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Scott Evans

EDITOR’S LETTER  

Dear CHANCE Colleagues,

Scott Evans

The United States is still feeling the effects of 
three major hurricanes this year. Hurricane 
Harvey brought record rainfall to Houston. 

Hurricane Irma ravaged Florida. Hurricane Maria 
hit Puerto Rico, causing more than 50 deaths, and 
months later, most of Puerto Rico is still without 
power, many people lack access to clean drinking 
water, and suspected cases of leptospirosis (a bacterial 
infection) are rising.

Climate change is the environmental challenge of 
our and the next generation. Although there are deniers, 
NASA and climatology scientists have described the 
compelling evidence of climate change. 

Climate change is the theme of this special issue of 
CHANCE. Here are some of the reasons why. Global 
temperatures are rising, with 2016 the warmest year on 
record and the third year in a row with record-setting 
surface temperatures. Eight of the 12 months were the 
warmest on record for those respective months. 

Earth’s average surface temperature has risen about 
2.0/1.1 degrees Fahrenheit/Celsius since the late 19th 
century, when records began on a global scale. This 
change is driven largely by increased carbon dioxide 
(CO2) in our atmosphere, now at its highest point in  
3 million years at 400 parts per million (2016), and 
other human-made emissions into the atmosphere. 

Most of the warming occurred in the most recent 
35 years, with 16 of the 17 warmest years on record 
occurring since 2001. The oceans have absorbed much 
of this increased heat, with water temperatures rising 
0.302 degrees Fahrenheit since 1969.

Other effects of climate change are readily observ-
able. The Greenland and Antarctic ice sheets have 
decreased in mass. Data from NASA's Gravity Recov-
ery and Climate Experiment show Greenland lost 
150 to 250 cubic kilometers (36 to 60 cubic miles) of 
ice per year between 2002 and 2006, while Antarctica 
lost about 152 cubic kilometers (36 cubic miles) of ice 
between 2002 and 2005. Glaciers are retreating almost 
everywhere around the world, including in the Alps, 
Himalayas, Andes, Rockies, Alaska, and Africa. Satel-
lite observations reveal that the amount of spring snow 
cover in the Northern Hemisphere has decreased over 
the last 50 years and that the snow is melting earlier. 
Global sea levels rose 8 inches in the last century, with 
the rate in the last two decades nearly doubling that 
of the last century. The extent and thickness of Arctic 

sea ice has declined rapidly. Extreme weather events 
have increased in frequency and intensity. Since 1950, 
the number of record high temperature events in the 
United States has increased while the number of record 
low temperature events is decreasing. Since the begin-
ning of the Industrial Revolution, the acidity of surface 
ocean waters has increased by 30 percent. 

The impact of climate change is enormous and 
growing: 800 million people (1% of the world’s popula-
tion) are vulnerable to climate change impacts such as 
droughts, floods, heat waves, extreme weather events, 
and sea-level rise.

Humans play a role in creating problems but can also 
play a role in addressing them. The protection of nature 
is one key part of the solution, since 11% of global 
greenhouse gas emissions caused by humans can be 
blamed on deforestation, comparable to the emissions 
from all of the cars and trucks on the planet. 

A worldwide effort on climate change is crucial. The 
Paris Agreement or Paris Climate Accord plots a new 
course in the global climate effort, bringing nations 
together for the common cause to combat climate 
change and adapt to its effects, with enhanced support 
to assist developing countries to do so. As of October 
2017, 195 United Nations Framework Convention on 
Climate Change (UNFCCC) members have signed 
the agreement and 169 have become party to it, agree-
ing to limit global warming and adapt to climate 
change, in part through the use of nature-based solu-
tions. Unfortunately, the United States has threatened 
to withdraw from the agreement.

Eight articles and an editorial discuss climate 
change and its impact. Dr. Peter Craigmile served as a 
special guest editor for this special issue. I wish to thank 
him and the ASA’s Advisory Committee on Climate 
Change Policy for helping to organize this special issue.

In our columns, Azka Javaid, Xiaofei Wang, and 
Nick Horton discuss helping statistics students assess 
research findings using a “study of studies” in Taking a 
Chance in the Classroom. We also welcome the debut 
of a new column, Teaching Statistics in the Health 
Sciences with editors Bob Oster and Ed Gracely. 
Aimee Schwab-McCoy discusses use of peer consult-
ing in applied statistics courses in the first article. 
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There is much discussion today about the role 
that the climate system plays in many aspects 
of our lives. Part of this conversation revolves 

around humanity’s interest in quantifying the state of 
the climate system now and in the future (understanding 
the science). The other part of the conversation involves 
assessing the impact of climate change, while poten-
tially ascertaining reasons for the change. 

The climate system is a complicated beast, involv-
ing the interaction of many physical processes that are 
changing over the air, land, sea, and ice-sheet. It has 
been long known that our climate system is chaotic—
a nonlinear dynamical system—that can be hard to 
understand. Even simplified climate models give rise 
to multimodal relationships among variables, requir-
ing careful analysis. Thus, in climate science, it can be 
difficult to quantify, with certainty, the current state of 
the system. 

Statistical tools are required to assess, with 
uncertainty, what is currently known and where the  
system may be headed. Adding to the challenge, climate  
science, like many disciplines, is experiencing a data 
explosion.   Satellites are observing the globe in increas-
ing detail.  Sophisticated climate models are producing 
model output on finer and finer spatial scales. Statisti-
cians and new statistical techniques are required to use 
these data sources to improve our understanding of 
the current climate system and what it may look like 
in the future.

Recent and ongoing statistical research is creating 
new methodologies that can help to better answer open 
questions in climate science. Statisticians are develop-
ing methodologies to model large spatio-temporal 
data sets. They are building techniques to quantify 

Peter F. Craigmile

and account for model discrepancy and to combine 
results from multiple models. New methods are being 
developed for modeling extremes and identifying 
changepoints. Hierarchical statistical modeling meth-
ods are able to blend physical and statistical models for 
improved statistical inference. Computer model output 
can be calibrated using statistical models.

This special issue of CHANCE draws together a 
wide range of articles that introduce how statistics can 
be used in climate science. Guttorp demonstrates, using 
time series analysis, how we model and assess global 
temperatures using observations, and compares these 
measurements to historical climate model simulations. 
Li and I extend these statistical comparisons to include 
spatio-temporal data from paleoclimate proxies, as well 
as instrumental data and climate model simulations. 
Jun introduces, more formally, what a global climate 
model is, and demonstrates how we learn about the 
commonalities and differences between climate model 
simulations using statistical tools.

The rest of the special issue starts to look at learn-
ing about climate impacts. Hammerling introduces 
the area of detection and attribution, usually carried out 
using counterfactual simulations of the climate system, 
to explain the possible factors causing climate change. 
Gilleland, Katz, and Naveau set forth the statistical 
science underlying the modeling of climate extremes. 
Haran, Chang, Keller, Nicholas, and Pollard commu-
nicate the science of ice sheets, and demonstrate how 
statisticians are able to work with scientists to predict 
future features of the Antarctic ice sheet. Wikle shows 
how statistical methods can be used to assess the syn-
chronicity between the climate system and different 
ecological systems, and Chang, Sarnat, and Liu tell 

EDITORIAL

The Role of Statistics in 
Climate Research
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the story of predicting health effects under differing 
projections of the climate system.

A goal of this special issue is to encourage statisti-
cians and climate scientists to work together on the 
hard problems that are at the interface of the two 
disciplines. As data sets and climate models become 
more complex, the challenges of carrying out climate 
research in small teams increase.

There is a need to build interdisciplinary research 
teams, bringing together varied skill sets, that can be 
used to solve important problems in climate science. It 
is necessary to understand what expertise each commu-
nity can bring to working on interdisciplinary problems 
in climate science, but also to learn what skills each 
community needs to develop to be successful. 

Both disciplines also could consider how each could 
train students and young researchers to work at the 
disciplines’ intersection.

This special issue was organized by the ASA’s Advi-
sory Committee on Climate Change Policy, and several 
of the authors are either current or past members of 
this committee. The role of this committee is to “advise 
Congress on climate change issues, with special 
emphasis on the roles of statistics and statisticians in 
advancing science and informing policy.” Further 
details about the work of this committee can be found 
at ww2.amstat.org/committees/ccpac/.    

Further Reading
Berliner, L.M. 2003. Uncertainty and climate change. 

Statistical Science 18, 430–435.
Katz, R.W., Craigmile, P.F., Guttorp, P., Haran, M., 

Sanso, B., and Stein, M.L. 2013. Uncertainty analy-
sis in climate change assessments. Nature Climate 
Change 3, 769–771.

Sanso, B., Berliner, L.M., Cooley, D.S., Craigmile, 
P., Cressie, N.A., Haran, M., Lund, R.B., Nychka, 
D.W., Paciorek, C., Sain, S.R., Smith, R.L., and 
Stein, M.L. 2014. Statistical Science: Contribu-
tions to the Administrations Research Priority on 
Climate Change. A White Paper of the American 
Statistical Associations Advisory Committee for 
Climate Change Policy. https://www.amstat.org/
ASA/Science-Policy-and-Advocacy/home.aspx.

Core Writing Team, Pachauri, R.K., and Meyer, 
L.A. (Eds.). Intergovernmental Panel on Climate 
Change. 2014. Climate Change 2014: Synthesis 
Report. Contribution of Working Groups I, II, and 
III to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change. Geneva, 
Switzerland: IPCC.

Program on Mathematical and Statistical Meth-
ods for Climate and the Earth System. 2017–18. 
Durham, NC: Statistical and Applied Mathe-
matical Sciences Institute. https://www.samsi.info/
programs-and-activities/year-long-research-
programs/2017-18-program-on-mathematical-and-
statistical-methods-for-climate-and-the-earth- 
system-clim/. 
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There is no doubt that global 
temperatures are increas-
ing, and that human 

greenhouse gas emissions largely 
are to blame, but how do we go 
about measuring global tempera-
ture? It is not just a matter of reading 
an instrument. 

In Figure 1, we see a variety of 
curves depicting annual global mean 
temperature. They are not the same, 
although they all show a strong 
increase after about 1980. Differ-
ent groups, using different data and 
different techniques, have computed 
the different curves. It would be 
hoped that the curves would all be 
measurements of the annual global 
mean temperature, but global mean 
temperature is not something that 
can be measured directly using an 
instrument. On the other hand, it is 
the quantity most commonly used 
to indicate global warming. 

How We Know that the 
Earth is Warming
Peter Guttorp

Where do the numbers come 
from? We will go through some 
issues that are associated with 
determining surface temperature, 
and illustrate some of the uses of  
these temperatures.

Local Daily Mean
The basic measurements that go 
into the calculation of global mean 
temperature are readings of ther-
mometers or other instruments 
determining temperature. For land 
stations, these instruments are typi-
cally kept in some kind of box in 
an open, flat space covered with 
grass (see Figure 2). The box keeps 
direct sunlight from hitting the  
instrument but allows wind to pen-
etrate the box. 

Readings are done at different 
schedules in different countries. The 
modern instruments measure con-
tinuously, but the measurements are 

not always recorded. In the United 
States, daily maximum and mini-
mum temperature are recorded, and 
their average is the daily mean tem-
perature. In Sweden, three hourly 
readings throughout the day are 
combined with the minimum and 
the maximum to calculate the daily 
mean temperature. In Iceland,  
linear combinations of two read-
ings in the morning and afternoon 
are used.

