
Linear difference equations with constant coefficients

1. The forward shift operator
Many probability computations can be put in terms of recurrence relations that have to be satisfied by suc-
cessive probabilities. The theory of difference equations is the appropriate tool for solving such problems.
This theory looks a lot like the theory for linear differential equations with constant coefficients.
In order to simplify notation we introduce the forward shift operator E, that takes a term un and shifts the
index one step forward to un+1. We write

Eun = un+1

E2un = EEun = Eun+1 = Eun+2

. . .

Er un = un+r

The general linear difference equation of order r with constant coefficients is

!(E)un = f (n) (1)

where !(E) is a polynomial of degree r in E and where we may assume that the coefficient of Er is 1.

2. Homogeneous difference equations
The simplest class of difference equations of the form (1) has f (n) = 0, that is simply

!(E)un = 0.

These are called homogeneous equations.
When !(E) = (E " #1)(E " #2) . . . (E " # r) where the # i are constants that are all distinct from each other,
one can prove that the most general solution to the homogeneous equation is

un = a1#
n
1 + a2#

n
2 + . . + ar#

n
r

where a1, a2, . . . , ar are arbitrary constants.
When !(E) contains a repeated factor (E " #$ )h, the corresponding part of the general solution becomes

# n
$ (a$ + a$+1n + a$+2n(2 ) + . . . + a$+h"1n(h"1))

where n(k) = n(n "1)(n " 2). . . (n " k +1) = n!/(n " k)!.
In order to find the n’th term of a linear difference equation of order r, one can of course start by r initial
values, and the solve recursively for any giv en n. Thus, if we want our solution to satisfy certain initial con-
ditions we may first determine the general solution, and then (if possible) make it satisfy the initial condi-
tions. There can be no more than r such initial conditions, but they need not (as when we compute the solu-
tion recursively) necessarily be conditions on u0, . . .  , ur"1, but can be on any set of r values.

Example 1. Solve un+2 " un = 0.
The equation can be written in the form

(E2 "1)un = 0

or

(E "1)(E +1)un = 0

The general solution is therefore

un = a("1)n + b1n



-2-

where a, b, c are constants.

Example 2. Find the general solution to the equation

un+4 " 9un+3 + 30un+2 " 44un+1 + 24un = 0

and hence obtain the particular solution satisfying the conditions

u0 = 1, u1 = 5, u2 = 1, u3 = "45.

The equation may be written in the form

(E4 " 9E3 + 30E2 " 44E + 24)un = 0

(E " 2)3(E " 3)un = 0.

The general solution is therefore

un = 2n(a + bn + cn(n "1)) + d3n

where a, b, c, d are constants.
For the particular side conditions we have

u0 = a + d = 1,

u1 = 2a + 2b + 3d = 5

u2 = 4a + 8b + 8c + 9d = 1

u3 = 8a + 24b + 48c + 27d = " 45

whence a = 0, b = 1, c = "2, d = 1, so the particular solution is

un = 2nn(3 " 2n) + 3n.

3. Non-homogeneous difference equations
When solving linear differential equations with constant coefficients one first finds the general solution for
the homogeneous equation, and then adds any particular solution to the non-homogeneous one. The same
recipe works in the case of difference equations, i.e. first find the general solution to

!(E)un = 0

and a particular solution to

!(E) = f (n)

and add the two together for the general solution to the latter equation. Thus to solve these more general
equations, the only new problem is to identify some particular solutions. We will only give a few examples
here, not attempting to treat this problem in any generality.

(i) f (n) = kµn, µ % # i, i = 1, 2, . . .  , r
In this case one can show that

un =
kµn

!(µ)

is a particular solution to !(E)un = kµn. Let namely !(E) = & ai Ei . Then

!(E)
kµn

!(µ)
= & ai Ei kµn

& aiµ i = k & aiµ
n+i

& aiµ i = kµn
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Example 3. The general solution of

un+2 " 5un+1 + 6un = 3( 4n)

is un = a2n + b3n + 3
2

4n where a and b are arbitrary constants.

