6 7 9 9 9 9 11 11 11 
(n = 22) 12 13 13 14 16 16 16 18 21 

Group I have rapidly progressing (uncontrollable) disease and group II slowly progressing 
(controllable) disease. High FK-values indicate high defensiveness or tendency to present 
the appearance of serenity while suffering deep inner distress. 

Source: Tables 2 and 3, Blumberg, E.M., West, P.M. & Ellis, P.W. (1954), A possible 
relationship between psychological factors and human cancer, Psychosomatic Med. 16, 
277-286. 
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asymptotic P-P plot {[F(x), G(x)], -oo< x <oo} for a standardized Cauchy variable, i.e. 
density proportional to (1+ x2)-, compared with a variety of unstandardized Cauchy 
variables, i.e. densities of form proportional to {1 + (x - a)2/b2}-1; specifically, a plot of 

Itan-1 x, tan-1 ((x - a)/b)], - m<x<< . 

When the distributions are identical (a =0, b = 1), a straight line results. As one 
distribution is shifted away from the other (a = 1, b = 1; a = 2, b = 1), the plot takes on a 
bell-shaped apearance. With a pure change of scale (a = 0, b = 2) the effect on the plot is 
that it starts and finishes with a jump, while still exhibiting a form of skew-symmetry. If 
both location and scale differences are present (a = 1, b =2; a =2, b = 2) this skew- 
symmetry is lost. 

A P-P plot is created by ordering the combined samples and then, starting at (0, 0), 
plotting a point 1/m to the right or 1/n up according as the first member of the sequence 
is an X or a Y, and continuing in this fashion through the remaining m + n -1 members of 
the sequence. Such a plot for the psychological data in Table 4 is shown in Fig. 8. Note 
that the large gaps on the right-hand side of the plot are due to between-sample ties: if 
the plot is positioned at (x,, y,) after plotting i points, and mo X's are tied with no Y's at 
this stage of the sequence, the next point is plotted as (x, + mo/m, y, + no/n). Possible 
differences between F and G in the centres, which were not well-highlighted in the Q-Q 
plot, are shown up rather strikingly here (again, with the slightly undersized samples 
discounting the strength of the inference). 

In practice, it is advisable to adjust the two data sets for location and scale differences 
(e.g. by subtracting the sample median and dividing by the interquartile range, for each 
sample) before performing the P-P plot, since location/scale differences are manifested 
satisfactorily in Q-Q plots, and may conceal other effects in P-P plots. For the example 
used in Figs. 6 and 8, however, the Q-Q plot reveals very little location or scale 
difference. As a result, the P-P plot of the adjusted samples is essentially the same as that 
for the unadjusted samples, suggesting that there is some other qualitative difference 
between (the middles of) the two populations. 

Friedman & Rafsky (1979, A1979, 1981) have used minimal spanning trees to produce 
P-P plots to compare two multivariate samples; they also show that multivariate generali- 
zations of Q-Q plots along these lines are impracticable. Wilk & Gnanadesikan discuss 
'hybrid' (P-Q) plots and plots based on other functions of the sample distribution 
functions and quantiles. Note that P-Q plots have been used by Gnanadesikan & Gupta 
(A1970) to investigate the goodness-of-fit of a given distribution in terms of the accuracy 
at various sample quantiles, and by Fowlkes (A1979) to examine a sample for the 
presence of a mixture of two normal distributions. Associated uses in nonparametric 
statistics may well exist, but P-Q plots have not been used in this field. 

The pair chart is a slight modification of the P-P plot, the difference being that the jump 
or shift with each new plotting point is the same unit amount (rather than being 1/m or 
1/n). Thus if m = n, a pair chart is just a P-P plot. A pair chart is more useful in 
calculating several two-sample test statistics; otherwise there seems little difference 
between them. The uses of the pair chart, as described by Quade (1973), are both 
descriptive and computational. We have already seen how certain sorts of departure from 
F = G may be manifested in a P-P plot (Fig. 7): the same is true for the pair chart. 

The pair chart for the cancer data is shown in Fig. 9. The shaded rectangles correspond 
to between-sample ties in the data, with the perimeters of each rectangle indicating the 
extremes of possible paths derived from different orderings of the tied observations. If the 
plot for each of these sections is defined as the diagonal of the rectangle, graphical 
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Figure 8. Probability-probability plot. Data: scores by two sets of parients on psychological tests (Table 4). 
Figure 9. Pair chart. Data: scores of two sets of patients on psychological tests (Table 4). 

computation of various statistics described below will result in values corresponding to 
using average ranks for tied observations. 

A great variety of two-sample test statistics can be calculated from the pair chart. The 
Mann-Whitney-Wilcoxon test statistic is just the (number of squares) below the path. In 
Fig. 9 it is more convenient to calculate the area above the path and subtract it from mn: 
mn -(21+ 21+ ... +)= 154. The equivalence of the Mann-Whitney and Wilcoxon 
forms of the statistic is easy to demonstrate from the chart (Quade, 1973). Tukey's quick 
test statistic is trivially calculated: in the notation introduced earlier, L = number of steps 
in initial vertical sequences = 1, U= number of steps in last horizontal section =4, 
T = U + L =5. Among two-sample tests for scale, the test statistics of Ansari & Bradley, 
Sukhatme, Siegel & Tukey, Mood, and Crouse & Steffens are all shown by Quade to be 
amenable to graphical computation. 

The Wald-Wolfowitz runs test, a test due to Lehmann (see for example Quade) and the 
Kolmogorov-Smirnov tests are three procedures for testing F = G against more general 
alternatives. Both the runs test and Lehmann's test are easy to compute, although if ties 
are present the runs test may be rather unsatisfactory (see Quade for discussion of this 
point). Several aspects of the Kolmogorov-Smirnov statistics can be studied using the pair 
chart. Define 

D+,= sup {Fm(x)- G,(x)}}, D,= inf {Fm(x)- G,(x)}, Dmn = max (D+, D-). 
--oo<X 

<00 
--oo<X <00 

Hodges (1958) showed that if (xe, y,) and (x*, y*) are respectively the points of the path 
furthest below and furthest above the diagonal of the rectangle, then 

Ix* YI _ x* y*I 

(The points (x*, y*) and (x*, y*) will always occur at intersections of the mn lines forming 
the lattice.) From Fig. 9, 

41 21 8 14 
m= - = 0.009, D, = - = 0.316, Dmn = 0.136. 

25 221 
M 

25 221 
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Hodges also used the pair chart to demonstrate that the probability level of an observed 
value of D+,, D,, or D,,mn could be computed in various ways; see Hodges (1958) and 
Quade (1973) for further details. Quade also discussed the effect of ties on D,,mn. If m and 
n are not too large, it is feasible to use the pair chart to construct confidence bands based 
on the Kolmogorov-Smirnov statistics D,,mn. 

The introduction of the pair chart is attributed by Quade to Drion (1952), who used it 
to enumerate the probability distribution of D,,mn when m = n, and also to obtain a partial 
solution to the problem of estimating the probability that one sample distribution function 
lies entirely above another. Gibbons (1971) describes a recursive method proposed by 
Hodges (1958) for evaluating the probability level of an observed Kolmogorov-Smirnov 
statistic. A brief description of the pair chart and its application to computing D,,n is given 
by Daniel (1978). 

As a development of Q-Q plots, the concept of a shift (or treatment effect) function for 
the difference between two populations has been exploited by several authors (Doksum, 
1974; Switzer, 1976; Doksum & Sievers, 1976, Doksum, 1977; Nair, 1978) to obtain 
confidence bands which yield information about a usefully large range of models. If X and 
Y are any two random variables with continuous distribution functions F and G 
respectively, then there exists a unique shift function A(x) such that X + A(X) has the 
same distribution as Y. In fact, A(x) is just the horizontal distance between F(x) and 
G(x), as shown in Fig. 10, which is based on a similar figure of Doksum (1974), and so 
satisfies F(x) = G(x + A(x)), so that A(x) = G-'[F(x)]- x. The Q-Q plot of Fm against G, 
is just the sample estimate Gn'(F,) of G-'(F), evaluating at (a subset of) the points 
X(i), ... , X(m). 