Modern instruments can com-
pute the daily average automatically, 
but to compare to historical data, a 
specific averaging method has to 
be applied.

Local Annual  
Mean Temperature
Once you have a daily mean tem-
perature, it is easy to compute an 
annual mean temperature: Sum all 
the daily means and divide by the 
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Figure 1. Five estimates of the annual global mean anomalies relative to 1981–2010: Black is from Berkeley Earth, 
red from the UK Met Office Hadley Center, purple from the Japanese Met Office, blue from the Goddard Institute for 
Space Science (GISS), and green from the National Oceanic and Atmospheric Administration (NOAA).

Figure 2. Thermometer and other instruments at Stockholm Observatory, where measurements have been made daily 
since 1756. The station has been moved short distances twice during this time. The box to the left is a Stephenson 
screen, and was used for the measurements until 2006. The pipe sticking up in the middle contains the modern mea-
surement devise that has been used since then. 
Photograph courtesy of Peter Guttorp.

number of days in the year. What 
is often used instead of the annual 
mean is something called a mean 
anomaly: How much did the year 
deviate from the average over a ref-
erence period? This makes it easier 
to compare sites at different alti-
tudes, for example. A station at a 
higher elevation always tends to be 
colder than one at a lower elevation, 
but anomalies allow us to see if both 
sites are colder than usual.

The largest collection of land sta-
tion data, used in the Berkeley Earth 
global temperature series, has some 
39,000 stations and a total of 1.6 
billion temperature measurements.

Sea Surface 
Temperature
Since more than two-thirds of the 
surface of our planet is water, it is 
not enough to take temperature 

measurements on land to compute 
a global average. Ocean-faring 
ships have long kept daily logbooks,  
with measurements of wind, air 
temperature, and water tempera-
ture. The water temperature used 
to be taken in a bucket of seawater. 
Later, it would be measured at the 
cooling water intake for the motor. 
Of course, ships do not travel every-
where on the oceans and, therefore, 
there are fairly large areas of ocean 
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scientists have developed some 
methods on their own (through 
what they call objective analysis). 

In essence, a statistician would 
treat the problem as one of regres-
sion, with data that are spatially 
dependent. The process has to take 
into account the fact that data are 
on a globe and not in the plane. The 
average temperature anomaly for 
land and ocean can be computed 
separately, and the global mean 
temperature would then be the area 
weighted average of the two means. 

Uncertainty
There are several sources of uncer-
tainty in the determination of global 
mean temperature. First of all, each 
measurement has error associated 
with it. Second, how to deal with 
missing areas of measurement 
causes uncertainty. The choice of 
measurement stations can also be 
a source of uncertainty, as can the 
homogenization of measurements, 
such as when stations are moved 
or measurement devices updated. 
There are other sources of uncer-
tainty as well. 

It is important to try to quan-
tify the uncertainty in global mean 
temperature. Different groups 
approach this issue in different 
ways. Figure 3 uses the Hadley 
series uncertainties to compute a 
simultaneous Bonferroni-based 
95% confidence band for global 
average temperature. The term 
simultaneous means that the con-
fidence band covers all the true 
temperatures at the same time 
with 95% probability, as opposed 
to a pointwise confidence interval, 
which only covers the true tem-
perature at a particular time point 
with 95% probability.

Ranking
In January 2017, NOAA made the 
claim that the global mean tem-
perature had set a record for the 
third straight year. This statement 

A simultaneous confidence band for n normally distributed 
estimates can be obtained by the Bonferroni inequality  

In fact, we want the complement—   

Let Ei be the event that the true value at time i is not covered by its 
(pointwise) confidence set. If we let each confidence set have level 
1   / n, we see that the probability that all parameters (in our 
case, the global average temperature for each year) are covered 
by their respective intervals is at least 1  n ( / n) = 1  .The 
confidence band then is ti  - 1  (1   / n)se(ti ) where ti is the 
estimated global mean temperature for year i, se(ti) is the standard 
error of the estimate, and -1 is the normal quantile function (inverse 
of the cdf).

The main groups estimating global mean temperature 

•	 Hadley Center of the UK Met Office with the Climate 
Research Unit of the University of East Anglia, United 
Kingdom 

•	 Goddard Institute for Space Science (part of NASA), USA 

•	 National Centers for Environmental Information (part of 
NOAA), USA

•	 Japanese Met Office, Japan

•	 Berkeley Earth Project, USA

.

.

where we have no sea surface tem-
perature measurements from ships. 

In some of these areas, there are 
buoys that measure the temperature. 
Over the last several decades, there 
have been satellite measurements of 
sea surface temperature; for over a 
decade, floats that measure the tem-
perature profile of the water have 
been dropped all over the oceans. 

The largest collection of ocean 
data, the ICOADS 3.0 data set, uses 
about 1.2 billion different records.

Combining All  
the Measurements
To combine the many measure-
ments over land and oceans into 
an average global temperature 
requires estimating the temperature 
anomaly where there are no actual 
measurements, such as on a regular 
grid, and then averaging the esti-
mates and measurements (if any) 
over the grid. Such estimation tools 
are derived in what is called spatial  
statistics, although atmospheric  
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Figure 3. Hadley series with red dashed line being the lower 95% simultaneous confidence bound on the 2016 
temperature and blue dashed line the upper bound on the 2015 temperature.

Figure 4. 10 realizations (blue) of possible Hadley temperature series and the Hadley estimate of global mean tem-
perature (black).

is not quite accurate: For the third 
straight year, the estimated global 
mean temperature had set a record. 
In fact, four of the five series had 
this feature, while the Berkeley 
series showed 2005 as warmer than 
and 2010 tied with 2014. Only two 
of the estimates (the Hadley series 
and the Berkeley series) provide 
uncertainty estimates. 

Figure 3 shows the Hadley series 
with associated simultaneous 95% 
confidence bands. If the 2015 actual 
temperature (which we do not 

know) were at the high end of its 
confidence band (blue dashed line), 
and the 2016 was at the low end of 
its band (red dashed line), it is quite 
possible that 2015 could have been 
substantially warmer than 2016, but 
that 2016 clearly was warmer than 
any year before 1998.

How can we say something about 
the uncertainty in the rankings as 
opposed to the estimates? One way 
is to simulate repeated draws from 
the sampling distribution of the 
estimates. Since we are averaging 

a large number of measurements, 
many of which are nearly uncorre-
lated, a central limit theorem leads 
us to treat the estimates as normal, 
with mean equal to the actual esti-
mate and standard deviation equal 
to the standard error of the estimate. 
Figure 4 shows 10 such realizations 
of the Hadley temperature series.

For each of the realizations, we 
can calculate the rank of 2016. The 
distribution of that rank tells us 
how likely 2016 is to be the warm-
est year on record: It is warmest 
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Figure 5. Global annual mean temperature anomalies from 32 CMIP5 models with historical simulations (gray), and 
the Hadley Center data series (black). Reference period is 1970–1999.

Figure 6. QQ-plots of historical climate model simulations against Hadley Center data or two 30-year periods. The 
gray lines are simultaneous 95% confidence bands, and the red lines are lines of equal distributions.
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Many tests have been developed to compare some aspects of 
distributions, such as means or medians. To compare two entire 
distributions, we can plot the quantiles of one against the other 
(called a quantile-quantile plot or QQ-plot). An advantage of 
this plot is that if the distributions are the same, then the plot will 
be a straight line. Of course, we will be estimating the quantiles 
from data, so there will be uncertainty. Another advantage of the 
QQ-plot is being able to develop simultaneous confidence bands, 
enabling a simple test of equal distributions: Does the line y=x fit 
inside the confidence band?

in 58% of the simulations, while 
2015 is warmest in 42%. In 10,000 
simulations, 2016 was as low as the 
eighth-warmest in one of them.

How about all three years—
2014–2016—being record- 
breakers? That happened in 21%  
of the simulations, and in the  
actual Hadley estimates, of course.

Models and Data
Climate, from a statistical point of 
view, is the distribution of weather. 
Climate change means that this 
distribution is changing over time. 
The World Meteorological Organi-
zation recommends using 30 years 
to estimate climate. This definition 
indicates, for example, that it does 
not make sense to look at shorter 
stretches of data to try to assess 
questions such as “Is global warm-
ing slowing down?”

What is a  
Climate Model?
A climate model is a deterministic 
model describing the atmosphere, 
sometimes the oceans, and some-
times also the biosphere. It is based 
on a numerical solution of coupled 
partial differential equations on a 
grid. In fact, the equations for the 
atmosphere are essentially the same 
as for weather prediction, but the 
latter is an initial value problem 
(we use today’s weather to forecast 
tomorrow’s) of a chaotic system, 
while the climate models has to 
show long-term stability. Many 
processes, such as hurricanes or 
thunder storms, are important in 
transferring heat between different 
layers in the model, but often take 
place at a scale that is at most simi-
lar to a grid square, and sometimes 
much smaller. 

Different climate models deal 
with this subgrid variability dif-
ferently and, as a consequence, 
the detailed outputs are different. 
CMIP5 is a large collection of 
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model runs, using the same input 
variables (solar radiation, volcanic 
eruptions, greenhouse gas concen-
trations, etc.). These model outputs 
were used for the latest IPCC report 
in 2013. Figure 5 shows the global 
mean temperature anomalies (with 
respect to 1970–1999) with the cor-
responding Hadley Center series.

Comparing 
Distributions
It is  not trivial to compare climate 
model output to data. Remember, 
the climate model represents the 
distribution of the data. The obser-
vations in Figure 5 are, therefore, 
not directly comparable to the 
model runs. Instead, we need to 
compare the distributions of model 
output and data, respectively.

Figure 6 compares these distri-
butions using QQ-plots for two 
different 30-year stretches. In both 
cases, the distribution of the data 
fit the distribution of the ensemble 
of model outputs quite well, in that 
the red y=x line falls inside the 
simultaneous 95% confidence 
bands. Since we have 32 x 30 
observations of the models, and 
only 30 of the data, the empirical 
tails of the model distribution are 
much longer than the tails of the 
data, but the confidence band is 
quite wide in the tails, meaning 
that we are very uncertain there. 
Thus, for these two time intervals 

and for the global mean tempera-
ture variable, the ensemble of 
CMIP5 models and the Hadley 
Center data seem to have the same 
distribution—they are describing 
the same climate.  
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Scientists working in cli-
mate research routinely use  
statist ical  models and  

methodologies to learn about the 
dynamics of climate and the inter-
action between different variables 
that configure the Earth’s climate 
system. A rich variety of data 
sources is available for studying 
climate. In recent years, there has 
been a growing interest in explor-
ing the role that different measures 
of climate can play, as well as the 
capacity of each measure in learn-
ing about the climate system. 

It could be argued that the quan-
tity of data is increasing, but while 
there are many more sources, data 
quality and coverage are not consis-
tent. These rich data provide us an 
opportunity to explore and compare 
their characteristics.

Comparing three different 
measures of temperature in upper-
latitude North America—from 
instruments, measured indirectly 
from paleoclimate proxies, and 
from climate model simulations—
reveals lessons using simple sta-
tistical tools that probably can be 
generalized to other data sources.