(ii) f (n) = kµn, µ = # i , # i a non-repeated factor of !(E)
In this case a particular solution is given by

knµn"1

!'(µ)

where !'(µ) denotes (
)

d
dE

!(E)*
+E=µ

.

Example 4. The general solution of

un+2 " 5un+1 + 6un = 3( 2n)

is

un = a2n + b3n +
3n2n"1

"1
= (a "

3n
2

)2n + b3n

where a, b are arbitrary constants.

(iii) f (n) = kµn, µ = # i , # i a repeated factor of !(E)
Suppose now that (E " # i) is repeated h times in !(E). Then

kn(h)µn"h

!(h)(µ)
,

where n(k) = n(n "1). . . (n " k +1), is a particular solution of the equation !(E)un = kµn.
Example 5. The general solution of the equation

(E " 2)3(E " 3)un = 5( 2n)

is

un = (a + bn + cn(n "1))2n + d3n +
5n(n "1)(n " 2)2(n"3)

"6
with a, b, c, d are arbitrary constants

(iv) f (n) is a polynomial in n
First write f as a polynomial in the factorial powers n(k), so

f (n) = a0 + a1n + a2n(2 ) + . . .

Now define the difference operator , by ,un = un+1 " un = (E "1)un. Using the symbolic relationship
E = 1 + , we can re-express !(E) as -(,). Still arguing symbolically, a particular solution is obtained by

un =
1

!(E)
f (n) =

1
-(,)

f (n),

provided that we can make any sense out of
1

-(,)
. The way this will be done is by expanding

1
-(,)

in pow-

ers of , and using long division. The following rules are needed:

,n(r) = rn(r"1)
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,2n(r) = r(2 )n(r"2)

. . .

,k n(r) = r(k)n(r"k)) for k . r,

= 0 for k > r

and

,"1n(r) =
n(r+1)

r +1

,"2n(r) =
n(r+2)

(r +1)(r + 2)

. . .

,"k n(r) =
n(r+k)

(r +1)(r + 2). . . (r + k)
.

Example 6. Find a particular solution of the equation

un+2 " 7un+1 +12un = 3n2 + 2n + 2.

First write 3n2 + 2n + 2 = 3n(2 ) + 5n(1 ) + 2 and E2 " 7E +12 = (2 " ,)( 3 " ,). Thus we get

un =
1

(2 " ,)( 3 " ,)
(3n(2 ) + 5n(1 ) + 2)

=
1
6
(
)
1 "

,
2
*
+

"1
(
)
1 "

,
3
*
+

"1

(3n(2 ) + 5n(1 ) + 2)

=
1
6

(1 +
,
2
+
,2

4
+ . . .)(1 +

,
3
+
,2

9
+ . . .)( 3n(2 ) + 5n(1 ) + 2)

=
1
6

(1 +
5
6
, +

19
36

,2 + . . .)( 3n(2 ) + 5n(1 ) + 2)

=
1
2

n(2 ) +
5
6

n(1 ) +
1
3
+

5
6

n(1 ) +
25
36

+
19
36

=
1
2

n2 +
7
6

n +
14
9

Example 7. Find a particular solution of the equation

un+3 " 5un+2 + 7un+1 " 3un = n2 + 4n +1.

The required solution is

un =
1

,2(, " 2)
(n(2 ) + 5n(1 ) +1)

= "
1
2
,"2(1 +

,
2
+
,2

4
+
,3

8
+
,4

16
+ . . .)(n(2 ) + 5n(1 ) +1)

= "
1
2

(,"2 +
1
2
,"1 +

1
4
+

1
8
, +

1
16

,2 + . . .)(n(2 ) + 5n(1 ) +1)



-5-

= "
1
2

(
n(4)

12
+

n(3 )

6
+

1
4

n(2 ) +
2
8

n(1 ) +
2

16
+

5n(3 )

6
+

5n(2 )

4
+

5
4

n(1 ) +
5
8
+

n(2 )

2
+

1
2

n(1 ) +
1
4

)

= "
1
2

(1
12

n4 +
1
2

n3 "
1
12

n2 +
3
2

n +1).


