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Confidence procedures for two-sample problems 
BY PAUL SWITZER 

Department of Statistics, Stanford University, California 

SUMMARY 

In the usual two-sample problem one is estimating the constant additive effect of a treat- 
ment or the additive constant by which two random variables differ. However, if the 
treatment-effect may depend on the response level, then a more general approach to two- 
sample problems seems appropriate. We define a treatment-effect function t and characterize 
distribution-free confidence bounds for the function t both in the case where t has specified 
parametric forms and in the case where t is not parameterized. 

Some key words: Additivity; Distribution-free confidence procedure; Two-sample problem. 

1. INTRODUCTION 

Suppose that the effect of a treatment is to convert a numerical response w into another 
number to (w). We call to the treatment function and assume that it belongs to a class J of 
increasing and continuous functions of w. We have available measured responses Xl, . .., Xm 
on m untreated subjects as well as measured responses YK1, .. ., Yn on n treated subjects, from 
which we wish to make inferences about to E S. The problem is a generalization of the usual 
two-sample shift problem where the treatment function is constrained to be of the form 
to (w) = w + 00. Earlier work on the estimation of a general function to includes papers by 
Gnanadesikan & Wilk (1968) and Doksum (1974). 

This paper examines the structure of confidence sets for the function to, where the confi- 
dence probability derives from the random assignment of n subjects to the treatment out 
of the available N m + n subjects. The confidence sets derived under this randomness 
assumption will remain valid under the stronger assumption that the m + n subjects have 
themselves been randomly sampled from a population in which the distribution of untreated 
responses has cumulative distribution function Fx; the confidence sets for to will then be 
distribution-free with respect to Fx. 

In the classical two-sample problem the X's and Y's are taken to be independent samples 
from two unknown distributions Fx and F. and there is no treatment per se. However, there 
is still a fixed function to which when applied to the responses in the first sample gives them 
the same distribution as the responses in the second sample. In this case to is the composed 
function Fi'Fx, whose graph is exactly the Q-Q, quantile-quantile, plot of Gnanadesikan & 
Wilk (1968) for the pair of underlying distributions. Here also it is convenient to call to the 
treatment function, since the confidence sets obtained with randomized treatment-control 
data are the same as those obtained from classical two-sample data. In the latter case the 
confidence sets will be distribution-free with respect to Fx and F. 

To illustrate the procedures of this paper the data of Table 1 will be used repeatedly. 
They have been extracted from data supplied by R. G. Miller on kneecap measurements for 
a group of forty male subjects and forty female subjects. Since they are in the form of 
classical two-sample data the interpretation of the 'treatment function' in subsequent 
illustrations should conform to the interpretation in the preceding paragraph. 
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14 PAUL SWITZER 

2. CONFIDENCE SETS FOR GENERAL TREATMENT FUNCTIONS 

Confidence sets for the treatment function to are constructed using the following argument. 
Suppose we transform the m untreated responses by an arbitrary function t E Y, giving 
{t(Xl), ..., t(Xm)} t(X), say. These m transformed responses together with the n observed 
treated responses (Y1, ..., Y.) _ Y form a set of m + n exchangeable random variables when 
t = to under any of the randomness assumptions described in the introduction. Therefore, 
any two-sample rank test applied to t(X) and Y may be inverted in principle to obtain a 
distribution-free confidence set for to. 

The acceptance region of a level a two-sample rank test may be specified by a subset 3< 
of the finite space of possible two-sample rank vectors. If tR = (tRi, ..., tR.) denotes the 
conventional two-sample rank vector computed from t(X) and Y, then a confidence set for 
to with coverage probability 1- a is given by 

T(X, Y) = {teY9:tRe3} (1) 

The rank vector tR is ambiguously defined if t(Xi) = Y, for some i and j, that is tR has more 
than one version. In such cases we take t E T(X, Y) if tR E S,,, for some version of tR. Whether 
or not the confidence set (1) has a comprehensible and computable representation will 
depend on the choice of the underlying rank test procedure 9Pa and the richness of the class 
Y of possible functions. For the remainder of this section g will be taken to be the class of 
all continuous and increasing functions. 

A special class of rank procedures, called simple, admit a graphical representation of the 
confidence set (1) for to by means of upper and lower bounding functions. That is, 

T(X, Y) = {t E J: tl (w) < t(w) < tu(w) for all w}, (2) 

where tL(.) and tu(.) are nondecreasing confidence bands depending on the data. For 
example, it will be seen shortly that the usual Smirnov two-sample rank test may be inverted 
to give simple confidence sets of this type. 