Instrumental 
Measures
Instrumental measures provide the 
most-accurate measure of the 
Earth’s climate. They are calibrated 
to be direct measures of specific 
variables such as temperature,  

Instruments, Proxies, 
and Simulations: 
Exploring Imperfect 
Measures of Climate
Peter F. Craigmile and Bo Li

precipitation, and pressure. How-
ever, because of, for example, 
measurement error, instrumental 
measures are not perfect. Direct 
measures may be influenced by 
urbanization, causing so-called 
local “heat island” effects, and will 
be more uncertain when monitoring 
stations move location over time. 

Instrumental measures are 
often provided as a data product, 
a transformation of the original  
observations into a form that is 
more suitable for a specific analy-
sis. For example, Brohan, et al.’s  
Climate Research Unit (CRU) 
gridded temperature product is the 
result of spatially averaging obser-
vations onto a 5 degree latitude by 
5 degree longitude grid. 

A problem with direct measures 
of the climate system can be the lack 
of spatial and temporal coverage. 
Figure 1 illustrates this problem for 
the CRU data product, restricted 
to the region of interest—routine 
measurements of temperature 
started around 1850, but the spa-
tial coverage has varied substantially 
by year. Before 1850, there are only 
very few or no measurements that 
could represent the global climate. 
If we want to understand climate in 
the past, we need to look for other 
indirect measures of climate.

Paleoclimate Proxies
Paleoclimate proxies, whose growth 
or formulation is often susceptible 
to climate, are usually measures 

from media such as tree rings (e.g., 
Figure 2), ice cores, and pollen. 
Paleoclimate proxies provide valu-
able information about the Earth’s 
past climate when no or too few 
instrumental measurements are 
available. However, this informa-
tion is imperfect because either the 
exact relationship between climate 
and the measurements provided 
by the proxy is hard to capture or 
the proxy measurements integrate 
other, non-climatic, factors. 

For example, tree growth, as 
measured by the density of tree 
rings, while positively correlated to 
the surrounding temperature and 
precipitation during the growing 
season, does not allow us to infer 
perfectly the exact climatic condi-
tions in that year.

Proxies are often preprocessed 
to remove effects not due to climate 
(e.g., age effects are often removed 
from tree ring proxy data) and, as 
with instrumental measures, may be 
available as gridded data products. 

Briffa, et al.’s maximum late 
wood tree ring density data set is 
an example of such a paleoclimate 
data product. Figure 1 indicates 
that tree ring densities are observed 
more sparsely in space than direct 
measures of temperature after 1920, 
but they still maintain reason-
able spatial coverage for a certain 
period before 1920 and, thus, can 
be useful for deducing climate in 
the past. Therefore, even with all 
the uncertainties in the imperfect 
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proxy measurements, their longer 
temporal coverage, compared with 
instrumental measures, still makes 
them compelling for the purpose of 
reconstructing past climate.

Climate Model 
Simulations
The output or simulations from 
computer climate models cannot be  
considered as real measurements of 

the Earth’s climate. Instead, they are 
synthetic climate conditions gener-
ated by mathematically quantifying 
various feedbacks and interactions 
between drivers of climate, also 
known as forcings, such as green-
house gases, and climate variables 
such as temperature or precipitation. 

Climate model simulations 
provide useful information about 
the “distribution” of such climate 
variables. (“Distribution” means 

the possible values that could be 
observed over space, time, under 
varied—initial—conditions of the 
computer model.) While climate 
models are “tuned” to reproduce 
global mean values of climate vari-
ables, such as temperature, it is still 
interesting to study their spatially 
and temporally varying distribution.

As an example, Phipps, et al.’s 
CSIRO Mark 3L climate model 
last-millennium simulations  

Figure 1. For two gridded climate data sets over upper-latitude North America, the proportion of grid boxes with 
observations, by year: temperatures in black; tree ring densities in green.

Figure 2. A popular paleoclimate proxy is tree growth, as measured by the density of tree rings. 
Image credit: “Tree Rings” by Arnoldius is licensed under CC BY-SA 2.5.
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produce synthetic climate under a 
number of forcing scenarios. These 
include greenhouse gas concen-
trations, solar irradiance, orbital  
features (such as induced by the  
tilt and orbit of the Earth), and  

volcanic emissions. There is a grow-
ing interest in running climate 
models as experimental designs. 
By varying the factors that go into 
the climate model (e.g., the forcing 
scenarios or the initial conditions), 

we can see how the distribution of  
climate changes. Using weighted 
averages, the climate simulations 
were converted to the same spatial 
resolution as the instrument and 
paleoclimate measures.

Figure 3. Averaging values over the grid boxes in upper-latitude North America, plots of the temperature data product 
(in black), tree-ring density values (in green), and an average climate model run (in blue) by year (left panels). Each 
row displays a different forcing scenario for the climate model runs. Values are shown as anomalies (relative to the 
mean value from 1961–1990). Estimated decadal trends for each global series (solid lines), with associated 95% 
pointwise confidence intervals (dashed lines) (right panels).
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With Instrumental With Paleoclimate
Indirect Measure Correlation 95% CI Correlation 95% CI
Paleoclimate 0.41 (0.25, 0.67)
Sim: orbital −0.22 (−0.38, −0.02) −0.05 (−0.14, 0.04)
Sim: orbital + greenhouse 0.41 (0.13, 0.56) 0.08 (0.01, 0.15)
Sim: orbital + greenhouse + solar 0.45 (0.19, 0.60) 0.09 (0.02, 0.17)
Sim: orbital + greenhouse + 
solar + volcanic 0.31 (0.06, 0.46) 0.16 (0.08, 0.25)

Table 1—Correlations between Indirect Measures of Temperature

Averaging over the grid boxes in upper-latitude North America, the correlation between each indirect measure of 
temperature (paleoclimate and climate simulations) and the instrumental data. The 95% confidence intervals for the 
correlations take into account the temporal correlation within each series.

With these three data products, 
we now demonstrate, using a simple 
statistical analysis, how they relate 
to each other. In particular, we assess 
when and to what degree the dif-
ferent measures agree, and when 
and to what degree they diverge as 
different variations of real climate. 
Throughout, we take the opinion 
that while the instrumental tem-
peratures are measured with error, 
when available, they are the most 
reliable measures of temperature.

Global Comparisons
We first examine how consistently 
each data product represents the 
global climate. The left-hand panel 
of Figure 3 compares averages, over 
upper-latitude North America, of 
the instrumental temperature data 
product (in black), tree ring density 
values (in green), and the average of 
three climate model runs from the 
CSIRO model (in blue), by year. 
Values are presented as anomalies 
relative to the mean value from 
1961–1990. 

In each row, we vary the forc-
ing scenario, starting with only 
the orbital forcing and adding 
one forcing at a time until orbital, 
greenhouse, solar, and volcanic 

forcings are present in the climate 
model. This figure not only displays 
the differences in temporal cover-
age for the three data sets, but also 
gives a clear visualization of the 
discrepancies in their values. 

The right-hand panels of Figure 
3 compare estimated decadal trends 
for each global series anomaly as we 
vary the forcing scenario in different 
rows. (The trends were estimated 
via smoothing splines, using a sta-
tistical model that allows the errors 
to be correlated through time.) 
The dashed line around each trend 
estimate denotes pointwise 95%  
confidence intervals for each trend. 

Table 1 summarizes the correla-
tions between the indirect and direct 
measures of climate, calculated 
over the periods for which a given 
pair of series are both available. For 
uncertainty quantification, we pro-
duce 95% confidence intervals for 
each correlation coefficient. (The 
confidence interval calculation 
uses a statistical method, called 
the moving block bootstrap, that  
allows each series to be correlated 
through time.)

The linear association between 
paleoclimate (tree ring densities) 
and instrumental temperatures is 
moderately strong at this global 

spatial scale, and is highly statis-
tically significant. The significant 
association between paleoclimate 
proxies and temperatures at global 
scale has been observed and is used 
widely to learn about past tem-
peratures. Comparing the decadal 
trends between paleoclimate and 
instrumental reveals that observed 
increasing temperatures in recent 
decades are not present in the tree 
ring records (Rosanne D’Arrigo 
and colleagues call this the “diver-
gence problem”). 

After detrending, there is a 
stronger association between the 
global paleoclimate and instru-
mental values (a correlation of 0.64, 
with a 95% confidence interval of 
between 0.52 and 0.77). 

Comparing the instrumental 
temperatures to different climate 
model simulations shows that the 
climate models lacking in forc-
ings tend to be poorly correlated 
with the instrumental tempera-
tures. Indeed, with a climate model  
containing only orbital forcings,  
we obtain no statistically sig-
nificant association between  
temperatures and the climate 
model simulations. The most  
complicated forcing scenario 
(involving orbital, greenhouse, 
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solar, and volcanic forcings) is 
less linearly associated with the 
direct measure of temperature than  
the c limate model without  
volcanic forcings. 

A compelling reason for this 
can be the difficulty in absorbing 
and digesting the unevenly spread 
and rugged volcanic forcings in 
climate models. Most of the agree-
ment between the instrumental 
temperatures and climate model  
simulations are in the decadal 
trends (after detrending, there are 
no significant correlations between 
the residual instrumental values and 
the climate model simulations).

Despite the associations 
between paleoclimate and instru-
mental, and between simulation 
and instrumental, the correlation 
between paleoclimate and the cli-
mate model simulations averaged 
over upper-latitude North Amer-
ica is weak, although significant. 

This conclusion, nevertheless, 
is only based on the linear asso-
ciation between different data  
sets. Whether there is a non-lin-
ear association between proxies  
and model simulations requires 
further investigation. It is interest-
ing that unlike with instrumental 
temperatures, there is no decrease 
in the correlations at the most- 
complicated forcing scenario. 
As more forcings are added to 
the climate model, the correla-
tion between the climate model 
simulation and tree ring densities 
increases. 

Both climate models and these 
paleoclimate records are informa-
tive about climate on the global 
scale. However, the climate infor-
mation in proxy records and model 
simulation may come from different 
perspectives and, thus, integrating 
the two data sources may provide 
more climate information than  
each individual source.

Local Comparisons
The next step is to move to a local 
scale and see if the same conclu-
sion in the global comparisons still 
apply. Figure 4 demonstrates the 
various correlations between the 
indirect (paleoclimate and climate 
model runs) and the direct mea-
sure of temperature. This case is 
restricted to comparing with the 
climate model that contains all 
four forcings and does not compare 
decadal trends at each location. The 
blue values indicate those correla-
tions that are significantly positive 
on the basis of a hypothesis test 
for the correlation parameter, again 
accounting for possible dependence 
in each time series.

The correlations between the 
instrumental temperatures and tree 
ring densities are the most signifi-
cant and consistent throughout the 
different grid boxes across upper-
latitude North America, although 
there is some spatial variation in 
the strength of the relationship. 
It is also worth noting that these 
grid-specific correlations in general 
appear to be stronger than the cor-
relation at the global scale, which 
is 0.41. This may indicate that 
with proxy data we may first make 
reconstructions at the grid level and  
then average them to obtain the 
global reconstruction. 

In terms of relating climate 
simulations with the instrumen-
tal and the paleoclimate measures, 
only remote regions of statistically 
significant linear association (in the 
east for instrumental and climate 
model simulations; in the south 
and west for paleoclimate and the 
climate model simulations). It is 
surprising to find that the cor-
relation between simulations and 
instrumentals largely downgrade at 
the grid level, as opposed to a fairly 
strong correlation at the global 
scale. The proxies and simulations 

remain weakly associated at the 
grid level. 