Nair (1978) notes that 

(a) & A(x) dF(x)= E(Y)-E(X), 
(b) A(x)Ix =F-(1/2) 

= med (Y) - med (X), 
(c) If F and G are failure time distributions, convexity of A(x) + x implies that G has 

a more slowly increasing failure rate than F. 

(At the end of this section there is a discussion of plots for studying the hazard ratio.) 
For discussion purposes, it is convenient to think of X as being the response of a control 

subject, and Y the response of a treated subject, with the Y response tending to be larger 
if the treatment is beneficial. (The introductory section of Switzer (1976) and Doksum & 
Sievers (1976) expound this approach clearly and simply.) The following discussion on 
shift functions is based on the paper by Doksum & Sievers. In this paper, four specific 
questions are raised: (i) Is the treatment beneficial for all members of the population, i.e. 
is A(x)>0 for all x? (ii) If not, for which part of the population is it beneficial, i.e. what is 
the set {x:A(x)>0}? (iii) Is a pure location shift model appropriate (Y=ao+X in 
distribution)? (iv) Is a location scale shift model appropriate (Y= ao+ boX in distribu- 
tion)? These and other questions can be answered by computing a simultaneous confi- 
dence band [A,(x), A*(x)] for A(x), that is, a band such that pr {A,(x) ~< A(x) < A*(x), all 
x} = 1- a, for some prescribed a. Then the above questions can be answered by determin- 
ing (i) whether 

A.(x) 
>0, all x; (ii) {x : A,(x) > 0}; (iii) whether a horizontal line y = ao fits 

between 
A.(x) 

and A*(x); and (iv) whether any straight line y = ao + box fits between 
A.(x) and A*(x). 

To obtain the confidence bands, let T(Fm, G,) be a distribution-free test statistic for the 
hypothesis Ho: F - G such that Ho is accepted if and only if T < Ta; then the set 
{all functions A: T(Fm(x), G,(A(x)+ x))< T,)} is a 100 (1- a)% confidence set for the shift 
function A. In the particular case where the inequality T(Fm, G,) < Ta is equivalent to 
h*{Fm(x)}<~G,(x)< h*{Fm (x)}, the confidence set will reduce to a simple confidence 
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Fig. 11 
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Figure 10. Definition of shift function A(x) = G-'(F(x))- x. 
Figure 11. 80% confidence band and estimate for shift function A(x). Data: measurements of parallax (in seconds 
of degree) of sun by two different methods (Table 5). 

band. The simplest such case is based on the two-sample Kolmogorov-Smirnov statistic 

Dmn = sup Fm(x)- G(x)I, 

which produces the band 

[A*(x), A*(X)]= [Gn1{Fm 
(x)- T,}- x, GI{Fm, (x)+ T,}- x] 

= [Y() - x, Y,) -x], x[X(i),X(i+1)) (0 i m), 

where X(0) = -oo, 
X(m+I) 

= oo; ji = (ni/m - nT,), the least integer not less than ni/m - nT,; 
k,= [ni/m + nT, + 1]; and T,(mn/(m + n)) = K,a(m, n), the 100(1- a)% point of the dis- 
tribution of Dmn. This particular band is illustrated (Fig. 11) for some data quoted by S.M. 
Stigler from an experiment to determine the parallax of the sun based on the 1761 transit 
of Venus. Stigler presented eight data sets, five based on a comparison of observations at 
a single observatory with a long list of others, and the other three resulting from pairwise 
comparisons of seven observatories with nine others. These two groupings determine the 
two samples displayed in Table 5 and used in Fig. 11. (Clearly there is no notion of a 
treatment, let alone a beneficial, effect here, but nevertheless it is still of interest to know 
whether the underlying distributions are similar.) The confidence band is an 80% band for 
A(x); since a horizontal line of the form y =0 fits between A*(x) and A*(x), there is no 
difference manifested between F and G at this level (80%). 

Doksum & Sievers also consider other bands based on statistics of the form 

sup {IFm,(x) - Gn,(x)/HI(HN(x))}, 
where N= m +n and HN(x) = (m/N)Fm (x)+(n/N)G,n(x), for various choices of 41; the use 
of such bands allows for emphasis to be placed on particular parts of the range of the 
population (e.g. small x values, or the centres of the populations), and may result in more 
efficient estimation. Other aspects of these procedures are discussed by Doksum & 
Sievers, Switzer, Doksum (1977) and Nair. 

Another way of comparing two populations has been developed in connection with the 
analysis of survival data. Suppose X and Y are failure time random variables from two 
populations, with respective survivor functions F*(t) = pr (X> t) and G*(t) = pr (Y> t), 
and respective cumulative hazard functions HF(t) = -In F*(t) and HG(t)= -In G*(t). The 
associated hazard functions are hF(t)= dHFIdt, hG(t)= dHG/dt. Then the hazard ratio 0(t) 
is defined as 

h2(t)/hl(t), 
a quantity which will in general depend on time (t). If 0(t) is in 
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Table 5 
Data from an experiment (reported by J. Short in 1973) to determine the parallax of 
the sun based on the 1971 transit of Venus. 

X (m = 95) Y (n = 63) 

8.50 8.65 8.50 8.54 8.54 8.70 8.43 8.63 
8.50 8.35 8.80 8.56 8.58 9.66 9.09 10.16 
7.33 8.71 8.40 8.54 8.54 8.50 8.50 8.50 
8.64 8.31 8.82 8.74 8.94 8.65 8.44 8.31 
9.27 8.36 9.02 8.91 9.24 10.33 9.71 10.80 
9.06 8.58 10.57 8.40 8.30 8.07 8.07 7.50 
9.25 7.80 9.11 8.40 8.33 8.50 8.36 8.12 
9.09 7.71 8.66 8.57 8.59 8.60 8.60 8.42 
8.50 8.30 8.34 8.69 8.81 9.61 9.11 9.20 
8.06 9.71 8.60 8.55 8.56 8.50 8.66 8.16 
8.43 8.50 7.99 8.51 8.50 8.35 8.58 8.36 
8.44 8.28 8.58 8.57 8.58 10.15 9.54 9.77 
8.14 9.87 8.34 8.58 8.58 7.77 8.34 7.52 
7.68 8.86 9.64 8.63 8.68 8.23 8.55 7.96 

10.34 5.76 8.34 8.56 8.57 7.92 9.03 7.83 
8.07 8.44 8.55 8.41 8.33 8.42 10.04 8.62 
8.36 8.23 9.54 8.64 8.62 7.75 9.04 7.54 
9.71 9.07 8.43 8.37 8.23 8.71 8.28 

8.28 8.03 8.90 10.48 9.32 
8.70 8.85 7.35 8.31 6.96 
8.60 8.74 7.68 8.67 7.47 

First sample based on a comparison of observations at a single observatory with a 
long list of others; second sample based on pairwise comparisons of seven observa- 
tions with nine others. 

Source: Table 4, Stigler, S.M. (1977), Do robust estimators work with real data? 
(with discussion), Ann. Statist. 5, 1055-1098. 

fact a constant (0), X and Y are said to have proportional hazards: this implies that 
HG(t) = OH,(t) and hence that G*(t) = {F*(t)}e. 

