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Density Estimation

Let F be a distribution with probability density f = F' and let
Xy, o Ny~ F

be an 11D sample from F. The goal of nonparametric density estimation
is to estimate f with as few assumptions about f as possible. We denote the
estimator by [, As with nonparametric regression, the estimator will depend

on a smoothing parameter h and choosing h carefully is iimportant.

6.1 Example (Bart Simpson). The top left plot in Figure 6.1 shows the density

1

é(a:0,1) + %Z(l)(:l:; (j/2) — 1,1/10) (6.2)

j=0

flr) =

SR

where ¢(2: 11, o) denotes a Nornial density with mean j and standard deviation
. Marron and Wand (1992) call this density “the claw™ although we will call
it the Bart Simpson density. Based on 1000 draws from f, I computed a kernel
density estimator, described later in the chapter. The top right plot is based
on a small bandwidth i which leads to undersmoothing. The bottom right plot
is based on a large bandwidth  which leads to oversmoothing. The bottom
left plot is based on a bandwidth h which was chosen to minimize estimated

risk. This leads to a much more reasonable density estimate. m



126 6. Density Estimation

[=] <
s SR
o o
e { <
o Lo  ——— o L T T
-3 0 3 -3 o] 3
True Density Undersmoothed
(=2 =
w0 | .
o o
< | <
(=3 (=]
-3 o] 3 -3 o] 3
Just Right Oversmoothed

FIGURE 6.1. The Bart Simpson density from Example 6.1, Top left: true density.,
The other plots are kernel estimators based on i = 1000 draws. Bottom left: band-
width /1 = 0.05 chosen by leave-one-out cross-validation. Top right: bandwidth h/10.
Bottom right: bandwidth 10/,

6.1 Cross-Validation

We will evaluate the quality of an estimator f,, with the risk. or integrated

mean squared error. R = E(L) where

L= /.(.A‘,,(,::) — fle))dr

is the integrated squared error loss function. The estimators will depend
on some sinoothing parameter i and we will choose I to minimize an cs-
timate of the risk. The nsual method for estimating risk is leave-one-out
cross-validation. The details are different for density estimation than for
regression. Ine the regression case, the cross-validation score was defined as
S (Y (e))? but in density estimation. there is no response variable

Y. Instead. we proceed as follows.
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The loss function, which we now write as a function of h. (since f, will
depend on some smoothing parameter 1) is

L(h)

i

ﬂﬁm%m@W¢p
= /J?ng(q) dr -2 /f,,(.r)f(:l:)d:u+ / () dr.

The last term does not depend on i so minimizing the loss is equivalent to
minimizing the expected value of

J(h) = / F2)de —2 / Fu(@) f(x)da. (6.3)

We shall refer to E(J(h)) as the risk, although it differs from the true risk by
the constant term [ f2(z) da.

6.4 Definition. The cross-validation estimator of risk is
~ - 2 2 5
im = [ (f,.m) dr =23 Fax) (6.5)

where f(_,) is the density estimator obtamed after removing the it
observation. We refer to J(h) as the cross-vahdation score or cstimated

risk.

6.2 Histograms

Perhaps the simplest nonparametric density estimator is the histogram. Sup-
pose [ has its support ou some interval which. withont loss of generality. we
take to be [0,1]. Let m be an integer and define bins

9 1
By = [0. ! > By = [i, > ioi B = ['” .1]. (6.6)
m T M m

Define the binwidth i = 1/m, let Y be the munber of observations in B,
let p; =Y, /n and let p; = fBj flu)du.
The histogram estimator is defined by