The big patch of weak and 
nonsignificant correlations in the  
middle and lower panels of Figure 
4 implies that proxies and simula-
tions can give completely different 
estimates of climate, where esti-
mates from proxies perhaps have 
more credibility due to the rela-
tively stronger correlation shown in 
the upper panel of Figure 4. 

These findings seem to suggest 
that the optimal way to use model 
simulations in a spatial recon-
struction of climate is to have the  
simulations regulating the climate 
at the global scale rather than at 
the local scale.  We might be able 
to use the local information from  
climate model simulations if non-
linear associations between the 
model simulations and instrumen-
tal measures at a local scale were 
identified. This raises a question 
of how much capacity we have  
in recovering the local climate  
of the past based on the available 
data products.

Conclusions
Global average temperatures in the 
upper-latitudes of North America 
show agreements between all three 
data products and the impact of 
climate forcings. The signal from 
solar forcings seems weak, and the 
signal from orbital and volcanism 
can be hard to interpret. For local 
temperatures, the climate footprint 
from climate forcings is weaker 
over space. The real climate, espe-
cially expressed at local scales, is 
very volatile over space, as is seen 
these three data products (instru-
mental, paleoclimate, and climate 
model simulations) express local 
climate signals quite differently. 

Further research, including more 
data collection of direct and indirect 
measures, is required to improve 
climate reconstruction.
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Figure 4. For each grid box, correlations between each indirect measure of temperature (paleoclimate and climate simulations) 
and the instrumental data. The blue numbers denote significantly positive correlations at a marginal significance level of 0.05.

To explore the relationship 
between different data sets based 
on calculating estimates of decadal 
trends and a simple correlation  
coefficient, we calculated each  

correlation separately for each grid 
box for the local comparisons. 

By no means do we indicate that 
the correlation coefficient perfectly  
measures how well we can carry  

out climate reconstructions. It is 
known that there is a nonlinear  
relationship between the real cli-
mate and indirect measures of 
climate (e.g., tree growth is not  
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linearly related perfectly to temper-
ature and precipitation). Also, the 
correction of instrumental measures 
to make them more reliable is a  
progressing research area and will 
lead to higher-quality instrumental 
climate products. 

Finally, the spatial reconstruc-
tion of climate using more-sophis-
ticated statistical models often 
allows for the reconstruction at one 
single point to borrow informa-
tion from their neighboring points,  
by taking account of the spa-
tial correlation. This strengthens  
the ability to reconstruct the 

underlying climate processes over 
time and space using direct and 
indirect measures. 

This simple analysis can be  
considered as a preliminary explo-
ration of different climate data sets. 
More rigorous statistical compari-
sons to understand their common  
characteristics as well as their own 
individual features are called for. 
This study demonstrates that it  
is more appropriate to use statisti-
cal models that account for the 
uncertainty inherent in each data 
source to allow for a more precise 
uncertainty quantification in recon-
structing, and more generally  
modeling, climate.  
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Despite some climate “skep-
tics” over global warming 
and climate change due 

to human influence, it is safe to 
say that scientific consensus has 
been achieved and the majority of 
the public believes that it is real. It 
can be observed that global sur-
face temperature keeps rising and 
that arctic sea ice is shrinking rap-
idly. Numerous scientific research 
studies report that the increase in 
global surface temperatures is due to 
human-induced emission of green-
house gases. 

Since we can only observe the 
past and present climate, though, we 
need tools and methods for accu-
rate prediction of future climate 
change. Furthermore, temperature 
or precipitation are not the only 
causes, but rather, numerous climate 
variables vary and interact together 
over space and time. Thus, we need 
sophisticated tools and methods for 
understanding the current climate 
and forecasting the future climate 
as accurately as possible.

What are Global 
Climate Models?
Coupled Atmospheric and Ocean 
General Circulation Models 
(AOGCMs, commonly called  
climate models or global climate  
models) are complex systems of par-
tial differential equations intended 
to simulate the climate in a four-
dimensional domain: surface of 
the Earth (2-dimensional) × ver-
tical height (or pressure) × time. 
The models are called “coupled” 
since the atmospheric and ocean 
components interact in a com-
plex manner (for instance, sea  

Climate Model 
Intercomparison 
Mikyoung Jun

surface temperature information is 
fed into the atmospheric compo-
nent, and atmospheric wind stress  
information is fed into the  
ocean component). 

The outputs of these climate 
models are the values of multiple 
climate variables (temperature, 
precipitation, radiation, relative 
humidity, wind pressure, etc.) 
on a gridded domain (latitude ×  
longitude × vertical height or  
pressure; see Figure 1) across 
time. They also involve sev-
eral submodels, such as a sea 

ice model. Many physical  
processes are parametrized; there 
are thousands of parameters for 
physical processes such as solar 
radiation, convection, and cloud 
cover, and the inset in Figure 1 
shows only a few examples of the 
physical processes that go into a 
global climate model. 

These coupled AOGCMs are 
the main sources of information 
for understanding the climate in 
general and especially for predict-
ing future climate change (since we 
do not have data from the future). 

Figure 1: Schematic view of a global atmospheric and ocean model.
Source: NOAA.
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Another use of these models  
is to simulate the effect of  
greenhouse gases on the future  
climate. For example, varying 
emission scenarios (how much  
greenhouse gas gets emitted into 
the air), can demonstrate how 
much surface temperature will 
increase (or decrease) given an 
emission scenario for the future. 

Along with the great achieve-
ments made in developing global 
climate models, serious effort 
has been devoted to develop-
ing Regional Climate Models 
(RCMs). RCMs are similar to 

global climate models, but they 
are forced  by specified lateral and 
ocean conditions from a global cli-
mate model or observation-based 
data set. They account for high- 
resolution topographical data, 
land–sea contrasts, surface char-
acteristics, etc. They only cover a  
limited domain, and the values 
at their boundaries are specified. 
Figure 2 provides an illustration 
showing the differences in hori-
zontal and vertical grid resolutions 
between a global climate model 
and an RCM over a spatial region.

Are Climate  
Models Accurate?
Climate models are essential tools 
in climate study. They are used  
for weather forecasting and  
understanding the past and present  
climate, and are irreplaceable tools 
for understanding climate change. 
They are huge systems and cost bil-
lions of dollars to be developed and 
to run on supercomputers. 

Climate models improve 
over time, owing to tremendous 
efforts on the part of scientists and  
modelers around the world. How-
ever, they are still far from perfect. 
Although numerous state-of-the-
art models have been developed 
by top-notch scientists and climate 
modelers, they often give very dif-
ferent answers about certain aspects 
of the climate. 

Some of these differences may 
be due to the climate system’s 
internal variability (due to natu-
ral internal processes within the 
climate system). There is also the 
climate system’s external variability 
(due to natural and anthropogenic 
external forcing). Forcing refers 
to a change in the net energy 
exchange between the climate 
system and the environment, such 
as solar intensity cycles, anthro-
pogenic emissions of greenhouse 
gases, and volcanic eruptions. 

The volcanic and solar forcing 
reconstruction by climate models 
may differ. Climate models also 
may get aerosol effects wrong. 
Aerosols can affect climate in sev-
eral ways. For instance, they can 
reflect incoming sunlight back 
to outer space when the sky is 
clear, which can trap solar energy 
within the atmosphere. Climate 
models incorporate the effects of 
aerosols on clouds through param-
etrizations, and problems in these 
parametrizations could result in 
incorrect projections of climate. 

Figure 2. Comparison of grids for (a) a global climate model and (b) a regional 
climate model, with (b) showing the increased grid in both horizontal and 
vertical dimensions. 
Source: IPCC AR5.

a)

b)
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It is widely acknowledged that 
current versions of climate mod-
els have great room for improve-
ment. There are areas such as sea 
ice regions where climate models 
suffer more than in other areas, and 
there are climate variables such as 
precipitation for which climate 
models have a much harder time, 
compared to other climate variables 
such as surface temperature. There-
fore, a thorough understanding and 
validation of these climate models  
is imperative. 

CMIP and 
Climate Model 
Intercomparison
The Intergovernmental Panel  
on Climate Change (IPCC,  
http://www.ipcc.ch), established 
by the United Nations Environ-
ment Programme (UNEP) and  
the Wor ld Meteorological  

Organization (WMO) in 1988, 
publishes Assessment Reports 
(ARs) on climate change based 
on results from various AOGCMs 
developed by multiple organiza-
tions worldwide.

The Coupled Model Inter-
comparison Project (CMIP) is an 
experimental protocol established 
in 1995 by the World Climate 
Research Programme (WCRP), 
under the United Nations, for cli-
mate model diagnosis, validation, 
intercomparison, documentation, 
and data access. A large number 
of members of the international 
climate modeling community is 
participating, and much of the 
CMIP data are archived and pub-
licly available from the Program 
for Climate Model Diagnosis and 
Intercomparison. 

Phase three of the CMIP 
(CMIP3), which provided  

materials for the IPCC’s fourth 
Assessment Report (AR4), 
included about 20 climate models 
and completed the data for the 
archives, mostly in 2005 and 2006. 
The number of climate models 
participating in the next phase, 
CMIP5, was much greater, and 
the performance of each of these 
climate models was shown to be 
generally better than those of 
CMIP3. The archive for CMIP6 
is currently underway.

Scientific publications have 
noted that there are often signifi-
cant disagreements between the 
climate models participating in 
CMIP3, as well as its successors. 
For example, the projected global 
temperature increase in 2100 and 
thereafter can vary by more than 
1 degree (see Figure 3). The “accu-
racy” of climate model outputs may 
mean different things; it might be 

Figure 3. Multi-model means of surface warming (relative to 1980–1999) for the emission scenarios A1B, A2, and 
B1, shown as continuations of the 20th-century simulation. This figure is based on CMIP3 runs. Six emission scenarios 
were considered, including the three in the figure. Scenario A1 represents an integrated world (rapid economic 
growth, globalization), and A1B is a subset of the A1 family that represents a balanced emphasis on all energy 
sources. Scenario A2 represents a more-divided world with regionalization, based on economic focus. Scenario B1 
represents a more-integrated and ecologically friendly world. More details on all scenarios can be found on the IPCC 
emissions scenarios website. 
Source: IPCC AR4; www.ipcc.ch/ipccreports/sres/emission/index.php?idp=3.
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about the “mean” (i.e., the center) 
of the prediction to some people 
and about the “uncertainty” (i.e., the 
spread) to others. At any rate, one 
might expect to see smaller uncer-
tainty from one CMIP generation 
to the next in terms of how similar 
or different the climate models are 
in that generation.

However, according to Knutti 
and Sedláček (2012), this is not 
the case. The authors show that the 
uncertainty (or spread) in CMIP5 
models is comparable to the uncer-
tainty in CMIP3 models. This 
rather disappointing “improve-
ment” in CMIP5 models over 
those in CMIP3 does not neces-
sarily mean that the models did 
not get better. It may well be due 
to the fact that the climate mod-
els became more complicated (for 
example, more forcing terms and 
aerosols were added to the models 
in CMIP5). Knutti and Sedláček 
also note that direct comparison 
of the models in CMIP3 and the 
models in CMIP5 is not possible, 
since the two generations use dif-
ferent emission scenarios. 

They further argue that there are 
many other factors that contribute 
to model disagreements, such as 
(i) the inherent limitation of com-
putational resources; (ii) lack of a 
complete scientific understanding 
of climate; (iii) lack of long-term 
observations (our observation 
records for the climate do not go 
back further than the 1800s, and 
satellite data have only became 
available since around the 1970s; 
and (iv) lack of consensus on the 
metric to use to determine how sim-
ilar or dissimilar model outputs are. 