Methods based on plotting sample cumulative hazard functions were introduced and 
studied extensively by Nelson (A1969, 1970, 1972), for situations in which censored data 
may be present or in which several 'modes of failure' are possible. Given two sets of 
failure data, with one set containing failures by modes not possible for the other, failures 
due to these modes can be deleted from the appropriate set, and the sets then compared 
via plots of their estimated cumulative hazard functions. 

To examine the hypothesis of proportional hazards, on the basis of independent 
samples from two populations, the estimated cumulative hazard functions 

/HFm(t) 
and 

HG, (t) can be plotted against each other, rather than plotting each separately as a function 
of t. The graph of 

{H/F,(t), H,(t)} is known as an H-H plot, and was introduced by R. 
Fisher (1977, 1983). Under a model of proportional hazards, the H-H plot will be 
approximated by the line y = Ox. In general, the asymptotic H-H plot has the property 
that the slope of the curve at any given value to is the hazard ratio associated with to. 

As an example, consider the data in Table 6, comparing two groups of measurements of 
times to death from vaginal cancer of female rats insulted with the carcinogen DMBA. 
The two groups are distinguished by pretreatment regime. The Kaplan-Meier estimate of 
the survivor function may be obtained as follows (see e.g. Kalbfleisch & Prentice, 1980): 
let 

tl 
< ... < tk be the distinct failure times for a sample from a homogeneous population, 

di the number failing at time ti, mi the number censored in the interval [ti, tj+1), and 
ni = (m + di)+ ... + (ink + dk): then the estimate of the survivor function at time t is 

IH (1 - d/ni). j :tj<t 
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Table 6 
Times from insult with carcinogen DMBA to death by vaginal cancer, for two 
groups of female rats, the groups differing in pretreatment regime 

X: Group 1 143 164 188 188 190 192 206 209 213 216 
(m = 19) 220 227 230 234 246 265 304 216t 244t 

Y: Grqup 2 142 156 163 198 205 232 232 233 233 233 
(n = 21) 233 239 240 261 280 280 296 323 204t 

344t 

t Censored value. 
Source: Pike, M.C. (1966), A method of analysis of a certain class of experi- 

ments in carcinogenesis, Biometrics 22, 142-161; reproduced as Table 1.1 of 
Kalbfleisch & Prentice (1980). 

The H-H plot of (-In F*(t), -In G*(t)) for the rat data is given in Fig. 12; based on this 
plot, the hypothesis of proportional hazards seems untenable. Note that the plot could 
have been effected equally well by plotting (F*(t), G*(t)) on log-log paper rotated 
through 1800 (R. Fisher, 1983). Various practical aspects of plotting survivor functions 
and cumulative hazard functions are discussed by Nelson (1972). 

More generally, one may wish to adjust each sample for the values of certain covariates 
x1, ..., x, prior to testing for proportional hazards. Thus, 0 might be some (unknown) 
linear function E• Pix of the covariates, but would not depend on t if the proportional 
hazards model were valid. With this particular form of Cox model (Cox, A1972), the 
effects of the covariates can be estimated and removed before computing cumulative 
hazard functions (R. Fisher, 1977; Kalbfleisch & Prentice, 1980). Related to this proce- 
dure is the idea of comparing the cumulative hazard functions obtained from a sample 
before and after inclusion of a particular covariate in the model (Kay, 1977; Kalbfleisch & 
Prentice, 1980); an alternative approach is to plot the survivor function of the 'generalized 
residuals' (Cox & Snell, A1968) from the model against the sample survivor function (R. 
Fisher, 1977). Another graphical approach to this problem has been suggested by Lagakos 
(1981). 

3 0 

0 

GRU I 
* 0 

1 2 3 

GROUP 1 

Figure 12. H-H plot to investigate assumption of propor- 
tional hazard rates of two groups of rats. Data: times to 
death from vaginal cancer in female rats insulated with a 
carcinogen, the groups being distinguished by pretreat- 
ment regime (Table 6). 
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Table 7 
Masculinities of 11 Central American countries 

92.5 94.5 97.1 97.5 98.0 98.8 99.3 100.2 101.6 102.7 105.0 

Source: United Nations Demographic Yearbook, 1967. 

Aalen (1978) and Aalen et al. (1980) discuss graphical comparison of two sample 
cumulative functions when the two samples are derived from rather general counting 
processes not necessarily giving rise to independent survivor times. (For this situation, 
unbiased estimates of the cumulative hazard functions were derived.) 

2.2 One-sample symmetry procedures 

As in ? 2.1, we begin the discussion with specific procedures, and then consider more 
general ones. By exploiting a natural duality between the two-sample homogeneity 
problem and the one-sample symmetry problem, a variety of the two-sample procedures 
discussed in Part I can be adapted for use in this section. (For example, if X1,..., X, is a 
random sample drawn from F(x) then, under the hypothesis (Ho) that the population is 
symmetric about zero, the 'pseudosample' -XI,... , -X, has the same joint distribution 
as X, ..., X,. Intuitively, a two-sample test for location shift applied to (XI,..., X,) and 

(-XI,... , -X,) could be used to examine the validity of Ho.) Throughout this section we 
shall assume that X1,...,X, is a random sample from a continuous population with 
distribution function F(x - 0), where 0 is the (known or unknown) population median. 
The sample order statistics will be denoted by X(l),..., X(,). 

(i) Centre of symmetry. Suppose that the underlying population may be assumed 
symmetric. The Hodges-Lehmann estimate of 0 based on the Wilcoxon signed-rank test is 

0, = med {I(X, + X), 1 : i < j < n}. A similar multiplicity of graphical techniques exists for 
calculating 0. as exists for the Mann-Whitney-Wilcoxon two-sample shift estimate 0,; see 
? 2.1(i). To illustrate the most well-known of these, we compute 0. and an associated 
confidence interval for the data on masculinities of several Central American countries 
provided in Table 7. 

Mark the data along a horizontal axis and construct two sets of parallel lines, at 450 and 
1350 to the axis, respectively, as shown in Fig. 13. The collection of intersections so 

6 
76 

6 

57 

92-5 945 97-1 97-5 98-0 98-8 99"3 100-2 101-6 102-7 105 

LOWER 94.6% LIMIT I UPPER 94.6% LIMIT 
ESTIMATE OF CENTRE 

Figure 13. Tukey's method of determining the Wilcoxon estimate of centre of symmetry. 
Data: masculinities of Central American states (Table 7). 
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formed, when projected down onto the axis, comprise (with the data themselves) the set 
of Walsh averages or elementary estimates {!(X, + X), 1 ?i< <j <n}. Thus, by moving a 
vertical line across from either end, the intersections can be enumerated sequentially and 
the median intersection and hence median Walsh average determined. In this case, there 
are 66 such averages, so that the median is the average of the two middle ones (namely 
(97.1 + 100.2) and 1(92.5 + 105)), 98.7. Similarly, if a confidence interval is desired, one 

determines the critical values (12 and 55, for n = 11 and a 94.6% confidence interval) 
from tables of Wilcoxon's statistic, e.g. Noether (1971), and locates the appropriate 
midranges. 

This is one of the best-known graphical procedures in nonparametric statistics, and was 
attributed to J.W. Tukey by Moses (1965); the earliest reference to it appears to be Moses 
(1953). Hollander & Wolfe (1973) provide some discussion of the use of the midpoint of 
the confidence interval as an estimate of 0; Conover (1971) considers the continuity 
assumption and the effect of ties; Daniel (1978) describes the method and its applicability 
to problems involving matched pairs. 