In order to characterize simple confidence procedures it is convenient to use the convention 
that the X's and Y's are already ordered, that is X1 < ... < X.a.nd Y < ... < Yn. Then 
every two-sample rank vector R = (RIl,..., Rm) is an increasing sequence of m integers 
between 1 and m + n. Also, for two different rank vectors R' and R", define R' < R" if 
R, < R,' for all i. Then, for specified R' and R", the acceptance region of a simple test is 

9,a = {R: R' < R < R"} and the corresponding confidence set for to is 

T(X, Y) = {teY:R' < tR < R"}. (3) 

It is easily shown that this confidence set (3) for the unknown treatment function to may 
be represented by upper and lower bounding functions as in (2). From the conventional 
definition of two-sample rank vectors we have that the event tRi = j is equivalent to 

Yj4i < t(Xi) < Y._i+1. Therefore, the event tRi < j is equivalent to t(Xi) < Y4_+1 and like- 
wise tRi > j is equivalent to t(Xi) > Y4_j. It follows that the inequalities R' < tR < RB' may 
be expressed as YRs_j < t(Xi) < YR> _j+jj for i = 1, ..., m; hence the confidence set (3) has the 
required simple form (2). The lower and upper bounding functions tL (.) and t' (.) are, 
respectively, the right-continuous and left-continuous step functions with, for i = 1, . . ., 

Le(ri) = YL Li = R--i; fUi+ o = Rr'j-i+. (4) 
Interpret Yi a.s -oo for j < 1 and as + oo for j > n. 
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Confidence procedures for two-sample problems 15 

We have seen that the choice of a pair of rank vectors R' < R" completely specified a 
simple confidence procedure for to. The coverage probability 1- as is given by the proportion 
of all possible rank vectors falling between the specified R' and R' and typically this propor- 
tion would be difficult to calculate. However, certain choices of R' and R" enable us to use 
tabulated distributions to find the coverage probability. 
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Fig. 1. 94.5 % confidence bounds for to using the Smirnov procedure based 
on the data of Table 1. 

In particular, tables of the null distribution of Smirnov's two-sample test statistic may 
be used to find the coverage probability in an interesting case. These tables give the sampling 
distribution of sup Ipi -2 1, where F1 and p2 are the empirical cumulative distribution 
functions of independent samples of sizes m and n from the same continuous cumulative 
distribution function. However, the value of sup I"'1X1 -21 depends only on the two-sample 
rank vector and the sampling assumptions are used only to make all rank vectors equally 
likely. It can then be easily shown that the event sup 1X1 - 21 < c is equivalent to putting 
specific lower and upper bounds R' and R' on the rank vector. Explicitly, the Smirnov 
procedure gives 

R= K<i(m+n)/m-cn>, R' = [i(m+n)/m-n/m+cn] (i = 1, ...,m), (5) 

where <z> is the smallest integer greater than or equal to min (1, z), and [z] is the largest 
integer less than or equal to max (m + n, z). The coverage probability is related to the 
constant c and the sample sizes m, n through the tail probabilities of Smirnov's two-sample 
distribution, namely 1- = pr (sup IFX-F2j < C). 

Hence the set of increasing functions lying between the lower and upper bounds given by 
(4) and (5) represents the formal inversion of Smirnov's test as a confidence set for to in the 
domain ST. We maynote that the Smirnov confidence procedure is reversible in the following 
sense. Suppose the roles of the treated and untreated data are exchanged. Then the same 
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16 PAUL SWITZ:ER 

procedure can be used to obtain confidence bounds for the inverse function to-. But the 
bounds for t-1 will correspond exactly to those for to when rotated through 90?. 

When the two sample sizes are equal and cn is an integer A, then the expression for 
the confidence set simplifies somewhat further to T(X, Y) = {t eY:Yi-A < t(Xi) < Yj+,, 
i = 1, ..., m}. Figure 1 is an illustration of the bounding functions of a Smirnov confidence 
set calculated from the two-sample data of Table 1 with m = n = 40 and A = 40c = 12; the 
coverage probability is 94-5 %. 

A similar representation for Smirnov confidence bounds is derived in recent unpublished 
work by G. L. Sievers, Western Michigan University. Also Doksum (1974, Theorem 3 1) has 
recommended confidence bounds for the treatment function to which are nearly identical 
to (5). Indeed, in the preceding example with m = n = 40, Doksum's procedure coincides 
exactly with (5) when we take his 6 = 62= 6. However, his formula for the confidence 
level does not take advantage of the equivalence to a two-sample Smirnov procedure. 
Instead, a conservative confidence level is derived by compounding separate one-sample 
goodness-of-fit procedures. Doksum's calculation applied to the preceding example gives 
1-ac 50 % whereas the actual level is about 94-5 %. 

Simple confidence procedures other than those based on the Smirnov test statistic may 
also have readily computable coverage probabilities. For example, if the confidence bounds 
constrain the treatment function at only one of the X values then the coverage probability 
may be calculated from the tail of a hypergeometric distribution. If the cQnfidence bounds 
constrain the treatment function at two different X values, then the coverage probability 
at conventional levels may be approximated by the Bonferroni inequality 1- a > 1- al-OC2 

where 1- a, and 1- a2 are the hypergeometric tail coverage probabilities calculated for each 
of the two X values separately. To illustrate and compare we have the following three 
different simple confidence sets for sample sizes m = n = 40 with coverage probabilities 
near 95 %: 

(a) T(X, Y) = {t Y:Yi412 < t(Xi) < yi+12 (i = 1,...,40)}, 

(b) T(X, Y) = {t e: Y4lo < t(X,) < Y+jo (i = 11, 30)}, (6) 

(c) T(X, Y) = {t eJ Y_9 < t(Xi) < Yi49 (i = 20)}. 