Despite the complexity of cli-
mate models and their vast amounts 
of output, common practices for 
validating model outputs and com-
paring across different climate 
models rely on simple spatial or 
temporal means and variances. 
With the advancement of spatial 
and spatio-temporal methods in 

statistics, statisticians can go beyond 
the current common practice to  
better understand the spatial and 
temporal variation structures of  
climate model outputs. 

In particular, statistical tech-
niques for multivariate spatial 
and spatio-temporal distributions 
allow statisticians to validate cli-
mate model outputs, considering 
multiple climate variables jointly at 
various spatial and temporal scales 
(i.e., how one climate variable 
covaries in space and/or time with 
other climate variables and how 
they interact in space and/or time).

One example is the work of  
Philbin and Jun (2015), who  
consider surface temperature and 
precipitation jointly and focus on 
validating climate models in terms 
of how well they produce the joint 
distributional structure of the two 
climate variables. They treat each 
climate variable (30-year seasonal 
averages from 1981 to 2010) as 
spatial data and estimate key (sta-
tistical) parameters that jointly 
describe the spatial variations 
of the two climate variables. In  
addition to comparing those  
(statistical) parameter estimates 
across different climate models, 
they also compare them with the 
(statistical) parameter estimates  
of observations. 

The idea behind this is that, 
if each climate model represents 
something more or less similar 
to the “true” climate (in this case, 
the observations are considered  
to be the truth, subject to mea-
surement error), then those  
(statistical) parameter estimates 
from the climate models, as well 
as those from observations cannot 
be drastically different.

Figure 4 shows an example of 
the results in Philbin and Jun. The 
figure displays estimates for the so-
called smoothness parameter (how 
smoothly each climate variable 
varies over space) and the cross-
correlation (correlation between 

the temperature and precipitation 
value at a given location) for the 
climate models and observations 
considered. 

While some models agree with 
each other (and with the obser-
vations), some models are quite 
distinct from the others. Philbin 
and Jun report that statistical mod-
els predict surface temperature 
and precipitation data with less 
smoothness than the observational 
data for the tropics. The estimated 
spatial cross-correlations of these 
two climate variables are quite dif-
ferent for most climate models in 
the mid-latitudes. 

Climate Model 
Interdependence 
Another interesting but chal-
lenging issue for climate model 
intercomparison is the models’ 
interdependence. As Knutti, et al. 
(2013) note, most models are 
strongly tied to their predeces-
sors, and some also exchange ideas 
and codes with other models. As 
a result, climate models are cor-
related with not only each other, 
but also with the earlier generation. 
Here, we do not simply mean how 
similar the climate model outputs 
are. Rather, we are concerned with 
how similarly wrong the climate 
models are. 

Nevertheless, the current prac-
tice of using these “ensembles” of  
climate models to quantify the 
uncertainty of projected climate 
change (as in Figure 3) often 
assumes that these multiple climate 
models provide “independent”  
information about the future  
climate. This assumption of inde-
pendence within climate model 
ensembles leads to incorrectly 
assessing the levels of uncertainty 
(i.e., overconfidence) of future cli-
mate  projections. 

For instance, even if 20 cli-
mate models are considered in 
a study, you will not get 20 sets 
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Figure 4. Climate model intercomparison results from Philbin and Jun (2015). The top row compares the smoothness of the tempera-
ture, the middle row the smoothness of precipitation, and the bottom row the cross-correlations for different regions of the Earth. The 
left column shows boreal summer and the right, boreal winter. Colors represent modeling groups as shown in the legend in 4(a). 
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Figure 5. (a) The model “family tree” from CMIP3 and CMIP5 (the latter marked with asterisks). A “distance matrix” for the temperature 
and precipitation fields was used to determine the dendrogram. (b) Same as (a), except that distance is calculated based on the predicted 
change in temperature and precipitation for the end of the 21st century. Here, the control state refers to the emission scenario with no 
external forcing, and rcp8.5 refers to the emission scenario with high greenhouse gas emissions. Each climate model is represented by 
its official CMIP model name, a combination of the institutional id and its model name (e.g., IPSL—Institut Pierre-Simon Laplace-CM4 [one 
of IPSL’s models]). 
Source: Knutti, et al., 2013.
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of independent information, 
but rather, a smaller amount of  
information due to their depen-
dence—that is, their similarities. 

However, it is not straightfor-
ward to define and quantify model 
interdependence for a given pair 
of climate models. For any given 
pair of climate models, how depen-
dent (or similar) they are may  
be different for each climate  
variable, spatial region, and/or time 
period considered. 

One notable work for under-
standing model interdependence is 
the “family tree” approach to climate 
models in Knutti, et al. (2013; see 
Figure 5). The concept of a family 
tree is easy to understand, although, 
as seen in Figure 5, the tree structure 
is quite complex in this case. As 
might be expected, most climate 
models developed by the same insti-
tution are related at low levels of the 
family tree. 

In a more statistical sense, Jun, 
et al. (2008) quantified the depen-
dence of a given pair of climate 
model errors using CMIP3 data. 
They considered 19 climate mod-
els from the CMIP3 archive and 
found that there are only about five 
degrees of freedom in those 19 climate 
models (in other words, the infor-
mation provided by the 19 climate 
models is ultimately equivalent to 
the amount of information that 
could be provided by five indepen-
dent climate models). Their study  
considered only the surface temper-
ature variable as seasonal averages 
over three decades. Their conclusion 
might change if another climate 
variable or a different time scale 
(e.g., yearly average or monthly 
average) is considered. 

Even if we can identify the actual 
degrees of freedom in an ensemble 
of climate models, it is not clear how 
we can incorporate this information 
into our study on climate change. 
We cannot simply identify five 
independent climate models among 
all the climate models considered. 
Instead, it is more likely that there 
are five  linear combinations of all 
the climate models that are some-
how independent of each other. 

Furthermore, if a particular cli-
mate model is seriously wrong and 
has completely different outputs 
from the rest of the climate models, 
it could be mistakenly viewed as 
a valid, independent model (thus 
adding one degree of freedom to 
the entire pool of climate models). 
However, it most likely would not 
be useful (but, in fact, actually harm-
ful) for the study of climate change.

Conclusions
Now that CMIP6 is under way (see 
Eyring, et al., 2016), scientists and 
statisticians are excited about see-
ing greater improvement in climate 
models over previous ones and, at 
the same time, face challenges that 
the new model archive will bring 
regarding model intercomparison. 

New models will be much more 
complex, with more physical  
processes and parametrizations. 
They will use much finer grid reso-
lutions (thus much bigger data). 
There also will simply be many 
more climate models. The combi-
nation of excitement and chal-
lenges that must be confronted will 
never end, but it will surely bring 
us a better understanding of the 
future climate and the human 
influence on climate change.  
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Climate Change Detection 
and Attribution: Letting 
Go of the Null?
Dorit Hammerling

Figure 1. Are events such as Hurricane Sandy linked to climate change, and will they become 
more common or intense in the future? 
Image credit: “Liberty” by Gordon Tarpley is licensed under CC BY 2.0 (https://creativecommons.org/
licenses/by/2.0/).

When Hurricane Sandy 
hit the New Jersey shore 
at the end of October 

2012, news headlines abounded 
that questioned the connection 
to climate change. Sandy was the 
second-costliest hurricane in U.S. 
history, topped only by Hurricane 
Katrina (more-recent events, such 
as Hurricanes Harvey and Irma, 
may change that line-up). When 
such events occur, people under-
standably wonder: What is the 
connection to climate change? Has 
climate change made the occur-
rence of events such as Hurricane 
Sandy more likely, and will such 
events become even more frequent 
or more severe in the future? 

Climate change can be loosely 
defined as a change in the aver-
age weather conditions that could 
influence the occurrence and 
intensity of storms, but scientists 
have mainly shied away from  
making such connections. The 
argument is along the lines that 
there is too much natural vari-
ability in the weather and climate  
system to attribute individual 
events, such as Hurricane Sandy, to 
climate change. There is, however,  
a whole line of research investigat-
ing the linkage between what can 
be observed over longer time peri-
ods and climate change, referred 
to as climate change detection and 
attribution or optimal fingerprint-
ing. For some types of observations, 
this linkage can be clearly made 
using statistical methods. 

Climate change detection 
and attribution is an established  



CHANCE

27

methodology in the climate science 
community and, more recently, an 
area of research within the statis-
tics community. The framework 
of detection and attribution is the 
tool set that lets the Intergovern-
mental Panel on Climate Change 
(IPCC) make statements such as, 
“It is extremely likely that human 
influence has been the dominant 
cause of the observed warming 
since the mid-20th century.” 

Figure 2 shows a typical exam-
ple how climate change detection 
and attribution is used to estab-
lish a link between human—also 

referred to as anthropogenic—
actions and observations. The main 
questions addressed are: Could our 
observations have happened by 
chance, or is there really a change? 
If there is indeed a change, can we 
attribute it to human actions? 

From a data point of view, three 
main ingredients are required to 
answer this question: (1) Obser-
vational data sets and (2) results 
from climate models driven only by 
natural phenomena, and (3) results  
from climate models that also  
incorporate  human-dr iven  
phenomena such as increased 

greenhouse gases. Getting at these 
three ingredients is not easy and 
requires worldwide resources 
and collaboration. Observations 
are taken through a variety of 
means, ranging from ocean buoys 
to weather stations to satellites,  
and are then exchanged and 
archived at specialized institutions 
throughout the world. 

Climate models are com-
plex numerical models based on  
physics that amount to hundreds of  
thousands, if not millions, lines of 
computer code to model the Earth 
for the past, present, and future. They 

Figure 2. Example of a detection and attribution study, reproduced from FAQ 10.1, Figure 1, IPCC 2013: The Physical 
Science Basis. Time series of global and annual-averaged surface temperature change from 1860 to 2010. The top-left 
panel shows results from two ensembles of climate models driven only with natural forcings, shown as thin blue and 
yellow lines; ensemble average temperature changes are thick blue and red lines. Three different observed estimates 
are shown as black lines. The lower-left panel shows simulations by the same models, but driven with both natural 
forcing and human-induced changes in greenhouse gases and aerosols. Spatial patterns of local surface temperature 
trends from 1951 to 2010 (right). The upper panel shows the pattern of trends from a large ensemble of Coupled 
Model Intercomparison Project Phase 5 (CMIP5) simulations driven with just natural forcings. The bottom panel shows 
trends from a corresponding ensemble of simulations driven with natural + human forcings. The middle panel shows 
the pattern of observed trends from the Hadley Centre/Climatic Research Unit gridded surface temperature data set 
4 (HadCRUT4) during this period.
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are developed at scientific institu-
tions worldwide and are constantly 
improved upon to reflect the Earth’s 
physical systems in ever-increasing 
detail. Climate models are so com-
plex and computationally intensive 
that they can usually only run on 
supercomputers. They incorporate 
a multitude of processes, ranging 
from oceans currents to river runoff, 
land use, storms, clouds, and sea ice. 

The domain of the models is vast: 
from the bottom of the ocean to the 
outer layers of the atmosphere. As 
such, they allow for an endless num-
ber of studies to investigate what the 
Earth looked like in the past—for 
example, during the Ice Age—and 
what our future will look like as a 
function of different choices made 
in moving forward.