m o~

ﬁ,(.zz) = Z [—;Ii I{r € B)). (6.7)
J=1
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To nnderstand the motivation for this estimator, note that. for » ¢ B an
sinall,
Fue)) = BB py S T@du g, o
E(fu(x)) = Th T T = =Sl
6.8 Example. Figure 6.2 shows three different histograms based oy — 1.2
data points from an astrouomical sky survey, These are the data from Examnp
4.3. Each data point represents a “redshift.” roughly speaking. the distan
from us to a galaxy. Choosing the right number of bing involves finding
good tradeoff hetween bias and variance. We shall see later that the top le
histogram has too many bing resulting in oversmoothing and too much hia,
The hottom left histogram has too few bins resulting in undersmoot hing. Tl
fop right histogram is based on 308 bing (chosen by cross-validation). T
histogram reveals the presence of clusters of galaxics. a
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FIGURE 6.2. Three versions of a histogram for the astronomy data. The top left
histogram has too many bins. The bottom left, histogram has too few bins. The
top right histogram uses 308 bins (chosen by cross-validation). The lowor right plot
shows the estimated risk versus the number of bins.
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6.9 Theorem. Consider fived : and fized i, and let B be the bin containing
r. Then,
i~ Py ~ pill—pj
E(f, (2)) = ’I—IJ and V() (2)) = pill = pj) (6.10)

nh?

6.11 Theorem. Suppose that [ is absolutely continuous and that
SO ()2 du < 0o, Then

PN 2 . o |
R(fu. f)= ]11—2 /(f'(u‘))“’d‘u + ”% +o(h*)+o0 (:—1)) . (6.12)

The value b that minimizes (6.12) is

.1 6 e -
= i (rrarm) o

With this choice of binwidth,

-~ C

1/3
where C = (3/4)*/3 (_['(f"('ll,))z([fl) .

The proof of Theorem 6.11 is in the appendix. We see that with an optimally
chosen binwidth. the risk decreases to 0 at rate n=2/4 . We will see shortly
that kernel estimators converge at the faster rate =7 and that. in a certain
sense. no faster rate is possible; see Theorem 6.31. The formula for the optimal
binwidth h* is of theoretical interest but it is not useful in practice since it
depends on the unknown function f. In practice, we use cross-validation as
described in Section 6.1. There is a simple formula for computing the cross-
validation score .7(11).

6.15 Theorem. The following identity holds:

~ 2 n—+ 1 ~3 N 9
Ty = hin—1) h(n—1) by (6-16)

6.17 Example. We used cross-validation in the astronomy example. We find
that m = 308 is an approximate minimizer. The histogram in the top right
plot in Figure 6.2 was constructed using m = 308 bins. The bottom right plot
shows the estimated risk, or more precisely, 7 plotted versus the number of
bins. m
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Next, we want a confidence set for f. Suppose fn is a histogram with m bins
and binwidth i = 1/m. For reasons explained in Section 5.7, it is difficult to
coustruct a confidence set for f. Instead, we shall make confidence statements
about f at the resolution of the histogram. Thus, define

m

Tu@) =E(fu(@) =Y %I(n’ € B,)) (6.18)

where p; = [, B, f(u)du. Think of f, (x) as a “histogramized” version of f.

Recall that a pair of functions (€,) is a 1 — a confidence band for f,if
P(((z) < f,(x) < ulx) for all ) >1-a. (6.19)

We could use the type of reasoning as in (5.100) but. instead, we take a simpler
route.

6.20 Theorem. Let m = m(n) be the number of bins m the histogram. ﬁ,.
Assume that m(n) — 0o and m(n)logn/n — 0 as n — oo, Define

2

) = ( ﬁ,(m>+c)~ (6.21)

¢= Zofm f1 (6.22)
2 n

Then, ((,(r). uy(x)) is an approzimate 1 — o confidence band for f,,.

O ()

where

PROOF. Here is an outline of the proof. From the central limit theorem,
and assuming 1 — ))j ~ 1, Bj = N(pj,pi(1 — p;)/n). By the delta method,

Dy = N(/p;.1/(4n)). Moreover, the Pj’s are approximately independent.
Thercfore,

2\5(\/17—, - ﬁ,) ~Z, (6.23)
where Z;. .. .. Zm ~ N(0,1). Let
< (‘}‘

A= {f,,(.,:) <o) < un(e) for all .z-} . {1uﬁix|m - Vi@

Then.

P(A%) = P (mj_lx lm . \/7(_,)\ > (->
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FIGURE 6.3. Ninety-five percent confidence envelope for astronomy data using
m = 308 bins.