Of course, an arbitrary two-sample rank test 9,, will not in general lead to simple confi- 
dence tests for the unknown treatment function. For example, a Wilcoxon test 

9, = {R:a < ERi <, b} 

is not of the form (3) and its inversion into the class Y will not have an explicit representation 
unless Y is a very restricted class. A similar remark applies to any rank test based on a 
linear combination of the components of the rank vector. In ? 5 we examine small para- 
meterized classes Y of treatment functions in which explicit confidence sets corresponding 
to linear rank procedures may be obtained. 

3. CONSISTENCY PROPERTIES FOR FAMILIES OF CONFIDENCE PROCEDURES 

Recall that the two-sample rank vector tR, for each t E 9Y, is defined by tRi = j if and only 
if Yj-i < t(Xi) < Yj-i+1, and tR is therefore an m vector with increasing integer components. 
In order to study families of confidence procedures, defined for all sample sizes m and n, it 
is convenient to replace the two-sample rank vector tR by a corresponding function on the 
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Confidence procedures for two-sample problemns 17 

unit interval. Specifically, let 0_- be the right-continuous empirical cumulative distribution 
function of the n components of Y, let F` be the left-continuous empirical inverse cumu- 
lative distribution function, the quantile function, of the m components of t(X) for a t E , 
and let eyft-g be the composed function. Then 0_% FX is a nondecreasing left-continuous 
step function whose domain and range are the unit interval, setting 0YF-X (0) = 0, and 
which corresponds to the two-sample rank vector tR according to the relation 

GyFt- (u) = (tRi-- )/n (i/m- 1/m < u < i/m; i = 1 ..m). (7) 
It may be checked also that the graph of (7) is essentially Gnanadesikan's & Wilk's (1968) 
P-P plot of the sample Y versus the transformed sample t(X). 

Now let S(.) be a real-valued functional defined for every nondecreasing piecewise- 
continuous function which has the unit interval as its domain and range. Then an S family 
of confidence procedures for the unknown treatment function to is 

T(X, Y) = {t E 9:S(O "-) 1 s2} (8) 

with coverage probability 1- amn. As a general example let 

S(h) = sup Ih(u)-uI, (9) 
ueVr 

where 3f is a specified subset of the unit interval which we call the matching set. Any choice 
of matching set #f gives simple confidence sets as defined in (2), (3) and (4). 

In particular, taking /f to be the whole unit interval gives confidence sets using (8) and 
(9) which are exactly the Smirnov confidence sets (5) for all sample sizes, viz. 

T(X, Y) = (t 9: sup I YFt-x(u) -uI < Smnj. 
uE [0,1 ] 

By taking the matching set to be the single point 3f - { s} say, or the pair of points 
= {4, 4}, say, we obtain two other S families of simple confidence procedures 

(a) T(X, Y) = {t E :lGYfI ( )-F < Smn}, (10 

(b) T(X, Y) = {tf : I&yF (1)- 1 A <mn and tx4 

which we call median procedures and quartiles procedures, respectively. For m = n = 40 
the confidence set (10 a) is that given earlier in (6c) and the confidence set (lOb) is that given 
earlier in (6b). 

Another general example of S families of confidence procedures has 

S(h) = J{h(u)-u}dW(u) , (11) 

where W is a specified weighting function on the unit interval. Such procedures correspond 
to many of the common linear rank tests and do not, in general, produce simple confidence 
sets of the type (2). For example, taking W(u) = u gives the two-sided Wilcoxon rank-sum 
family of confidence procedures, viz 

T(X, Y) = (t E: f| {yFt7x (u)-u}du < Smn} 

l{ ~m m 
= - 9t-: EtRi - 1m(m + n + 1) < mnnsmn. (12) 
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18 PAUL SWITZER 

The S families of confidence procedures (8) are expressed in a form useful for examination 
of their large-sample consistency properties. For this purpose we assume that X and Y 
behave like independent samples from continuous cumulative distribution functions Fx and 
Gy, respectively, with continuous inverses, and that a transformed vector t(X) behaves like 
a sample from such a cumulative distribution function with inverse denoted Ftx for a 
t E S. Then, for a specified functional S, the random variables S(OyPjj) may be expected 
to converge in probability to the constant S(GyTtx) as m, n -? x under mild conditions on S. 

In particular if t = to, the true treatment function, then to (X) and Y may be regarded as 
two independent samples from the same distribution, so that Cy F` reduces to the identity 
function 1(u) _ u on the unit interval. Therefore, in order that the confidence sets (8) have a 
limiting coverage probability 1-oc bounded away from zero and one, it is necessary that 
the constants smn converge to S(I) as m, no- xc. In this context it follows that a false treat- 
ment function t $ to will be contained in the confidence set with probability tending to zero 
if and only if 

S(GyF7X) > S(I). (13) 

Hence, if 9S c Y denotes the subclass of treatment functions against which a family S of 
confidence procedures is consistent, then t E ES if and only if the strict inequality (13) is 
satisfied. In general the consistency class Es will depend on the true to and Fx. 