All three ingredients—obser-
vational data, results from climate 
models using only natural forcing, 
and results from climate models 
that also incorporate human forc-
ing—are visualized in Figure 2. 
Looking at the black lines in the 
left-hand panels of Figure 2 shows 
that there are some differences 
between observational data sets 
coming from different institutions. 
Those differences in observational 
products, however, are small com-
pared to the differences between 
runs from different climate models. 
These are shown by the yellow and 
light-blue lines in the left panels in 
Figure 2. 

These differences stem from, 
among other things, different ways 
of implementing the physical equa-
tions and parameterizing processes, 
different spatial and temporal res-
olutions, and numerical schemes 
between the models. Even when 
only a single climate model is 
used, the climate model results can 
exhibit considerable dispersion, due 
to a fascinating phenomenon popu-
larly known as the butterfly effect, 
where minuscule changes in the 

starting conditions can lead to quite 
different results in the outcomes. 

Even though there is a wide 
spread among them, all the lines 
follow a common larger trend, and 
it is clear simply from visual inspec-
tion that models that are only forced 
by natural events cannot explain 
the observations, while the model 
runs also driven by human-induced 
changes in greenhouse gases and 
aerosols can. 

The tool to assess such questions 
in a more statistically rigorous way 
is multivariable regression analysis, 
where multivariable refers to the 
fact that more than one predictor 
variable is investigated to explain 
the response variable. In most cases, 
the setup is also multivariate, which 
refers to the fact that the response 
variable is of a dimension larger 
than one. Typically, thousands of 
locations in space and time are  
considered. This model can be writ-
ten as 

y = x1 * 1 + x2 * 2 + ,
where in our example, the response 
variable, y, is the observed tempera-
ture and the predictor variables are 
the climate model runs driven by 
natural forcings, x1, and the climate 
models driven by human forcings, 
x2, with their respective scalar coef-
ficients, 1 and 2. The goal of the 
analysis is to determine whether 
2 ≠ 0, which implies that climate 
change due to human activity has 
been detected. 

A step further is to test for all 
the s to be equal to unity, which 
then implies attribution to the spe-
cific set of forcing scenarios being 
investigated. The last term in the 
equation is the error term . This 
term is normally distributed with a 
mean of zero and covariance matrix 
of the same dimension as y. This 
covariance matrix describes the 
dependence structure of the errors. 

While the model is in principle 
simple, practical issues often arise 
due to the high dimensionality of 

the problem. If a climate model runs 
at a spatial resolution of 1 degree 
in latitude and longitude, that 
results in a total 180 x 360 = 64,800  
locations. The most-challenging 
technical detail is to estimate a 
covariance matrix corresponding 
to all these locations. The covariance 
matrix describes the relationship of 
the errors between different loca-
tions, which in a system like the 
Earth, with many interconnected 
processes, is critical. 

What is done in practice is to 
aggregate the data to a coarser 
resolution. Resolutions typically 
used are 5 degrees by 5 degrees or 
10 degrees by 10 degrees, but even 
using these aggregations, there 
is still a large covariance matrix 
to be estimated. This covariance 
matrix is estimated from so-called 
control runs. Control runs are cli-
mate model runs where no external 
forcing has been applied and only 
internal variability is present, but 
estimating large covariance matri-
ces from noisy data is notoriously 
difficult. Just estimating this cova-
riance matrix in an ad hoc fashion 
and plugging it in the model would 
neglect the uncertainty associated 
with its estimation. 

This has, in turn, led to the recent 
methodological developments using 
so-called Bayesian hierarchical models 
to account for these uncertainties 
more comprehensively and trans-
late them to the final estimates. 
Bayesian hierarchical models are 
a flexible class of models, where  
the model parameters them-
selves are considered random and  
uncertainties can easily be propa-
gated due to the hierarchical setup 
of the model.

Apart from technical diffi-
culties related to the covariance 
estimation, a more-fundamental 
problem with the current meth-
odological setup is that changes in 
events related to atmospheric cir-
culation, such as storms, cannot be 
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characterized robustly due to their  
underlying chaotic nature. 

This is in contrast to changes 
in thermodynamic state variables 
such as global temperature, which 
can be relatively well-characterized. 
The climate change signal in atmo-
spheric circulation events, if it exists, 
is very small and easily drowned out 
by natural variability. However, it is 
still of societal importance to assess 
how the impact of events driven by 
atmospheric circulation might be 
altered by climate change present  
in the form of a new thermody-
namic state. 

Motivated by this conundrum, 
a group of researchers recently pro-
posed a new way of viewing and 
formulating the problem. Rather 
than trying to assess the probability 
of the event occurring, they sug-
gest viewing the event as given, and 
assessing to which degree changes 
in the thermodynamic state, which 
we know has been influenced by 
climate change, altered the severity 
of the impact of the event. This is 
de facto moving away from the cur-
rent null hypothesis that there is no 
climate change. 

Under the current null hypoth-
esis, it takes strong evidence to dis-
pute or overturn the hypothesis. 
One issue argued by the advocates 
of this new direction is that the cur-
rent setup leads to many cases where 
we fail to reject the null hypothesis 
even though we should. In technical 
terms, such a scenario is referred to 
as a type II error or false negative. 
Given that climate change has been 
established as real and already has 
created a “new normal,” requiring 
to prove this fact again every time 
is pointless, and worse, eliminates 
the power to answer the kinds  
of questions that are truly relevant 
to society. 

In the case of Hurricane Sandy, 
this alternative framework has 
already been explored through an 

About the Author
Dorit Hammerling, PhD is the section leader 
for statistics and data science at the Institute for Mathematics 
Applied to Geosciences of the National Center for 
Atmospheric Research in Boulder, Colorado. 

experiment by the European Cen-
tre for Medium-Range Weather 
Forecasts. In addition to the 
actual forecast, their researchers 
simulated the superstorm under 
otherwise-equal conditions by 
exchanging the unusually high 
sea surface temperatures, arguably 
caused by climate change, with 
the climatological values along the  
coastline of the eastern U.S. 
Although the storm track remained 
almost the same, the main features 
characterizing the storm dimin-
ished in their intensity when using 
the climatological values. Most 
notably, precipitation was 35% 
higher under the actual condition 
than the climatological average. 

Given that most of the damage 
resulted from the flooding after 
the storm surge, it can be argued 
that the combination of higher sea 
levels due to climate change—and 
the unusually high sea surface tem-
peratures also connected to climate 
change—were responsible for at 
least a portion of the estimated  
$71 billion in damages. 

While a subsequent quantitative 
study linking a decreased storm 
surge to a reduction in damages 
hasn’t been made as part of this 
experiment, it illustrates and pro-
vides the foundation of how it could 
be done. Thus, this new way of view-
ing the problem could be a game 
changer in the attribution of 
extreme events by providing a 
framework to quantify the portion 
of the damage that can be attributed 
to climate change, even for events 
that themselves cannot be directly 
attributed to climate change using 
traditional methods.  
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We are all familiar with 
the proverbial “100-
year flood,” a concept 

instrumental in engineering design 
for water resources management. 
This concept, generally termed a 
“return level” corresponding to a 
specified “return period,” is based 
on the assumption of an unchang-
ing (or “stationary”) climate. In 
particular, Emil Gumbel, a pioneer 
in the application of the statistics 
of extremes, cautioned as long ago  
as 1941:

… to apply any theory we 
have to suppose that the 
data are homogeneous, i.e. 
that no systematical change 
of climate and no important 
change in the basin have 
occurred within the observa-
tion period and that no such 
changes will take place in the 
period for which extrapola-
tions are made.

Today, with the rapid increase 
in greenhouse gases and its con-
sequences on the climate system, 
including the possibility of increases 
in the frequency and intensity of 
extremes, the assumptions spelled 
out by Gumbel are no longer nec-
essarily tenable. An open question 
is how best to convey the risk of 
extreme events under a changing (or 
“non-stationary”) climate. 

A further, related challenge con-
cerns the quantification of the risk of 
the simultaneous occurrence of two 
or more extreme events (e.g., both 
extreme wave height and sea level  

Quantifying the Risk of 
Extreme Events under 
Climate Change
Eric Gilleland, Richard W. Katz, and Philippe Naveau

in the case of coastal flooding),  
sometimes termed “compound” 
events. In the engineering design 
community, there has been some  
resistance to taking climate 
change into account in flood 
plain management, as well 
as reluctance to reconsider  
the concept of a 100-year flood 
under non-stationarity.

Quantifying Risk  
Assuming Stationarity
Even though our climate is chang-
ing, the assumption of a station-
ary or unchanging climate is a 
convenient starting point. Under 
stationarity, the 100-year flood cor-
responds to the 0.99 quantile of 
the probability distribution of the 
annual peak flow (or some other 
measure of flooding) of a river at a 
given location. 

More generally, let p denote 
the probability of a flood in a 
given year. In that case, a T-year 
flood (i.e., the return level with a 
return period of T years) would 
correspond to the 1 – p quantile, 
where p = 1/T (see Figure 1). The 
concept of a 100-year flood has 
several interpretations. Over any 
100-year time period, there should 
be one 100-year flood on average. 
If we make the additional, and not 
too unrealistic, assumption that 
flood events in different years are  
probabilistically independent, then 
the waiting time on average until 
the next 100-year flood should also 
be 100 years.

Nevertheless, even under sta-
tionarity, the concept of a 100-year 
flood is commonly misunderstood 
by the public. On the one hand, 
100 years could pass with no 100-
year floods or, on the other hand, 
100-year floods could even occur 
in consecutive years. To minimize 
confusion, the U.S. Geological 
Survey has advocated replacing the 
terminology “100-year flood” with 
“a flood with an average recurrence 
interval of 100 years.”

To better convey the risk 
of flooding (e.g., to convince 
homeowners of the necessity to  
purchase flood insurance), the risk 
of a 100-year flood can be expressed 
in terms of the probability of one 
or more 100-year floods over some 
design lifetime L (e.g., the aver-
age life span of a house)—say, 30 
years. Continuing to assume tem-
poral independence in addition to 
stationarity, this “risk of failure” 
can be expressed from elementary 
probabilistic reasoning as

1 – (1 – p)L = 1 – (1 – 1/T)L =  
1 – (1 – 1/100)30 ≈ 0.26

In other words, there is roughly 
a 26% chance that a 100-year flood 
would be experienced at least once 
within a 30-year time period, or 
quite a bit more likely than many 
people would naively guess.

Of course, there is much uncer-
tainty in estimated return levels for 
long return periods (such as 100 
years) based on a limited time series 
of observations, especially only with 
extremes such as annual peak flow 
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Figure 1. Probability density function for annual peak flow, with area (highlighted in red) under curve above return 
level equaling probability p of a flood in a given year.

being extracted from the record 
(that is, only one value per year). 
Nevertheless, such uncertainty can 
be readily quantified using advanced 
methods based on the statistics  
of extremes.

Figure 2. Time series of annual peak flow (1,000 cfs, for water year October–September) of Potomac River at Point 
of Rocks, MD, for period 1895–2013, along with point estimate (circle) and 95% confidence interval for 100-year 
flood (in red).