The other methods of calculating these point and interval estimates of 0 are exact 
one-sample analogues of the two-sample methods in ? 2.1 and will not be illustrated here. 
The analogue of Moses' method is described by Noether (1971), together with a 
discussion of the effect of ties in the data. Hoyland (1964) describes the analogue of his 
two-sample tabular procedure; see also Lehmann (1975). The sliding papers method of 
Hodges & Lehmann (1963) can easily be adapted to the one-sample situation. Hett- 
mansperger & McKean (1974) give a graphical demonstration of the relationship between 
interval estimation and hypothesis testing, based on the Wilcoxon statistic; compare with 
the remarks in ? 2.1(i). Finally, the Wilcoxon statistic can be calculated from the P plot 
(N. Fisher, 1981), the one-sample analogue of the pair chart; see ? 2.2(ii). 

Jaeckel (1969) investigated a generalization of the Wilcoxon estimate, in which different 
midranges I(X, + X ) could be assigned different weights; the estimate is then that 
midrange in the ordered sequence for which the cumulated weights are nearest 1. This 
estimate is clearly readily computed using graphical procedures of the above type. Other 
plausible one-sample test statistics which are analogues of two-sample statistics and can 
easily be calculated from the P plot are discussed in ? 2.2(ii). 

(ii) General assessment of symmetry. The discussion below parallels that in ? 2. 1(iii) on 
P-P and Q-Q plots and the shift function. Wilk & Gnanadesikan (1968) described a 
quantile plot (which we shall term a Q plot) obtained by plotting X(i) against 

X(,,,+-), 1 -<i -<[in]. If we set F(x)= 1-F(-x) and F,(x) = 1-F,(-x), a Q plot corresponds to a 
Q-Q plot as described in ? 2.1(iii), with G, (x) F, (x). Assuming that the underlying 
distribution is symmetric about its median 0, the plot should be approximately linear, and 
reasonably well fitted by the equation y = 20 - x. Because linearity is more easily assessed 
relative to a horizontal rather than a sloping line, J.W. Tukey suggested plotting 
(X(n+1_i 

+ X(i)) against (X(n+1-i) 
- X()), 1 < i < [n/2], which should result in a roughly con- 

stant plot of the form y = 20 under the symmetry assumption. A third plot suggested 
by Doksum (see description of 'symmetry function' below) is to plot X(, against 

+(X(, + 
X(,I_) 

for 1 ~ i ~ n; the plot should have approximate form y = 0 for 6 the 
centre of symmetry. 

These three plots are illustrated in Figs. 14a, b, c. Note that the Wilk-Gnanadesikan 
and Tukey plots have been made for i= 1,.... , n, rather than i = 1,.... , [n]: although 
these plots have intrinsic symmetry, it is easier to detect departure from linearity if the 
complete plot is presented. The data used are those in Table 8, the results of 23 
determinations of the velocity of light in air, by A.A. Michelson in 1882. It is. clear from 
each of the plots that there is substantial asymmetry in the data, suggesting that the 
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Figure 14. Quantile plots for assessing symmetry. Data: determinations of the velocity of light (Table 8). (data 
+299000 give velocity in km/s.) (a) Wilk-Gnanadesikan quantile plot. (b) Tukey's plot. (c) Doksum's plot. 

question of estimating the location of the underlying distribution reduces to one of 
estimating the median, without the assumption of symmetry. 

In the one-sample situation, the analogues of the P-P plot and the pair chart coincide. 
A one-sample probability plot (hereafter called a P plot) is a P-P plot of 
X1- 

0*,....X, 
- 0* against -(X1- 0*),...,-(Xn 

- 0*), that is, of [F,(x - 0*), F,(x - 0*)] 
for -oo< x <oo, where 0* is the true or estimated median. P plots complement Q plots as 
data-analytic tools in the same way as P-P plots complement Q-Q plots (N. Fisher, 1981), 
Q plots being more sensitive to departures for symmetry in the tails than in the middle, 
and vice versa for P plots. For unimodal distributions, a P plot of data from a symmetric 
distribution about a point which is not the true median behaves differently from a P plot 
of data from an asymmetric distribution (about any point, median or otherwise), as can be 
seen in Fig. 15, and described in more detail by Fisher (1981). If the underlying 
distribution is symmetric about, say, 0, then the asymptotic form of the P plot, that is, a 

Table 8 

23 determinations of the velocity of light in air, made during the 
period 12 October-14 November,. 1882. The values below, +299000, 
are Michelson's determinations in km/s. 

883 711 578 696 851 
816 611 796 573 809 
778 599 774 748 723 
796 1051 820 748 
682 781 772 797 

Source: Table 7, Stigler, S.M. (1977), Do robust estimators work 
with real data? (with discussion), Ann. Statist. 5, 1055-1098. 
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Figure 15. Asymptotic behaviour of P plots under various departures from symmetry. 

Figure 16. Computation of Wilcoxon statistic from P plot. Data: effect of group therapy on delinquents (Table 9). 

plot of {(F(x), F(x)], -oo< x <oo}, is a straight line from (0, 0) to (1, 1). If the distribution 
is symmetric about 0 0, then the asymptotic P plot about the incorrect median value 0 
will have the characteristic shape shown in the two plots in the first column of Fig. 15. If 
the distribution is asymmetric and unimodal with median 00, the asymptotic P plot 
{(F(x - 0o), F(x - 0)], -oo< x <oo} has the characteristic shape shown in the two plots in 
the second column of Fig. 15. In this latter case, if the incorrect median value 0 8 0o is 
used as the postulated centre of symmetry, plots of the type shown in the third column 
will arise. 

The computational uses of the P plot parallel those of the pair chart, albeit in a more 
limited way. The Wilcoxon signed rank statistic 

W, = I[X, > 0] (rank r X,1) 
l i sn 

for testing symmetry about 0 is easily seen to be the shaded area in Fig. 16 (the P plot of 
the data of Table 9 on the effect of group therapy on delinquents) when one recalls 
Tukey's alternative representation of the statistic as 

S I[X' , +xj >0]. 
li sj an 

Here, ties between X,'s and -Xi's are resolved by average rank. The computation of 
Butler's statistic 

B, = sup IF,(x)- (1 - F,(-x))l -sup IF(x) - F,(x) 
x x 

for the same hypothesis requires identification of the points (x*, y*) and (x*, y*) on the 
path farthest below and above the diagonal respectively (Fig. 17). From Figs. 16 and 17, 

Table 9 

Effect on 22 matched pairs of delinquents of group therapy in terms of emotional and social 
adjustment, measured by difference in rating between treated and control in each pair. 

-1.1 -0.9 -0.6 -0.4 -0.4 -0.2 0.0 0.0 0.0 0.0 0.1 0.3 
0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 1.0 1.2 

Source: Gerstein, C. (1952), Group therapy with institutionalised juvenile delinquents, 
J. Genetic Psychol. 80, 35-64. 
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The exact significance level of Butler's statistic can also be computed from the P plot, 
analogously to the computation of the significance level of the Kolmogorov-Smirnov 
statistic from the pair chart. This result was conjectured by Fisher (1981) and subse- 
quently proved by R.D. John in a personal communication as follows. 

The possible paths must pass through one of the n points on the diagonal x + y =1. 
Altogether there are 2" such paths, namely 1 to the point (0, 1), 

to the point ) 

and generally, 

(n) to the point (r, nr). 
(The symmetry of the paths x + y = 1 determines their behaviour on the other side of 
x + y = 1 once the behaviour below this line is known.) The probability level can then be 
calculated by determining the number of such paths which do not encroach in the region 
outside the lines y = x + B,. The same recursive technique described by Quade (1973) for 
the pair chart can be applied to count these paths. 

Further details concerning the Butler, the Kolmogorov-Smirnov and related statistics, 
plus some suggested analogues of Tukey's quick test and the Wald-Wolfowitz runs test 
are given by Fisher (1981). 