We may write Gy as the composed function Fx to- and we may write Ftx as the composed 
function tF-1. Then the consistency condition (13) may be alternatively expressed by the 
inequality 

S(Fxto'tF-1) > S(I), (14) 

which shows clearly the dependence on to and Fx. For example, the Wilcoxon S family of 
confidence procedures given by (11) with W(u) = u has S(I) = 0; then the consistency 
condition (14) becomes 

rFx (to-' [t{F - (u)}]) du * + 

However, the integral above is an expression for pr {to (X) < t(X)}, where X is a random 
variable with cumulative distribution function Fx. Therefore, the Wilcoxon family cannot 
distinguish asymptotically between two treatment functions to and t for which 

pr{tO(X) < t(X)}= - 

For any of the families of simple confidence procedures given in (9) we also have S(I) = 0. 
Hence, for a matching set if, the consistency condition (14) becomes 

sup IFx (to-1 [t{F_j1 (u)}])- u I > 0. (15) 
ueCt' 

Alternatively, we may write the condition (15) as to (w) ? t(w) for some w E {F-1 (u): u E ?b}. 
This condition says that we fail to have consistency for a t e $7 only when the random 
variables to (X) and t(X) have the same u quantiles for every u E- eb. Hence if two families 
of simple confidence procedures are based on ?/r and i/r', respectively, with ?/ c i/r', then the 
consistency class for 3b' completely contains the consistency class for i/i. However, for every 
finite set of data the sb' confidence set will contain the 3/ confidence set so that wider con- 
sistency is had at the expense of larger confidence sets for given coverage probability. In 
particular, the Smirnov family of confidence procedures is consistent against every t which 
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Confidence procedures for two-sample problems 19 

is not identical to to on the support of Fx, but its confidence sets contain the confidence sets 
of every other simple procedure for given coverage probability. 

The tradeoff between wide consistency and small confidence sets is less of an issue when 
the specified class 9Y of al] possible treatment functions is itself small to begin with. The 
advantage of narrowly specified classes of treatment functions is that we will get correspond- 
ingly narrow confidence sets. In the extreme case, where f is a class indexed by a real para- 
meter, then typical S families of rank procedures produce confidence sets for to with universal 
consistency against all t * to. For example, in the standard case of inference for location 
shift, 

- = {t: t(w) = w + 0 for some fixed 0}, (16) 

the Wilcoxon family as well as any of the simple procedures (9) are universally consistent, 
that is Es = - {to}. 

However, if the original specified class $-is small then we must deal with the possibility 
that 9- is misspecified, that is the true treatment function to 0 S. Then it is possible that 

E= 5 for an S family of confidence procedures, with the implication that the probability 
of covering any t E g- goes to zero. In such cases one may expect to get empty confidence sets 
in large samples, a desirable feature if we are concerned about the possible misspecification 
of the class of treatment functions. For example, suppose Y is specified to be the location 
shift class (16) but in fact to (w) = 2w; the family of quartile rank procedures (lOb) will give 
empty confidence sets in large samples, but the median family (1Oa) or the Wilcoxon family 
(12) will always necessarily give nonempty confidence sets. This topic is being examined 
further, although some additional remarks appear in ? 5 dealing with parameterized classes 
of treatment functions. 

4. CONFIDENCE LIMITS FOR FUNCTIONALS OF TIIE TREATMENT 

We first state a general proposition. Let q(t) be a mapping functional from 9Y into a subset 
Yr'. Let Yq(X, Y) c 7q be the q image of a level (1-a) confidence set T(X, Y) for the 
treatment function to, where q does not depend on the data X, Y. Then the confidence 
statements q(to) E Tc(X, Y) have joint confidence level (1- a) simultaneously for all q which 
do not depend on the data. For any subcollection of such mappings q, the simultaneous level 
of the above confidence statements is at least (1 -o). 

For example we may be interested in the maximum shift, minimum shift, and average 
shift attributed to the treatment effect over a specified range of response values [a, b]. These 
three functionals are all real-valued and can be expressed as 

q1 (to) = max{to (u)-u}, q2 (to) = min {to (u))- u}, q3 (o) = bF {to (u)- u}du. 
[a,b] [a,b] -aja 

Suppose that the basic confidence set T(X, Y) is simple as in (2), that is 

T(X, 1K) = {t E d: tL (W) ? t() U( 

Then the images under ql, q2 and q3 will each be intervals on the real line whose end-points 
are q* (tW) and q* (tu). That is, our simultaneous confidence intervals are, for i = 1,2, 3, 

qi (AL qi (to) qi (A 
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20 PAUL SWITZER 

For the Smirnov procedure tL and tu are the respectively right-continuous and left- 
continuous step functions defined by (4) and (5). Substitution of the upper and lower 
bounds from Fig. 1 gives the following joint 94-5 % confidence statements, over the range 

[a,b] = [-10, -5]: 

-5 < q1(to) < 12, -7 < q2(tO) <s 8, -5.9 < q3(tO) <s 10'1. 