As an example, Figure 2 shows 
the time series of annual peak flow 
(water year October – September) 
for the Potomac River at Point of 
Rocks, MD, during 1895–2013. To 
illustrate the stationary case, this 

example was chosen because of 
a lack of any obvious trend. Also 
superimposed on the figure is the 
estimated 100-year flood, based on 
fitting a generalized extreme value 
distribution (see sidebar), along with 
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a 95% confidence interval (these 
calculations were performed using 
the extRemes package in the open 
source statistical programming  
language R). Besides being rela-
tively wide, a disappointing (but not 
surprising) feature of this interval 
for practitioners concerns the need 
to hedge more on the upper end, or 
precisely the values that matter the 
most for engineering design.

Quantifying Risk  
under Climate Change
Evidence for shifts in the frequency 
and intensity of extremes (e.g., for 
precipitation, the major driver of 
floods) as part of climate change 
is already strong. Some of this 
evidence is empirical in the form 
of statistically significant trends, 
while other evidence is theoretical 

in the form of projections of climate 
change based on numerical models 
of the climate system. Yet, there has 
been heated debate in the hydrology 
community about whether station-
arity is “dead.” 

On the one hand, some argue 
that water resources management 
based on the stationarity assump-
tion is obsolete and should be  
completely abandoned. On the 
other hand, others argue that, even 
given statistically significant trends 
in extremes, the uncertainty is too 
great to justify modifying engineer-
ing design to take non-stationarity 
into account. Some of this resistance 
is based on legitimate concerns 
about the difficulty of extrapolat-
ing any trends into the future. Still 
other opposition seems recalcitrant, 
just using uncertainty as an excuse 
to avoid taking any action. 

In some situations (such as when 
there are too many parameters to 
estimate relative to the number of 
observations), fitting simpler statis-
tical models may be preferable based 
on the principle of parsimony (or 
Occam’s razor). Yet, in the climate 
change context, ignoring apparent 
trends in extremes does not appear 
to be a defensible strategy.

As an example of a real shift in 
floods over time, Figure 3 shows 
the time series of annual peak flow 
(water year October–September) 
at Mercer Creek, WA, during 
1956–2010, a small drainage basin 
that underwent rapid development 
in the 1970s. As could have been 
anticipated from basic hydrologic 
principles, a rapid increase in the 
annual flood magnitude occurred 
during the 1970s and early 1980s, 
even though the average flow 
showed no evidence of change. Also 
superimposed on the figure are the 
estimated 20-year floods, based 
on fitting the generalized extreme 
value distribution separately to the 
two time periods 1956–1977 and 
1978–2010, along with 95% confi-
dence intervals (20-year floods are 
shown instead of 100-year floods 
because the two time periods are 
so short).

The question could be raised 
of how best to quantify the flood 
risk for Mercer Creek starting in 
the late 1970s. First of all, it would 
not be feasible to modify the flood 
plain gradually on an annual basis. 
Further, adopting a risk measure 
that extends or generalizes either 
the expected frequency or expected 
waiting time interpretations of a 
100-year flood to non-stationarity 
would not necessarily be straight-
forward. Instead, the same concept 
risk of failure, as discussed under 
stationarity, could provide a more-
meaningful measure of flood risk 
over a specified future design life 
time, but now the probability of an 

The generalized extreme value (GEV) distribution arises as the approximate distribution 
for the maximum value of a long sequence of observations. It has three parameters: 
Location parameter governs the center of the distribution; scale parameter governs 
the spread of the distribution; and shape parameter, determined by the upper tail of 
the distribution of the individual observations. Depending on the sign of the shape 
parameter, the GEV distribution has three types: the Fréchet type with a “heavy”  
tail (i.e., slowly decaying in the form of a power law); the Weibull type with a  
finite upper tail; and the Gumbel type, intermediate between the Fréchet and  
Weibull types.

GENERALIZED EXTREME VALUE DISTRIBUTION
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Figure 3. Time series of annual peak flow (cfs, for water year October–September) at Mercer Creek, WA, during 
1956–2010 (Note: Peak flow is missing for year 2003), along with point estimates (circles) and 95% confidence 
intervals for 20-year floods (in red) for 1956–1977 (left) and 1978–2010 (right).

extreme event p would vary depend-
ing on the year.

Return Periods in a 
Multivariate Context
A return level of interest often con-
cerns a more-complicated event 
than simply being above a high 
value (or below a low value). For 
example, the severity of a drought 
depends on multiple factors, such 
as the location, length of time with-
out precipitation or other source 
of water, temperature, and possibly 
other conditions. Even when such 
an event can be defined reasonably, 
it will often depend on more than 
one variable. 

To illustrate, Figure 4 shows four 
of the most classical cases of bivari-
ate extreme events. Each panel 
leads to a different return period 
despite the same high threshold 
being involved. Practitioners should 
be aware that such return periods 
are relative quantities and cannot 

be compared whenever the event 
of interest differs. Deciding and 
clearly stating which event is the 
object of interest may be the most 
important step of a risk analysis, but 
it is often overlooked. Bypassing 
this step often leads to misguided 
conclusions.

It is very tempting to compare 
the return period of a single event, 
such as a drought defined in terms 
of extreme low precipitation, with 
the return period of a joint event, 
such as both extreme high tempera-
ture and extreme low precipitation. 
However, as recently reported by 
Francesco Serinaldi, a hydrologist 
at Newcastle University, univari-
ate and multivariate return periods 
are not comparable. Nevertheless, 
research by Amir AghaKouchak, 
a hydrologist at the University of 
California Irvine, and colleagues 
involved precisely this type of analy-
sis and claimed that a univariate 
return-period analysis substantially 
underestimates the occurrence 

probability of the 2014 California 
drought when ignoring the effect 
of temperature. 

One simple reason for this 
potentially misleading statement 
is that the geometrical structure of  
any type of joint event makes it  
fundamentally different from a uni-
variate one. For example, compare 
the green area in the upper left panel 
of Figure 4 to the colored areas in 
the other panels, and note that it 
is always different from them and, 
therefore, not comparable in terms 
of return periods.

In this context, it has been 
argued that the definition of return 
period is meaningless because it 
can create confusion, especially 
in a multivariate setting. While 
it is true that “apples” should not 
be compared to “oranges,” simply 
dismissing the entire concept of 
a return period is tantamount to 
throwing the baby out with the 
bathwater. For planning purposes, 
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 Figure 4. Four classical types of events in the same bivariate setting, given the same threshold u = 5. Upper left panel 
(X > u), upper right panel (X > u and Y > u), lower left panel (X > u or Y > u), and lower right panel (X + Y > u). For 
simplicity, it is assumed that the two random variables, X and Y, have the same marginal distribution so the same thresh-
old u can be used.
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Figure 5. Comparison between asymptotic independence and dependence 
for bivariate extremes (30,000 simulated realizations). The upper panel 
corresponds to a linear relationship based on Gaussian distributions with a 
correlation coefficient of 0.8. The lower panel represents the same form of 
linear relationship, but instead based on Cauchy distributions. 

some form of risk measure re-
mains essential.

The key point to reduce incorrect 
claims is to simply remind risk man-
agers that a return period should 
never be interpreted alone— 
that is, without specifying the  
associated event of interest. Despite 
the challenges, the exercise can 
even be carried out in a multivari-
ate framework. 

For example, an event can be 
defined as the joint probability 
that all variables of interest, say 
two random variables X and Y, fall 
above a specified amount, say a 
high threshold u (blue points in 
upper right panel of Figure 4). In 
that case, there is no quandary in 
setting this probability p to 1/T and 
solving for the value of u that satis-
fies the equation. Subsequently, T 
can be interpreted as the return 
period for this specific event. 

The event can easily be changed 
by re-defining the probability. For 
example, the event could be con-
sidered to be that the sum of all 
variates is greater than the threshold 
u (brown points in lower right panel 
of Figure 4). Then the return period 
simply need be interpreted within 
the context of this sum.

One delicate statistical point is 
to assess how the joint probabilities 
of bivariate extremes (the event that 
both X and Y exceed the threshold 
u; see blue area in the lower panel 
of Figure 5) can change, even when 
the marginal distributions are iden-
tical (here, standard Gaussian). The 
panels of Figure 5 display simu-
lated bivariate realizations from two  
different dependence types (Gauss-
ian and one based on multivariate 
extreme value theory, MEVT). As 
the threshold u increases, there is 
asymptotic independence or lack 
of “clustering” at high levels for 
the Gaussian case, whereas there is 
asymptotic dependence or “cluster-
ing” at high levels for the MEVT. 

In other words, any Gauss-
ian bivariate vector is unable to 
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model strong dependence among 
extremes, so other statistical models, 
especially those based on MEVT, 
would provide a potentially better 
way to represent extreme depen-
dence. There is much evidence 
of such dependence in climate 
extremes (e.g., between extreme 
high temperatures on consecutive 
days at the same location or on the 
same day at nearby locations). 

Outside the context of cli-
mate, a compelling example of the  
danger of relying on Gaussian 
dependence for extremes concerns 
the so-called “formula that killed 
Wall Street.” Financial engineers 
were unaware that a formula based 
on the correlation coefficient 
would substantially underestimate 
the simultaneous risk of default 
for two assets. This misconcep-
tion contributed to the worldwide 
financial collapse in 2008.

One added complication is that 
severe climate events can occur 
when some (or even all) variables 
involved assume states not nec-
essarily considered extreme. For 
instance, severe flooding can occur 
when not-so-intense rain falls over 
frozen ground or snow pack, as 

has recently occurred at Yosemite 
National Park in California.

Comparing Return 
Periods in Climate 
Studies
To deal with non-stationarity issues 
in climatology, ensemble runs from 
numerical climate models offer a 
way to study independent draws 
from different types of climate 
worlds. In this context, an emerg-
ing topic in the field of Detection 
and Attribution (D&A) is the so-
called event attribution paradigm. 
The archetypical example is the 
2003 heat wave over Europe, where 
the question of interest concerns 
whether or not the return period of 
such a hot summer would have been 
different under a stationary climate; 
that is, without the influence from 
anthropogenic forcings or increases 
in greenhouse gases. 

To address this question, cli-
matologists run experiments with 
numerical models of the climate 
system and estimate a measure 
known as the Fraction of Attrib-
utable Risk (FAR). The FAR is 
defined as the relative ratio of two 
probabilities of the same event 
under two different alternate real-
ities: the world that is and that 
which might have been. The com-
mon event is defined by exceeding 
a fixed threshold u, so the FAR is 
simply a relative ratio of return 
periods for the same event. For the 
European heat wave example, the 
FAR was estimated to be greater 
than 0.5, or more than double the 
risk of such an event being attrib-
utable to anthropogenic factors.

Hydrologists often play a similar 
game, but they fix the return period 
and estimate the associated return 
level. A risk manager may subse-
quently need to revise the return 
period under a warming climate. 

In any case, one common chal-
lenge for all these communities is to 
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move away from a single-event 
analysis based on one variable and 
unrealistic stationary assumption 
toward more-complex events (e.g., 
concurrent extremes) in a non- 
stationary world. Such a revision 
will lead to rich statistical questions; 
for example, how to invent novel 
statistical summaries that are easily 
interpretable, inferable, and compa-
rable, and can generalize the old 
concept of return levels.  
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One of the enduring symbols 
of the impact of climate 
change is that of a polar 

bear drifting in the sea, alone on 
its own piece of ice. For those who 
are left untouched by the loneli-
ness of drifting polar bears, images 
of partially submerged lands and 
the devastation wrought by storm 
surges showcase some potentially 
frightening impacts of sea level 
rise on human life. The threat of 
sea level rise, in turn, is linked 
to the melting of ice sheets. Ice 
sheets are, therefore, important to 
understanding our planet, as well as 
learning about how our future may 
be affected by climate change. A 
promising approach to improving 
our understanding of ice sheets 
and derive sound projections of 
their future is to combine ice 
sheet physics, statistical modeling,  
and computing. 