Corresponding to the concept of a shift function A(x) for the difference between two 
populations, ? 2.1(iii), it is possible to define a symmetry function A(x) for a single 
population, which measures the way in which a given population departs from being 
symmetric. This notion was introduced by Doksum (1975) and developed further 
by Doksum, Fenstad & Aaberge (1977); the symmetry function is defined by 
A(x)= I{1-F-'(F,(x))}, 

with sample estimate A(x)= {1-F-'(F(x))}. When the 
underlying population is symmetric about 0o, A(x) 00. 

Doksum et al. (1977) make the following comments about A(x): (i) when the population 
is skew to the right, A(x) lies wholly on or above 0o; (ii) the three symmetry plots (Figs. 
14a, b, c) are, respectively, plots of {x, F-;'(F,(x))}, {-Fn F(F,(x)) - x, -F-1(F,(x)) + x}, and 
{x, A(x)}, (iii) confidence bands for A(x) can be obtained similarly to those for A(x); (iv) 
tests for symmetry about 60, or more generally, for symmetry, can be performed by 
determining respectively whether the line y = 00, or any horizintal line y = 0, will fit within 
the confidence band (the latter test being conservative). 

To illustrate the use of the symmetry function, we calculate the simplest confidence 
band given by Doksum et al. (1977) which is based on Butler's statistic: using arguments 
analogous to those in ? 2.1(iii), they obtain 

[A*(x), A*(x)] = [(x + 
Xeh)), 

?(x + X())], x E [X(i), X(i+)) (0 < i < m), 

where X(0) = -oo, X(+,,) = oo; j, = n + l-(i - nBa(n)), k = n - [i + nB,(n)]; and nB,(n) is 
the 100(1-a)% point of the distribution of B,. Figure 18 shows the estimate A and 
associated 95% confidence band for the data in Table 10, quoted by S.M. Stigler from an 
earlier experiment by Michelson to estimate the velocity of light in air (100 measurements 
made in 1879). Stigler quotes the 'true' value 734.5 (+299000) km/s for the velocity of 
light in air; since the horizontal line y = 734.5 fits between the upper and lower bands, this 
seems to be a reasonable assertion based on the data. 
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Figure 17. Computation of Butler's statistic from P plot. Data: effect of group therapy on delinquents (Table 9). 
Figure 18. 95% confidence band and estimate of symmetry function A(x). Data: determinations of velocity of light 
(Table 10). (data +299000 give velocity in km/s.) 

2.3 Association and regression procedures 

(i) Association. Let (X1, Y1,..., X,, Y,) be a random sample from some continuous 
bivariate population with distribution function F(x, y). Denote by Ri the rank of Xi 
among Xi,..., X,, and by Si the rank of Yj among Y1,..., Y,. 

It is convenient to separate the various techniques into those providing representations 
of association and those which simply facilitate computation of a test statistic. The former 
group comprises techniques for Kendall's tau and Spearman's rho, and the linked vector 
method. 

Kendall's sample rank correlation coefficient _, is defined by 

T,= sgn {(X 
- X)(Y - 

Yj)} 
Table 10 
100 determinations of the velocity of light in air, made during 
the period 5 June-2 July, 1879. The values below, +299000, are 
Michelson's determinations in km/s. 

850 960 880 890 890 
740 940 880 810 840 
900 960 880 810 780 

1070 940 860 820 810 
930 880 720 800 760 
850 800 720 770 810 
950 850 620 760 790 
980 880 860 740 810 
980 900 970 750 820 
880 840 950 760 850 

1000 830 880 910 870 
980 790 910 920 870 
930 810 850 890 810 
650 880 870 860 740 
760 880 840 880 810 
810 830 840 720 940 

1000 800 850 840 950 
1000 790 840 850 800 
960 760 840 850 810 
960 800 840 780 870 

Source: Table 6, Stigler, S.M. (1977). Do robust estimators work 
with real data? (with discussion), Ann. Statist. 5, 1055-1098. 
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where sgn (u)= -1, 0, 1 according as u <0, u = 0 or u > 0. (If there are ties within the X 
or Y sample, various adjustments can be applied; see Kendall (A1975).) The graphical 
representation of ^, is based on its connection with the notion of 'disarray' of one rank 

ordering of n objects relative to another. The disarray of Y1,..., Y, relative to 
X1, .. .. X, is the smallest number (s say) of simple interchanges (interchanges of adjacent 
Y's) required to bring the Y's into the same rank order as the X's. Note that knowledge 
of this relationship seems to date back at least as far as Rodrigues (A1839.) As an 
example, Fig. 19 exhibits this disarray for the data in Table 11, concerning average life 
expectancy and per capita income for nine petroleum-exporting states. In Fig. 19, the data 
have been replaced by their ranks. Corresponding numbers are then joined by straight 
lines, and the number of intersections of these lines is just s, the number of simple 
interchanges needed to convert the second rank order to the first. Then 

T,= 1-2s = 
1-2x?14/ 

=9. 

An early reference to this display of disarray is Symonds (1927), who presented it for 
two different rankings without calculating s, and then quoted the Pearson product moment 
correlation of the two rankings (i.e. Spearman's rho). Symonds commented that '... the 
slope of these lines [in Fig. 19, departures from vertical] indicates the displacement in 

position and failure to correlate perfectly'. Subsequently, Sandiford (1929) used the 

graphical display to calculate s, and hence T,. A more recent discussion of T as a 
coefficient of disarray is given by Griffin (1958); Shah (1961) provides a simplification of 
Griffin's method for dealing with ties. 

As noted above, Spearman's rank correlation coefficient for a sample is simply the 
Pearson sample correlation computed using the ranks of the data. It can be rewritten as 

P= 
RS, - n(n + 1)2/4 {(n- n)/12}; 

if the data are re-ordered so that the X,'s are in increasing order, and if s, is the rank of 
the ith Y in this new ordering of the data, then 

S= 
is - n(n + 1)2/4 {(n3- n)/12}. 

This can be calculated from a graphical representation (of the relationship between the X 
ordering and the Y ordering expressed in the same) somewhat akin to the linked vector 
method of Taguri et al. (1976) given below, and to an unpublished representation of P 
due to T. Yanagawa (personal communication). To do this, form the table 

i 1 -.. n 

?(n+ 1)-s, i (n+ 1)- s1 ... (n+ 1)-s, 
and plot x, =iY (?(n + 1)-s i), where the sum is over ]= 1,..., i, against yi = i-1 for 
1 i ~ n. (Note that x, is a simple shift ?(n + 1)-s, from 

xl.) 
Then construct a step- 

function through these points, with its jumps at x,..., x-_, . The relative rank function so 
constructed starts at x = y = 0 and finishes at x = 0, y = n- 1, and may lie wholly on one 
side of the y axis or may take both positive and negative x values. The nett area between 
the function and the y axis (with area to the left of this axis counted negatively) is the 
numerator 

,. 
The denominator is the area between the y axis and the path corresponding 

to correlation 
, 

= 1, but may more conveniently be computed as (n3- n)/12. 
Figure 20 shows the relative rank function for the data in Table 12, on the correlation 

between elapsed time and distance travelled before recapture for 10 tagged tuna. The nett 
area =14.5, whence ho= 14.5/(990/12)= 0.176. 
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Figure 19. Calculation of disarray, and hence Kendall's tau. Data: life expectancy and per capita income for some 
petroleum exporting states (Table 11). 
Figure 20. Representation of Spearman's rho. Data: distances travelled and times between release and capture for 
Skipjack tuna (Table 12). 

Table 11 

Life expectancies (in years) and per capita income (in US dollars) for 9 petroleum-exporting states 

Life expectancy 36.9 42.3 47.5 50.0 50.7 51.6 52.1 52.3 66.4 
Per capita income 180 1530 110 1280 430 560 3010 360 1240 

Source: Leinhardt, s. & Wasserman, S.S. (1979), Teaching regression: an exploratory approach, Am. 
Statistician 33, 196-203. 