It must be pointed out that finding q images of confidence sets for to is not as easy in 
general as it was in the above example. If we had taken q4 (to) = max Ito (u) - ul, then it is 
not obvious what the lower confidence limit for q4 (to) should be, even using simple confidence 
procedures for to. If we had used a confidence procedure which was not simple, e.g. the 
Wilcoxon procedure, then it is not clear how we would find the q images even for the 
functionals of the present example. 

5. CONFIDENCE SETS FOR PARAMETERIZED TREATMENT FUNCTIONS 

In this section we examine the case where the class of treatment functions gY is indexed 
by a parameter 0 taking values in 0, a subset of a Euclidean space; that is 5 = {to: 0 E }, 
where, for each 0, to (w) is a completely specified function of the response w. Let 00 denote 
the true parameter value, that is to = to,. General confidence sets for to or 00 can be expressed 
as subsets of 0, namely {6 E 0: to e T(X, Y)}. 

We will be mainly concerned with the case where 6 is real-valued, 0 is an interval, and 
the resulting confidence set for 00 is an interval. Consider first the simple procedures of ? 2 
with upper and lower confidence bounds for to given by (4). If we assume that to (w) is an 
increasing and continuous function of 0 for each w, then the statement YL. < to (Xi) < YUi 
is equivalent to the statement OL, < 00 < Oui, where OL, and 6ui are the 0 solutions of the 
equations to (Xi) = YLi and to (Xi) = Yu,, respectively, provided solutions in 0 exist. With 
these restrictions on the parameterized family {to}, we can express the confidence interval 
for 00 corresponding to the simple procedure (4) as 

max Li 1< So < min6u.. (17) 
i ~~~~~~i 

For purposes of illustration consider the following two parameterized families of treatment 
functions, assuming nonnegative responses: 

(a) to(w) = w+0; (b) t0(w) = 2w+0. (18) 

For each 0, they are both continuous increasing functions of w, and, for each w, they are both 
continuous increasing functions of 0. The first of these is the familiar constant-shift model 
for which Li= (YL, - Xi), Ou = (Yu - Xi); in conjunction with the Smirnov procedure, 
the resulting confidence interval for 00 is the topic of a recent paper by Rao, Schuster & 
Littell (1975). The second model has 6Li = (YL - 2Xi), Ou, = (Yu- 2Xi). The median, 
quartiles and Smirnov procedures of (6) at (1- a) 95 %, applied to the data of Table 1, 
give the following confidence intervals for 00, using formula (17): 

Model (a): median, -5 6 00 < 7; quartiles, -5 < 00 < 11; Smirnov, -2 < 00 < 8; 

Model (b): median, +4 < 00 < 16; quLiartiles, 5 < 00 < 21; Smirnov, 12 < 00 < 14. 

The very short interval for 00 obtained in model (b) using the Smirnov procedure is very 
noteworthy. It is not an indication of precision in estimation, but rather it points out the 
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Confidence procedures for two-sample problems 21 

difficulty of suiting model (b) to the data; that is it is difficult to fit a straight line with slope 
two between the confidence bands of Fig. 1. It would seem a good practice, therefore, to 
construct general confidence bands as in Fig. 1 even when the treatment function has been 
given a specific parametric form. 

The construction of confidence intervals for a real parameter is particularly straight- 
forward using simple procedures such as the Smirnov, as we have just seen. For arbitrary 
procedures such as the linear rank procedures (11) the task is more complex but not im- 
possible. The following observation is helpful. The rank vector tR formed from the data will 
change as 0 changes, but only at those values of 0 for which to (Xi) = Yj for some i,j. Hence 
tR remains unchanged over 0 intervals. This observation was used by Bauer (1972) to 
construct confidence intervals in the constant-shift model. Now let the solutions of the mn 
equations t0 (Xi) = Yj be denoted 01, ..., ?mn arranged in order of size, assuming each equation 
has a unique solution in 0. It follows that the confidence set for 00, using any rank procedure 
whatever, is necessarily a possibly null union of intervals of the type [0k, 01+?], intersected 
with the parameter space E). We take 00 = - so and Omn+l = (2. 