P (umx%/ﬁ‘dﬁ, - \/ﬁ;l > :,\_-(g,,,)>
J
m

P (1“;‘“{'2,[‘ > :(\/(Qm)> S Z[P (IZ[ * 2o (‘.!m))

J=1

A

m

=1

6.24 Example. Figure 6.3 shows a 95 percent confidence envelope for the
astronomy data. We see that even with over 1000 data points. there is still

substantial uncertainty about f as reflected by the wide bands. =

6.3 Kernel Density Estimation

Histograms are not smooth. In this seetion we discuss kernel density estimators
which are smoother and which converge to the true density faster. Recall that
the word kernel refers to any smooth function A satistying the conditions
given in (4.22). See Section 4.2 for examples of kernels.
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| 6.25 Definition. Given a kernel K and a positive number h. called the

‘ bandwidth, the kernel density estimator is defined to be

I

-~ 1 1 - f e /\’,
‘ fulw) =~ > 7K ( - ) . (6.26)

‘ i=1

This amounts to placing a smoothed out lump of mass of size 1/n over cach
data point .X;; see Figure 6.4.

-10 -5 0 5 10

FIGURE G.4. A kernel density estimator ﬁ.. At cach point r, ﬁ,(.z') is the average
of the kernels centered over the data points X,. The data points are indicated by
short vertical bars. The kernels are not drawn to scale.

As with kernel regression, the choice of kernel K is not crucial, but the
choice of bandwidth & is important. Figure 6.5 shows density estimates with
several different bandwidths. (This is the same as Figure 4.3.) Look also at
Figure 6.1. We see how sensitive the estimate f, is to the choice of /. Small
bandwidths give very rough estimates while larger bandwidths give smoother
estimates. In general we will let the bandwidth depend on the sample size so

we write h,. Here are some properties of f,.
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FIGURE 6.5. Kernel density estimators and estimated visk for the astronomy data.
Top left: oversinoothed. Top right: just right (bandwidth chosen by cross-validation).
Bottom left: understmoothed. Bottom right: cross-validation curve as a function of
bandwidth A. The handwidth was chosen to be the value of i where the curve is a
mininum.

6.27 Theorem. Assume that f is continwous at v and that Iy, — 0 andnh, —
oo as n — oo. Then _f,,(.‘r)—l——. flr).

6.28 Theorem. Let R, = E(f(r) — F())? be the risk at a pomt & and let R =
J R dr denote the integrated risk. Assume that [ 1 absolutely continuous
and that [(f"(x))?dx < oo. Also. assume that K satisfies (4.22). Then,

R, = %U}\-h‘,l,(f”(.l:))z N fGe) [ K3 a)da +0 <l> + o)

nh, n
and
1 Y "R (x)de 1 .
R okhl /(f"(;.:))w/;l,- + ’—‘—)(TI’)—”— +0 (T:) +OU5)  (6.29)
. ! |

where o3 = | P2 ().
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PROOF. Write A, (2. X) = h 'K ((r — X)/h) and f,,(:x:) =n713 K (0, X))
Thus. IE[E,(:)] =E[N, (0. X))} and V[f,(r)] = 0" 'V[), (2, X)]. Now,

1 (-t

= / K(u)f(r = hu)du

E[f) (r, X))

h2u?

/l K (1) [f(.r) huf'(r) + 5 Fia)y 4+ du

flr) + i L2 () / W (u)du- -

since [[W(r)dr =1and [+ K(r)dr=0. The bias is

E[Ny, (r. X)) = f(0) = :120?\-/)i_fll(.l') + 0.

By a similar calculation,

Vif o) = S o (1),

nh, 70

The first result then follows since the risk is the squared bias plus variance.
The second result follows from integrating the first. m

If we differentiate (6.29) with respect to h and set it equal to 0, we sce that

the asymptotically optimal bandwidth is

]
Ca

1/

where ¢; = [a?K(z)ds, c; = [ K(x)%dx and A(f) = [(f"(x))?dz. This
is informative becanse it tells us that the best bandwidth decreases at rate
n~Y/5, Plugging h. into (6.29), we see that if the optimal bandwidth is used
then R = O(n */%). As we saw, histograins converge at rate O(n~2/) showing
that kernel estimators are superior in rate to histograms. According to the
next theorem, there does not exist an estimator that converges faster than
O(n 7). For a proof, see, for example, Chapter 24 of van der Vaart (1998).