Table 12 
Time between date of release and date of recapture (in days), and distance from 
place of release that capture was effected (in nautical miles), for each of 10 
Skipjack tuna 

Time 64 67 106 161 164 169 182 192 230 231 
Distance 659 744 1616 683 682 678 594 637 1723 1682 

Source: Australian tuna caught off Solomon Islands, Australian Fisheries 39 (2) 
p. 17. 

Note that this representation of , is not symmetric in its treatment of the variables. 
However, it is of some relevance to the work of Gordon (A1979a, b) on the identification 
of data pairs contributing to agreement between ranking and of blocks of data pairs 
exhibiting agreement, and it provides some insight into the interpretation of the linked 
vector plots proposed by Taguri et al. (1976). The situation considered is one in which 
interest lies in the comparison of several 'explanatory' variables with a single objective 
variable. Suppose that n observations are made on a random (k+l1) vector 
(X?o),... ,Xk)) for 1 <i ~ n. Without loss of generality, suppose that the vectors have 
been re-ordered so that the values of the objective variable X(?) are increasing: 
X(O?)... < X~o). Let Rki) denote the rank of X') among the n independent realizations 
X1',..., 

X, 
of X') for 1 

:•< 
k. We then have the situation shown in Table 13a. Now 

perform on each column the transformation 

R(j 
_-_- 

1 a) = r- (1< iin, ls jk) 

to obtain Table 13b. Finally, associate with each quantity ag) the unit vector &~) with 
argument a? . For each variable X), plot the vector &Y2l,..., &) sequentially, with &? 
starting at the endpoint of &% 

_,D 
and a ) starting at the origin (0). The k + 1 linked-vector 

paths so formed will finish at a common point (F) at the top of Fig. 21. 
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Table 13 

(a) Rank, Ri), of observation variable, 
X.i), 

among n independent realizations, 
xij), ..., X(. (b) After transformation 

(a) Before transformation (b) After transformation 
Sample Objective variable Objective variable 

no. Objective X'() .. X(k) Objective X(1 ... X(k) 

1 1 R) ... Rk) a(?)=0 a() ... ak) 
2 2 

R() 
... R(k) 0)= /(n- 1) a) ... a (k) 

n n R" ... R(k) a = ci ( 
... 

ak n n n n n 
As an example, Fig. 21 shows the linked-vector paths for the data in Table 14, on the 

amounts of four trace elements present at various depths in Antarctic snows. One of the 
metals (aluminium) has been chosen as the objective variable. The clear indications are 
that K is highly positively correlated with Al, and Pb highly negatively correlated. Taguri 
et al. (1976) observe that the nett area between any given path and the central vertical 
line, as a proportion of the largest possible area, is approximately equal to Spearman's 
rho. The reason for this is clear, in the light of the representation of , presented earlier. 
Note that in this case, 

5 (Pb, Al) = -0.66, ,(Ag, Al) = 0.10, 1,(depth, Al) = 0.46, ~,(K, Al) = 0.87). 

The sort of information highlighted by the linked-vector plot, especially with larger 
samples, is the differential association between an objective and an explanatory variable 
over different ranges of their respective populations. For example, the plot of depth 
against Al suggests positive association over the lower range of each variable, with a hint 
of negative association in the upper parts of the ranges. A geochemical problem relating 
to this occurs in multielement analysis of samples taken sequentially along a drill-core. 
The samples are supposed to form a homogeneous domain. However, a linked-vector plot 
of trace element concentrations against distance along the drill-core could detect a change 
in some element concentrations indicative of heterogeneity in the sampled zone. 

Fig. 21 Fig. 22 
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Figure 21. Linked-vector plots. Data: concentrations of trace metals at various depths in Antarctic snows (Table 
14). 
Figure 22. Scatterplot of data for use with Olmstead-Tukey comer test. Data: radiometric disequilibrium (Y) and 
depth (X) for uranium samples. 
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Table 14 
Measured concentrations of four trace elements at various depths in Antarctic 
snows. 'Depth' has been recorded here as height above lowest average depth 

Depth Potassium (K) Aluminium (Al) Lead (Pb) Silver (Ag) 
(m) (10-9 g/g) (10-9 g/g) (10-12 g/g) (10-12 g/g) 

4.86 1.06 1.14 41 6.0 
4.46 0.93 1.25 25 6.8 
4.06 0.62 0.78 30 7.6 
3.66 0.75 0.88 28 4.0 
3.25 1.11 0.97 27 6.6 
2.77 1.40 1.81 15 2.9 
2.41 1.57 1.70 47 22.0 
1.99 1.13 1.37 21 14.0 
1.56 1.88 3.06 23 7.2 
1.16 2.05 3.66 20 6.5 
0.77 1.45 1.93 18 6.6 
0.38 1.12 1.39 24 2.1 
0.00 1.25 0.95 26 0.2 

Source: Table 1, Boutron, C. & Lorius, C. (1979), Trace metals in Antartic 
snows since 1914, Nature 277, 551-554. 

A simple and effective way to deal with ties is to use average ranks; however, Taguri et 
al. (1976) have other recommendations for this, and also give further discussion of the 
interpretation and uses of the method. 

Finally, we make brief mention of a suggestion by Bradley (1963) of a mechanical 
method of obtaining a graphical display of rank association between two variables. Write 
out each pair of values (Xi, Y,) on a separate computer card, sort the cards so that the X's 
increase, and draw a 450 line across an edge of the deck (i.e. not the face of the front or 
back card), thereby imparting a small mark to the edge of each card. Then re-sort the 
cards so that the Y's increase. The small marks on the cards are then scattered (unless 

t3,(X, Y)JI= 1) and give a scatterplot of rank association. 
We turn now to consideration of tests of association. The first of these is the 

Olmstead-Tukey corner test for association in large samples, in situations where it is 
believed that information about association may be contained in points on the periphery 
of the data set. Figure 22 is a scatterplot of radiometric disequilibrium against depth for 
242 samples of uranium from an Australian one body (data kindly supplied by Dr. B.L. 
Dickson, CSIRO Division of Mineral Physics). To effect the test, draw in the X and Y 
medial lines as shown, and label the quadrants so formed as +, -, +, - serially from the 
top right-hand corner. Then, stating at the top, move vertically down counting points with 
decreasing y values until it is necessary to cross the X medial line, and attached to this 
count the sign of the quadrant in which the points lie. In the case, only one point is 
counted, and receives '-'. Proceed in similar fashion for the bottom, left- and right-hand 
sides of the data set to obtain the counts, +11, +2 and +1 respectively. The test statistic is 

I-1 +11 +2 +11 = 13, which, if we use the table provided by Olmstead & Tukey (1947), 
suggests that the hypothesis of no association should be rejected at the 2.5% level. 

Olmstead & Tukey discuss handling of ties, and extension of the technique to higher 
dimensions (joint association of several variables). Mood (1950), Quenouille (1972) and 
Daniel (1978) also describe the test. 

Quenouille (1952, 1972) proposes a variety of graphical 'quick' tests to detect associa- 
tion (monotonic or otherwise) between X and Y: we illustrate two of them. A large- 
sample procedure for detecting monotone association is illustrated in Fig. 23a. The data, 
given in Table 15, consist of measurements of psychological test score and reciprocal 
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Figure 23. Quenouille's quick tests for association. Data: psychological test scores and body measurements for 
first-born of sets of twins (Table 15). (a) Test for monotone association. (b) Test for general association. 

ponderal index (stature divided by cube root of weight) for the first-born of each of 20 
sets of twins. On a scatterplot of the data draw two vertical lines which divide the X's in 
proportions approximately 3:4:3 and similarly for the Y's. Denote by n1, n2, n3, n4 the 
number of points in the four corner cells (labelled cyclically from the top right-hand cell), 
calculate N = nl - n2 + n3 - n4 and test it as a normally distributed random variable with mean 
zero and variance n1 + n2 + n3 + n4; N = 2 -1 + 2 - 2 = 1, which is clearly not an extreme value 
for a normal random variable with mean 0 and variance 7, although the sample size is 
probably too small to make the normal approximation reasonable. This test and other 
similar procedures are also discussed by Shahani (1969). 