Table 1. Right kneecap congruence angles in degrees, arranged in order of size, for 40 male 
subjects and 40 female subjects 

Males, Y Females, X 

-31 -14 -7 0 -31 -18 -8 -2 
-20 -13 -6 0 -30 -18 -7 -1 
-18 -13 -6 1 -25 -16 -7 1 
-16 -11 -5 1 -25 -15 -7 1 
-16 -11 -5 2 -23 -15 -6 4 
-16 -10 -5 4 -23 -14 -6 5 
-15 -9 -4 5 -22 -13 -4 11 
-14 -9 -2 5 -20 -11 -4 12 
-14 -8 -2 6 -20 -10 -3 16 
-14 -7 -2 17 -18 -9 -2 34 

If furthermore the procedure is based on a real-valued functional S as in (8), and if S is a 
nondecreasing function of 0 for any data X, Y, then the confidence set for 00 is a single 
interval of the form [0k, 0?I] for some I and 1' generally depending on the data. The Oi are 
defined in the preceding paragraph. If, for example, to (w) is a continuous and increasing 
function of 0 for each w, and if S is an integral function of the type ( 1) with nondecreasing 
weight function W(u), then S will be nondecreasing in 0 and the confidence set for 00 will 
result in an interval of the type [01, 01j]. The Wilcoxon weight function has W(u) = u and 
is an especially convenient choice because it is known that the indices 1 and 1' do not then 
depend on the data. On applying the Wilcoxon procedure to the case m = n = 40 at level 
(1 -ca) -- 0 95, it can be shown that I 600 and 1' 1000. We would need to calculate and 
order 1600 values of Oi in order to carry out the procedure for these sample sizes. The 
Wilcoxon procedure applied to the constant-shift model (a) is, of course, well known. In 
general, if any nonsimple confidence procedure like the Wilcoxon is used, it will be necessary 
to order mn numbers; for simple procedures it is enough to order the X's and Y's separately. 

If the parameterized family$r = {t0} is one of convenience then the behaviour of confidence 
sets is of interest also when the true treatment function to + to for every value of 0. A desirable 
confidence procedure should then give empty confidence sets for 0 in large samples, i.e. 
it should be consistent against every member of the misspecified parametric family of 

This content downloaded from 128.95.17.249 on Tue, 12 Jan 2016 19:00:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


22 PAUL SWITZER 

treatment functions. Such procedures we call model-sensitive. For example, the families of 
simple procedures (9) will be consistent against every 0 for which the random variables 
to (X) and t0 (X) have different u quantiles for some u in the fixed matching set ?fr c: (0, 1). 
However, if ?f consists of a single point, e.g. the median procedure (10a), then there will 
typically be a 0 for which the median of t09 (X) exactly matches the median of to (X). Hence, 
the median procedure is not model-sensitive and a confidence interval for 0 will be produced 
for every m and n, and even though the true treatment function to + to for any 0. This 
awkward insensitivity is typically shared also by the Wilcoxon confidence procedure as well 
as any family of linear rank procedures of the type (11). If one is committed to calculating 
confidence sets using linear rank procedures, then the difficulty of insensitivity to model 
departure can be relieved by calculating confidence sets based on two different weight 
functions W(u) and then taking their intersection to be the final confidence set. One then 
approximates the resulting confidence level by means of the Bonferroni inequality. 

On the other hand, the family (lOb) of quartile procedures has considerable model 
sensitivity since it fails only when both the first and third quartiles of to (X) and t0 (X) match 
for the same value of 0. The Smirnov family has model sensitivity whatever the distribution 
of X, the random variable representing the population distribution of untreated responses. 
For example, if we had specified the simple additive model t0 (w) = w + 0 as in (18 a), but in 
fact to (w) = 2w, then any simple family of procedures for which the matching set ?fi contains 
at least two points will be model-sensitive in large samples so long as X is continuous. 

We can formally test the hypothesis Ho: to e {t0} by using a model-sensitive confidence 
procedure for 00 and rejecting Ho if and only if the confidence set for 00 is empty. If the 
confidence procedure had level 1- a, then the probability of a type I error for the derived 
test will not exceed ac since pr0 {T(X, Y) = 0 } = pr0 (tR B0 , for all t) < pr0 (tRB P , for 
t = t0) = a for any 0; see (1). Since such tests are generally conservative there may be serious 
questions about their power. It would be interesting to provide some answers, i.e. to calcu- 
late the probability of obtaining empty confidence sets for finite m and n in selected special 
cases. For the data of Table 1, neither of the models (18 a) or (18 b) would be rejected at level 
5.5 % using the Smirnov procedure, whereas the model that to (w) = 3w + 0 for some 0 would 
be rejected. 

Of course, we may not want to have complete model-sensitivity for parameterized treat- 
ment functions. For example, if we are not concerned with departures from the parameter- 
ized model t0 (w) for extreme arguments, then an uncritical use of the Smirnov procedure, 
say, would be misleading; the Smirnov confidence set could be empty because of lack of fit 
at extreme w. This difficulty with model-sensitive procedures can be mitigated either by 
leaving the treatment function unrestricted outside a specified domain or, when using 
simple procedures, choosing the matching set ?fr so that all its points are bounded away 
from 1, for example ?/- = (0, 0 9), rather than the Smirnov procedure ?fi = (0, 1). It may then 
be difficult to calculate the confidence level, but the Smirnov level for the same sample sizes 
will be a conservative and close approximation. 