6.31 Theorem. Lei F be the set of all probability density functions and let

i denote the m*™ derivative of f. Define

Foule) = {f €F: / FO() dr < ('2}.
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For any cstunator fu.

- 2m/(2m+1)
sup lE,/(f,,(.L-) — fle)?dr > b (ﬂ) (6.32)

FEFmc)

where b > 0 is a universal constant that depends only on m and c.

In particular, taking m = 2 in the previous theorem we see that n=4/" is
the fastest possible rate. .

In practice, the bandwidth can be chosen by cross-validation but first we
describe another method which is sometimes used when f is thonght to be
very smooth. Specifically, we compute h. from (6.30) under the idealized
assumption that f is Normal. This yields h. = 1.06on~ 1%, Usually, o is
estimated by min{s. Q/1.34} where s is the sample standard deviation and Q
is the interquartile range.’ This choice of h. works well if the true density is
very smooth and is called the Normal reference rule.

The Norma!l Reference Rule
For simooth densities and a Normal kernel. use the bandwidth

1060

hy = —7+
n NVE

where

Since we don’t want to necessarily assume that f is very smooth, it is usually
better to estimate h using cross-validation. Recall from Section 6.1 that the

cross-validation score is

J(h) = /f-’(.p)d;u - %Zf () (6.33)

1=1

where f_, denotes the kernel estimator obtained by omitting X,. The next
theorem gives a simpler expression for J.

6.34 Theorem. For any h > 0.

E [.7(1;)] —E[J(h)]-

1Recall that the interquartile range is the 75th percentile minus the 25th percentile. The
reason for dividing by 1.34 is that Q/1.34 is a consistent estimate of a if the data are from a
N, 0%).
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Also,
~ 1 - N — _\’j 2 . 1 .

where K*(x) = K®(2) = 2K () and K®(z2) = [ K(z — y)K (y)dy.

6.36 Remark. When K isa N(0,1) Gaussian kernel then K3 (z) is the N(0,2)
density. Also, we should point out that the estimator f,, and the cross-valicdation

score (6.35) can be computed quickly using the fast Fourier transform: sec
pages 61 66 of Silverman (1986).

A justification for cross-validation is given by the following remarkable the-
orem due to Stone (1984).

6.37 Theorem (Stone's theorem). Suppose that f is bounded. Let fh denote
the kernel estimator with bandwidth h and let h denote the bandwidth chosen
by cross-validation. Then,

f (f(n:) -5 ('")) (i"" aso (6.38)

nfy [ (f(:l:) - ﬁ,(:l;)); dx

The bandwidth for the density estimator in the upper right panel of Figure

6.5 is based on cross-validation. In this case it worked well but of course there
are lots of examples where there are problems. Do not assume that, if the
estimator f is wiggly, then cross-validation has let you down. The cyc is not
a good judge of risk.

Another approach to bandwidth selection called plug-in bandwidths. The
idea is as follows. The (asymptotically) optimal bandwidth is given in equation
(6.30). The only unkuown quantity in that formula is A(f) = [(f”(x))*da. If
we have au estimate f” of f”, then we can plug this estimate into the formula
for the optimal bandwidth h.. There is a rich and interesting literaturc on this
and similar approaches. The problem with this approach is that estimating f”
is harder than estimating f. Indeed, we need to make stronger asstumptions
about f to estimate f”. But if we make these stronger assumptions then the
(usnal) kernel estimator for f is not appropriate. Loader (1999bh) has inves-
tigated this issue in detail and provides evideuce that the plug-in bandwidth
approach might not be reliable. There are also methods that apply corrections
to plug-in rules; see Hjort (1999).

A generalization of the kernel method is to usc adaptive kernels where
one uses a different bandwidth h(a) for each point . One can also use a