The second method, to detect general association, is illustrated for the same data set 
(excluding two points) in Fig. 23b. On the scatterplot draw in the medial line for the Y's. 
Then proceed from left to right, drawing in vertical lines dividing the data into sets of 
points with each set comprising a run of consecutive X value points on the same side of 
the medial line. The number of sets is the critical value: if it is too small, (as assessed from 
Table 7 of Quenouille (1972)), the hypothesis of independence is rejected. In Fig. 23b, 
there are 11 such sets, which for a sample size of 18 is significant at the 5% level (critical 
value = 12). 

Table 15 
Measurements of Total (T) of scores on three psychological tests and of reciprocal 
ponderal index, RPI= stature/(weight)"/3, for 20 individuals (first-born of 20 sets of 
twins) 

Obs Obs. Obs. 
no. T RPI no. T RPI no. T RPI 

1 167 359 8 163 323 15 157 312 
2* 204 330 9 94 342 16 151 350 
3 195 298 10 127 352 17 204 339 
4 149 326 11 191 334 18 140 354 
5 215 324 12 154 340 19 258 336 
6 262 356 13 208 358 20 109 324 
7 97 322 14 163 342 

* Not used in Fig. 23. 
Source: Clark, P.J., Vandengerg, S.G. & Proctor, C.H. (1961), On the relationship 

of scores on certain psychological tests with a number of anthropometric characters 
and birth order in twins, Human Biol. 33, 163-180. 
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Figure 24. Parameter space plot, showing lines yi = a + O3x in 
a - 3 space, coordinates of intersection of first two lines, and 
typical regions with differing patterns of signs of residuals. 
Data: see text and Brown (1980). 

(ii) Regression. Let 
(xl, y1),..., (x~, y,) be a sample of points to which we wish to fit a 

model of the form y = a + 3x. Most of the nonparametric methods of estimating a and 0 
can be interpreted in terms of the so-called parameter space plot, which is essentially a plot 
of the n lines y, = a + f3x (1 < i < n) in a - p space. A detailed review of this topic is given 
in an unpublished manuscript by D.A. Griffiths and N.I. Fisher ('The parameter space 
plot in linear regression' (1982), available from the authors upon request); here, 
we shall confine ourselves to a brief description of the technique. For illustration, 
consider the parameter space plot given in Fig. 24, based on the data 
(x, y) = (-2, 0), (-1, 1), (0, - 2), (1, - 2), (2, 1) (data used by Brown (1980)). The inter- 
section of the lines y, = a + O3x and yi = a + 3xi in the parameter space plot is the point 
[(yixi + yix,)/(xi 

- x), (yj - y)/(xY - xi)]. The two lines corresponding to the first two data 
points, and their intersection, are labelled in Fig. 24. 

In general, the n lines divide a -3B space into N= (n2+ n +2) regions A1,... , AN, 
such that for any (a, p) in some region A, the pattern of signs of the residuals y, - a - 3x, 
will be the same, with no two regions having the same pattern. Two typical regions Ai and 

Aj are highlighted in the example. The idea of developing inferential procedures based 
solely on these patterns dates back at least to Daniels (A1951, 1954), who used them to 
obtain a test, and associated confidence procedure, for the hypothesis that the regression 
parameters take specified values. Drummond (1976) and Quade (1979) have studied a 
general class of statistics which depend on the data only through these patterns of signs. A 
well-known special case of this is the median regression technique of Brown & Mood (see 
for example Mood (1950)), for which a different graphical method is given later in this 
section. 

An early use of the parameter space plot was reported by Edgeworth (1923) in a paper 
on median estimates of regression; subsequent work on this aspect is given by Brown 
(1980). The fact that the intersections of the lines in a - 3 space are just the points 

{(yxjx 
- 

yix1)/(x- 
- x0), (yi - y,)/(x, - xi)} allows easy computation of the Theil-Sen estimator 

median {(y, - yi)/(x, -xi), 1~<i <j<~ n} (see for example Sen, A1968), as these points may 
be enumerated in increasing order by moving a horizontal line from bottom to top across 
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the plot. Similar estimators of a proposed by Maritz (A1979), for example the median of 

{(yjx,-yyix)/(x,-xi), 1 i<j< n} can be computed by studying the a values in the 
parameter space plot. 

Several papers make use of the parameter space plot to estimate the parameters of the 
Michaelis-Menton equation, a standard model in the field of enzyme kinetics. The model 
is itself nonlinear in the parameters but can be transformed and re-parameterised to a 
linear model. Various graphical methods for estimating the parameters of the linear model 
are discussed by Eisenthal & Cornish-Bowden (1974), Cornish-Bowden & Eisenthal 
(1978), Cornish-Bowden, Porter & Trager (A1978), and Cressie & Keightley (1979, 
1981). 

There are a few other graphical methods for simple linear regression. Shorack's 
method, see ? 2.1(ii), of obtaining an estimate for the ratio of scale parameters is relevant 
here if a simple model of the form y = px, p >0, is being fitted. Hettmansperger & 
McKean (1974) give a graphical display of the equivalence of a hypothesis test for the 
slope parameter 0 in simple linear regression and a confidence interval estimate of f 
based on Kendall's tau (see for example Hollander & Wolfe 1973, Chapter 9). 

We illustrate two techniques described by Daniel (1978), using the data in Table 16 on 
the relationship between newspaper sales and national income in the United States during 
1930-1940. On a scatterplot of the data (see Fig. 25), mark in the medial line of the X's, 
and in the two groups so formed, identify the X medians (x1, x2) and the Y medians 
(y1, Y2). Draw a line through the points (xl, 

Yx) 
and (x2, Y2) as a first approximation, then 

(using a transparent ruler) adjust the line if necessary so that the median deviation in each 
group is zero. The resulting line is the Brown-Mood median regression line mentioned 
above. 

A related test of the hypothesis 0 = go for the model of the form y = a + Ox can be 
done using a similar diagram: with the X median drawn on the scatterplot, draw a line 
parallel to the line y = x which divides the points into two equal groups. (This is 
equivalent to determining the median ai of all the deviations Yi - oXi and drawing the 
line y = Ci + Pox.) Count the number N of points lying above this line and to the left of the 
X medial line. Under the hypothesis 03 = o, N is approximately binomially distributed 
b(n, 1), so that 16(N- n/4)2/n is approximately distributed as X2 for n not too small. 

y 
z 

S40 - 

MEDIAN REGRESSION LINE * x22 

0 0 

38 - 

,~/-FIRST 
APPROXIMATION 

. 36 6) fX-MEDIAN 

u, w -. 

40 60 80 

NATIONAL INCOME (UNITS OF $109) 

Figure 25. Brown-Mood median regression line. Data: 
newspaper circulation and national income in the US, 
1930-1940 (Table 16). 
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Table 16 

Newspaper circulation (in millions of copies) and national income (in billions of dollars) in the 
US during years 1930-1940 

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 

Circulation 39.6 38.8 36.4 35.2 36.7 38.2 40.3 41.4 39.6 39.7 41.1 
National income 68.9 54.5 40.0 42.3 49.5 55.7 64.9 70.8 77.5 70.8 77.5 

Source: Table 51, Ferber, R. (1949), Statistical Techniques in Market Research, New York; 
McGraw-Hill. 