We may wish to consider several different one-parameter families of treatment functions 
simultaneously, all of which have been specified independently of the data. Let Ti (X, Y) be 
a level (1 - c) confidence set for the parameter of the ith model (i = 1, ..., r). If these r 
confidence sets are all restrictions of the same unrestricted level (1 -c) confidence set 
T(X, Y), that is they are all obtained by the same procedure, then the confidence statement 
that to E Ti (X, Y) for some i has level (1 - a). If we have used a model-sensitive procedure 
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such as the quartiles procedure (lob), then with sufficiently large sample sizes we will be 
able to distinguish which if any of the r models is appropriate and obtain the corresponding 
parameter confidence set. However, if a model-insensitive procedure like the Wilcoxon is 
used, then none of the r confidence sets will ever be empty and little is learned by the 
simultaneous consideration of several parametric models for to. 

Now suppose that the various parametric models being contemplated can themselves be 
indexed in a natural way by a real-valued index, A e A, where A is now not necessarily a 
finite set. The assumption is that to E {t: 0 G E , A E A}, where t8 is a specified treatment 
function in 

- 
for each 0, A. Here 0 is the parameter of interest while A is regarded as a 

nuisance parameter. Let to correspond to the pair (00,AO). Two examples of families of 
treatment functions of nonnegative responses are: 

(a) tA(w) - (l+A)w+0 (A > , 0 ,0 0); (20) 
(b) tA(w) - w+0/(l+Aw) (A > 0, 0 < 0 < A-1). 

In the first of these examples the additive effect of the treatment increases as the untreated 
response w increases; in the second example the additive effect decreases as w increases. In 
both examples the parameter of interest 0 can be interpreted as the 'initial' additive effect 
of the treatment (w = 0), the treatment can never decrease any responses, and the special 
value A = 0 corresponds to a constant additive effect. 

What we really have is a two-parameter family of treatment functions leading to confi- 
dence sets for to which are represented in the (0, A) plane. Whether we wish to regard A as 
a nuisance parameter will for the moment be immaterial. To find the boundary of the 
confidence set for any given rank procedure we note once again that tR can change only 
when Yj = t(Xi) for some i,j, that is Yj - t (Xi) in the present context. Each of these mn 
equations will describe a curve in the (0, A) plane, so that the confidence boundary must 
consist of segments of these curves. For simple procedures (3) we need only consider a small 
specified subset of these bounding curves. 

In the two examples (20), the equations tA (Xi) = Yj are linear in 0, A; hence the confidence 
set is bounded by straight-line segments. In particular the equations are 

(a) 0 = (Yj-XJ)-AXi; (b) 0 = (Yj-X ) + AXi (Yj-XX). 

If we use the Smirnov procedure then for each untreated response Xi we need only two 
equations using the Y. given by (4) and (5). For the quartiles procedure (lOb) we need only 
a total of four bounding curves; in example (a) above the resulting confidence set boundary 
is a parallelogram, while the boundary for example (b) is a general quadrilateral, both 
restricted to their corresponding parameter spaces. For the data of Table 1 these confidence 
sets are exhibited in Fig. 2, where the level is approximately 95 %. 

As we have just seen, the extension to two-parameter models for the treatment effect is 
not difficult in principle and may not be difficult in practice. Even when we are interested 
in a single-parameter model, it is useful to imbed it in a two-parameter model if we are 
concerned about fit and the possibility of empty or artificially small confidence sets when 
the fit is poor. The two-parameter model may itself be a poor fit which will not be detected 
in general with a simple procedure (9) unless the matching set if contains at least three 
points. In particular, while the quartile procedure is sensitive to departures from specified 
one-parameter models, it will not help us if we want to distinguish between (20 a) and (20b), 
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for example. A fortiori this will also be true of the median and Wilcoxon procedures and 
other linear rank procedures. 

Suppose once again that A is a nuisance parameter, and we definitely wish to make state- 
ments only about 00. To maintain the level of confidence we may not fix a value of A after 
constructing the joint confidence set for (00, A0). However, a conservative confidence set for 
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Fig. 2. 95-6 % joint confidence sets for parameters 0, A using the quartiles procedure based on 
the data of Table 1. 

00 only is given by the projection of the two-dimensional confidence region into the 00 axis. 
This conservative procedure may give confidence sets for 0 which are much larger than the 
confidence set for 00 for any A value fixed in advance. In a sense this is a price paid for 
introduction of a nuisance parameter. The projection onto the vertical axis of the confidence 
set of Fig. 2 gives 00 < 23 0 for the linear model of (20 a). The maximum length of 00 intervals 
for any fixed A is about 20-5. Where past experience is available, the projected 00 intervals 
may be shortened if the space of the nuisance parameter A is substantially constrained. 

In conclusion we consider the useful case where the treatment function is only partially 
parameterized. Specifically, suppose 0 Ec 0 determines t0 (w) only for w in a specified interval 
[w1, w2] of possible response values; outside the interval, t0 (w) remains unspecified except 
that it must be a continuous increasing function for all w. The simple procedures (2) adapt 
themselves easily to such partially parameterized models where the structure of the treat- 
ment function is left unspecified outside a specified range. If t, tu are the lower and upper 
bounding functions of a level 1- ax confidence set for the true function to, then a level 1-oc 
confidence set for the true parameter value 00 is given by 

{6: ?L(w) < to(w) < tu(w), for all w1 < w < w2}. 