2.4 Miscellaneous procedures 

In this section, we draw attention to relevant references in the Bibliography, without 
illustrating the methods. 

(i) k sample procedures. Doksum (1977) gave an extension of the use of shift functions, 
? 2.1(iii), to models in which one population could be regarded as a control or reference 
population with which the others (treatments) were to be compared. This work has been 
extended by Nair (1978) to situations in which all k populations are treated equally, and 
to models in which the samples have been randomly censored. Nair has also considered 
the special case of the differences between populations being just location/scale, making 
possible more efficient large-sample estimation. 

A k-sample analogue of the pair chart, called the k-multiple chart, has been developed 
by Wakimoto (1981). The chart can be used to obtain a k sample test (the 'area' test) of 
homogeneity against ordered alternatives, which is nearly equivalent to the usual Terpstra 
& Jonckheere test, but possibly superior. 

Kraft & van Eeden (1968) made use of graphical procedures for the Kruskal-Wallis and 
Friedman homogeneity tests, with k = 3 treatments. However, the labour required is 
considerable, and a certain amount of data reduction is required (even with small samples) 
before graphical techniques can be employed. 

Some k sample analogues of the procedures discussed in ?2.1(iv) for comparing 
survivor functions have been suggested by Kay (1977) and Kalbfleisch & Prentice (1980). 

(ii) Contingency tables. Insofar as X2 tests for contingency tables are regarded as 
nonparametric procedures, it is appropriate to reference Snee (1974), who used a 
graphical display of a two-way table to facilitate identification of rows and/or columns 
contributing the nonhomogeneity (given an overall significant chi-squared statistic), and 
Boardman (1977), who used a graphical display to exhibit the contribution to the 
chi-squared statistic of each row-column combination in a two-way table. Modifications of 
these methods have been published by Cohen (1980). 

(iii) Analysis of covariance. Quade (1983) has adapted the pair chart, see ? 2.1(iii) to 
create a 'matched pair' chart for use in analysis of covariance. 

(iv) Angular data. P-P and Q-Q plots, see ?2.1(iii), can be adapted to comparison of 
two independent samples 01,..., 0,, 

and 01,... , 4. of angular data, provided that each 
sample is measured modulo its sample mean direction before comparisons are made. If 
the samples are not too disperse, reasonable assessment of homogeneity is possible. 
Alternative comparisons can be based on cos 

01,...., 
cos 0,, and cos 41,..'., cos 4n and 

sin 01, .. ., sin 0,m with sin 41, ... , sin 4,. Similar remarks pertain to one-sample symmetry 
checks on an angular sample. Griffiths (1981) suggested a simple graphical device for 
finding the median of a sample of angular data. 

(v) Other multivariate procedures. Mention has been made in ? 2.1(iii) of the multi- 
variate P-P plots due to Friedman & Rafsky (1979), and in ?2.3(ii) of higher-dimensional 
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corner tests. The multivariate plots are based on an earlier paper by Friedman & Tukey 
(A1974): more recently, Tukey & Tukey (1981) have given an extensive discussion of 
graphical displays for higher-dimensional data, which refers to much of the earlier work 
on the subject. 

Andrews (1972) suggested mapping each multivariate data vector = (xx,..., Xk) in a 
random sample of n k-vectors into a function 

f,(t) = +x2 sin t + X2 cos tX4 
sin 2t + 

x5 
cos 2t + 

... 

on 
[--r, 

rr] and then plotting these n functions. More generally, ? can be mapped into any 
function >E 

x). 
u,(t), where the sum is over i = 1,... , n, and u1,..., Uk are orthonormal 

functions on, say, [0, 1]. Gnanadesikan (1977) describes how Andrews' plots can be used 
with large samples to study aspects of the shape (e.g. symmetry) and correlation structure 
of the underlying distribution, by looking at quantile contour plots, i.e. plots of quantiles of 
the n sample values of f,(t) at each of a grid of values of t. 

An important technique for determining structure in multivariate samples, namely 
nonmetric scaling (in which only the rank-orders of the 'distances' between individuals in 
the sample are used), has been reviewed recently by Carroll & Arabie (A1980). 

(vi) Time series. Quenouille (1972) presented a rapid graphical method of computing a 
confidence interval for the median of a trend-free time series, and a rapid graphical test 
for monotone association between two time series. 

3 General remarks 

It is worth noting that most of the illustrations in this paper were hand-drafted with 
reasonable ease (although in somewhat less stylized form than that in which they appear 
here); hence, the methods of ?? 2.1(i), (ii), 2.2(iii) seem particularly useful for teaching 
purposes, being convenient methods of computation when a computer is not available. 
The useful correspondence between the two-sample location shift methods in ? 2.1(i) and 
the one-sample centre of symmetry methods in ? 2.2(i), ? 2.2, serves to highlight the fact 
that understanding the way a given graphical method works leads to better insight into the 
behaviour of the statistical procedure it illustrates. The pair chart in ? 2.1(iii) is an 
extremely versatile teaching aid, covering descriptive analysis and a variety of tests; to a 
lesser extent this also applies to the P plot, ? 2.2(ii). For more advanced students, the P-P 
and Q-Q plots in ? 2.1(iii) and the Q plots in ? 2.2(ii) can be employed. The computa- 
tional methods for Kendall's tau and Spearman's rho in ?2.3(i), and for simple linear 
regression in ? 2.3(ii) may well be of teaching value. Finally, the paper by Hettmansperger 
& McKean (1974) which is mentioned several times in the review, illustrates the relation- 
ship between hypothesis testing and interval estimation for numerous situations. 

From a practical point of view, the most useful methods in ? 2.1 are assuredly those 
discussed in ? 2.1(iii): since most of the tests or estimates referred to in ?? 2.1(i), (ii) could 
be readily calculated on a computer they seem of lesser importance. (The exception of 
course is Tukey's quick two-sample test, ? 2.1(i), for those emergencies on a train or bus 
when an on-the-spot assessment, or piece of sleight-of-hand, is required.) Similarly, in 
? 2.2 the methods of ? 2.2(ii) offer more practical aid than those in ? 2.2(i). In ? 2.3(i), the 
Olmstead-Tukey corner test and some of Quenouille's rapid procedures can be useful at 
preliminary stages of data analysis when a scatterplot of the data is available; of far 
greater use, however, is the linked-vector method of Taguri et al. (1976). Whilst none of 
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the procedures in ? 2.4 has been illustrated, several of them are very powerful data- 
analytic tools; for example, the k sample comparisons using shift functions, nonmetric 
scaling and the methods for displaying multivariate data. 

It may not be too unreasonable to claim that the range of nonparametric methods for 
which graphical procedures are available and being used almost defines the range of 
commonly-used nonparametric methods (except for some methods of analysing designed 
experiments such as randomized blocks layouts). Part of the reason for the scarcity of 
examples using nonparametric methods in multivariate analysis and multiple regression is 
the lack of computer packages necessary to cope with the formidable computations. 
Perhaps as methods develop which concern themselves more with the association struc- 
ture of multivariate data, graphical procedures will follow: the few procedures now 
available provide encouragement for this hope. A specific area of need is that of 
directional statistics. A class of graphical procedures, analogous to probability plots and 
shift function plots for the comparison of two samples but of different kind, would be of 
great value. Other possibly fruitful areas are those of discriminant analysis (in which some 
nonparametric methodology is available) and time series modelling (in which such 
methodology exists only in embryo forms). 
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Resume 

Cette article fait le tour des methodes graphiques utilisable en statistique nonparam6trique, et donne des 
exemples d'utilisation de beaucoup de ces m6thodes dans les rubriques suivantes: m6thodes pour comparer deux 
populations, m6thodes relatif une population, m6thodes d'association et regression, m6thodes mixtes. 

[Paper received December 1980, revised March 1982] 
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