For the matching procedures (9) we can also use the representation (17), where the 
maximum and minimum are now restricted to those i for which Xi e [wl, w2]. If we apply 
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(17) to the data of Table 1 using the model to(w) = w+0 (-10 < w < -5), then the 
resulting confidence interval for 00 based on the level 945 % Smirnov procedure (6 a) is 
- 5 < O4 < 8. This should be compared with the Smirnov confidence interval (19a) for the 
model t0 (w) = w + 0, holding for all w. 

The work was supported by the National Science Foundation. 

REFERENCES 

BAUER, D. F. (1972). Constructing confidence sets using rank statistics. J. Am. Statist. Assoc. 67, 687- 
90. 

DoKsum, K. (1974). Empirical probability plots and statistical inference for nonlinear models in the 
two-sample case. Ann. Statist. 2, 267-77. 

GNANADESIKAN, R. & WILK, M. B. (1968). Probability plotting methods for the analysis of data. 
Biometrika 55, 1-18. 

RAO, P. V., SCHUSTER, E. F. & LITTELL, R. C. (1975). Estimation of shift and center of symmetry based 
on Kolmogorov-Smirnov statistics. Ann. Statist. 3, 86 1-73. 

[Received January 1975. Revised September 1975] 

This content downloaded from 128.95.17.249 on Tue, 12 Jan 2016 19:00:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25

	Issue Table of Contents
	Biometrika, Vol. 63, No. 1 (Apr., 1976), pp. 1-218
	Front Matter
	Statistical Diagnosis When Basic Cases are Not Classified with Certainty [pp. 1-12]
	Confidence Procedures for Two-Sample Problems [pp. 13-25]
	On the Existence and Uniqueness of the Maximum Likelihood Estimates for Certain Generalized Linear Models [pp. 27-32]
	Improved Likelihood Ratio Tests for Complete Contingency Tables [pp. 33-37]
	The Ultrastructural Relation: A Synthesis of the Functional and Structural Relations [pp. 39-50]
	Bayesian Analysis of Regression Problems [pp. 51-58]
	On Wilks's Multivariate Generalization of the Correlation Ratio [pp. 59-67]
	Some Alternative Approaches to Multiparameter Estimation [pp. 69-75]
	A Design Problem for Determining the Population Direction of Movement [pp. 77-82]
	A New Class of Resolvable Incomplete Block Designs [pp. 83-92]
	A Geometric Characterization of Connectedness in a Two-Way Design [pp. 93-100]
	Frequentist Properties of Bayesian Sequential Tests [pp. 101-110]
	The Expected Value of the Adjusted Rescaled Hurst Range of Independent Normal Summands [pp. 111-116]
	Selection of the Order of an Autoregressive Model by Akaike's Information Criterion [pp. 117-126]
	Sufficient Statistics Associated with a Two-State Second-Order Markov Chain [pp. 127-132]
	Batch Acceptance Schemes Based on an Autoregressive Prior [pp. 133-136]
	Nonparametric Tests for Block Experiments [pp. 137-141]
	The Use of U-Statistics for Testing Normality Against Nonsymmetric Alternatives [pp. 143-147]
	Tests of the Kolmogorov-Smirnov Type for Exponential Data with Unknown Scale, and Related Problems [pp. 149-160]
	A Two-Sample Anderson--Darling Rank Statistic [pp. 161-168]
	Comparing Means in the Paired Case with Missing Data on One Response [pp. 169-172]
	A Class of Location-Scale Nonparametric Test [pp. 173-176]
	The Powers of Some Tests of Equality of Normal Means Against an Ordered Alternative [pp. 177-183]
	On the Extremal Quotient from a Gamma Sample [pp. 185-190]
	Pearson's System of Frequency Curves Whose Left Boundary and First Three Moments are Known [pp. 191-194]
	Miscellanea
	Predictive Distributions in Life Tests Under Competing Causes of Failure [pp. 195-198]
	A Note on the Determination of the Nature of Turning Points of Likelihoods [pp. 199-201]
	Bayes Estimation Subject to Uncertainty About Parameter Constraints [pp. 201-203]
	Bayesian Inference for the Von Mises-Fisher Distribution [pp. 203-206]
	A Test for Equality of Variances [pp. 206-208]
	Connected Finite Population Sampling Plans [pp. 208-210]
	Statistical Inference for Markov Chains with Lumped States [pp. 211-213]
	On Testing Equality of Related Correlation Coefficients [pp. 214-215]
	A Variance Bound for Unbiased Estimation in Inverse Sampling [pp. 216-217]

	Corrections and Amendments: Sequential Estimation of the Mean of a Negative Binomial Distribution [p. 218]
	Corrections and Amendments: On Power Transformations to Symmetry [p. 218]
	Corrections and Amendments: Optimal Allocation in Sequential Tests Comparing the Means of Two Gaussian Populations [p. 218]
	Corrections and Amendments: A Bayesian Approach to Inference about a Change-Point in a Sequence of Random Variables [p. 218]
	Back Matter