First, what exactly is an ice 
sheet? It is an enormous mass of 
glacial land ice, more than 50,000 
square kilometers in extent. The 
Antarctic ice sheet extends over 14 
million square kilometers while the 
Greenland ice sheet extends over 
1.7 million square kilometers. 

To put this in perspective, the 
area covered by the Antarctic ice 
sheet is comparable to the conti-
nental United States and Mexico 
combined. In fact, the Greenland 
and Antarctic ice sheets contain 
more than 99% of the freshwater 
ice in the world. Roughly speaking, 
melting the entire Greenland ice 
sheet would result in sea level rise 
of around 7 meters (23 feet) while 
if the entire Antarctic ice sheet 
melted, it would result in sea level 
rise of around 57 meters (187 feet). 

Statistics and the Future 
of the Antarctic Ice Sheet
Murali Haran, Won Chang, Klaus Keller, Robert Nicholas, and David Pollard

It is easy to imagine how even 
partial melting of these giant ice 
sheets can potentially lead to large 
sea level rise, making, for instance, 
low-lying coastal regions more 
vulnerable to future storm surges. 
Hence, a number of high-profile 
articles and documentaries have 
placed melting ice in polar regions 
squarely at the center of the dis-
cussion of the impacts of climate 
change. Knowing something about 
how ice sheets are changing has 
very practical consequences, such as 
when making decisions about how 
and where to build infrastructure on 
the coasts, and how to assess risk to 
property due to climate change in 
the future. 

Risk is defined in terms of prob-
abilities (risk of an event = expected 
loss under a probability distribution 
on that event), carefully describing 

the risks associated with a climatic 
event requires estimating future 
probabilities. That makes studying 
the future of ice sheets in a statisti-
cally sound fashion of interest from 
a both scientific and a policy and 
decision-making perspective. 

How do scientists study the 
future of ice sheets? What role (if 
any) does statistical thinking play 
in studying ice sheets? 

A careful study of ice sheets 
involves four main pieces: (1) phys-
ics for modeling the behavior of the 
ice sheets over time; (2) computing 
and applied mathematics (mostly 
solving differential equations) for 
translating the physical model into 
computer simulation code; (3) data 
sets that are informative about the 
past and current state of the ice 
sheet and related climate variables,  
such as ocean temperatures and 

Figure 1. The West Antarctic Ice Sheet, viewed from the Amundsen Sea, with important glaciers 
highlighted.
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snowfall accumulation; and (4) 
statistical methods that combine 
information from the physical 
model with observations of the  
ice sheet. 

This is an interesting and chal-
lenging area of research because 
sound scientific research requires 
an interdisciplinary collabora-
tion between ice sheet modelers 
and statisticians. The statistical  
challenges involve combining  
information from disparate 
sources such as the physical model 
and observational data sets. The 
size and complexity of the data  
and models pose serious computa-
tional challenges. 

This article provides a taste of 
some of the interesting scientific 
questions about ice sheets, the 
resulting statistical problems, and 
an outline of a statistical method 
that can be used to solve this prob-
lem. The discussion is broadly  
targeted at ice sheets, but we 
focus predominantly on the West  
Antarctic Ice Sheet (WAIS) and 

PSU3D-ICE, Pollard and DeCon-
to’s ice sheet model.

These four aspects involved in 
the study of ice sheets are com-
mon to many other research areas 
in climate science where models, 
uncertain parameters, and multiple 
sources of observations have to be 
brought together to understand the 
past, present, and future state of  
the climate. 

In fact, similar statistical  
problems arise often in other sci-
entific disciplines where complex 
dynamical models are used, and 
the applications of the statistical 
methods of emulation and calibra-
tion described here even extend 
to many manufacturing and engi-
neering processes.

The Physics of  
Ice Sheets
Ice sheets are created by long-term 
snowfall accumulation. When 
snowfall exceeds snow melt each 
year, it builds layer upon layer 
of snow, the weight of which  

compresses the underlying snow 
to form ice. Over thousands of 
years, this has resulted in massive 
ice sheets that can be thousands of 
feet thick. 

The flow of the ice sheet is 
due to the height of this thick ice 
and snow. Ice sheet experts have 
worked extensively on building 
physical models that describe how 
ice sheets flow and evolve over 
time. Figure 2 provides a simpli-
fied view of the physics involved. 
It shows, for instance, that the ice 
flows downslope from the highest 
central regions toward the edges of 
the ice sheet. 

Figure 2 provides a sense of how 
the ice sheet rests on the continental 
crust and how the ocean interacts 
with the ice sheet. The multiple 
parallel curves represent differ-
ent ice flow lines, corresponding 
to different heights of ice (central 
regions of the West Antarctic Ice 
Sheet [WAIS] are more than 2,000 
meters high). Gravity is a funda-
mental driver of the flow, causing 
stresses and deformation that tend 

Figure 2. The arrows in the figure illustrate the direction of ice flow. Ice accumulates on top through precipitation (snow-
fall), and flows downward due to gravity. Ablation means the melting or evaporation of ice. This cartoon illustrates 
how the ice sheet rests (and slides) on the continental crust, and points out its important interaction with the ocean 
waters. Parameters (inputs) that determine how the ice sheet slides, and how it interacts with the surrounding ocean 
waters, are key to future projections of the ice sheet.
From www.snowballearth.org, courtesy Paul Hoffman. 
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to flatten the sheet surface over tens 
of thousands of years.

The basic physical principle 
underlying the ice sheet is the con-
servation of mass, which ensures 
that the local thickening or thin-
ning of ice is balanced by ice added 
or removed. Ice can be added by 
snowfall, and is removed by ablation, 
the process by which snow or ice 
melts and flows away in stream-like 
channels and crevasses, evaporates, 
or is blown away by the wind.

The underlying topography, 
as well as the slipperiness of the 
bedrock surface, also influences the 
behavior of the ice sheet. Overall, 
the ice sheet surface tends to be a 
smooth dome, but high peaks may 
protrude though the ice, exposing 
the land in places.

The edge of the ice sheet is par-
ticularly vulnerable as it interacts 
with the ocean. Where the ice sheet 
meets, or abuts, the ocean, it can 
form a vertical cliff or can continue 
as an ice shelf—a floating table 
of ice hundreds of meters thick,  
flowing out toward the open ocean. 
Sometimes part of the ice shelf 
breaks off (known as calving) to 
create floating icebergs. Individual 
calving events can be dramatic and 
spectacular, especially if the ice cliff 
abutting the ocean is relatively tall.

This brief outline of ice sheet 
dynamics shows that there are many 
inputs or parameters of the model 
that, when changed, can have a 
considerable influence on ice sheet 
behavior. For instance, the slipperi-
ness of the bedrock surface—the 
amount of friction between the ice 
sheet and the bedrock surface—
affects how fast the ice sheet slides 
over it. 

The ocean melt coefficient 
is a parameter that describes the  
sensitivity of the ice sheet to tem-
perature changes in the surrounding 
ocean. Changes to this parameter 
will cause the ice sheet to react very 
differently to the changes in the  
surrounding ocean temperatures. 

Different parameter values will 
result in very different projections 
of the future of the ice sheet. Figur-
ing out reasonable parameter values 
to use is, therefore, a very impor-
tant research problem, and it makes 
sense to find parameter values that 
allow the ice sheet model to credibly 
reproduce both the past and current 
behavior of the ice sheet. 

In fact, parameter inference is 
precisely the problem focused on 
here. Careful science requires not 
only providing “best” values of the 
parameters (point estimates) but 
also providing uncertainties about 
the parameter values. 

Computer Models for 
Studying Ice Sheets 
To study how the ice sheet behaves 
under various parameter settings 
and the impact of external climate 
variables or external forcings (phys-
ics external to the system that affect 
the ice sheet) on the ice sheets, sci-
entists create computer programs 
that incorporate the physics of 
the ice sheet, as well as the various 
forces acting on it. These days, using  
computer simulations to learn 
about the behavior of an ice sheet 
in response to internal and exter-
nal conditions is common in the 
earth and atmospheric sciences, and 
is often used in many science and 
engineering problems. 

In our work on the West Ant-
arctic Ice Sheet (WAIS), we use the 
PSU3D-ICE model, which strikes 
a balance between detailed physi-
cal modeling and computational  
efficiency. This balance allows it to 
produce realistic long-term behavior 
of the ice sheet without attempting 
to incorporate very-high-resolution 
physical modeling. This allows the 
long runs to be accomplished with 
a reasonable amount of computa-
tional effort. 

Many decisions have to be made 
about how to run the ice sheet 
model. For instance, an important 

choice is to determine how far back 
to start the ice sheet model to “spin 
it up” to the present time (we start 
it 40,000 years before present). The 
spin-up phase of the model involves 
running it until it reaches a “steady 
state” that does not, ideally, depend 
too much on the initial values cho-
sen to run the model. 

Another choice is the kind of 
external forcings (physics external to 
the system that affect the ice sheet) 
to use on the ice sheet dynamics; we 
use well-established data sets and 
models to provide the atmospheric 
and oceanic external forcings. The 
computer model output is in the 
form of a spatial grid. Therefore, we 
also must determine the resolution 
at which we want model output, 
with a higher resolution typically 
taking more computational time. 
Here, we simply obtain informa-
tion that is close to the same scale 
at which the observational data sets 
(described below) are available. 

Finally, and crucially, we must 
determine a study design that  
suggests which parameter values to 
use when running the model, since  
we are constrained by computa-
tional considerations.

Ice Sheet Data 
Detailed modern observations of 
WAIS are constructed combining 
many different types of observa-
tions, including satellite altimetry, 
airborne and ground data surveys, 
and ground radar surveys. These 
data are useful for learning about 
(referred to as constraining in the 
geosciences literature) important 
parameters of the model. How-
ever, to obtain better projections of 
WAIS on the scale of hundreds to 
thousands of years in the future, it is 
important to also use the long-term 
behavior of the ice sheet to learn 
about the parameters. The param-
eters inferred must be capable of 
producing realistic behavior of the 
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ice sheet over much longer periods 
of time. 

Data from the distant past,  
going back hundreds of thousands 
of years or more, are reconstruc-
tions of the ice sheet’s past. These 
are based on recent measurements, 
such as sonar data about ocean floor 
features as well as shallow sedi-
ment cores, which have been used 
by researchers to provide maps of 
approximate grounding lines—the 
location where the ice sheet tran-
sitions from lying on bedrock to 
hanging over the ocean—at 5,000-
year intervals, from 25,000 years 
ago to the present. Hence, these 
resulting data are in the form of 
time series. 

What Makes This a 
Challenging Statistics 
Problem? 
It should already be clear that this is 
a statistical problem. Multiple data 
sets are involved, after all, and there 
is an interest in inferring parameter 
values and making predictions. Let 
us consider two important scientific 
questions: Given the recent satellite 
observations of the ice sheet and 
the paleo-reconstructed data about 
the ice sheet in the distant past, 
what are the likely values of the ice 
sheet model parameters? What can 
we say about the future of the ice 

sheet based on what we know about  
the past? 

We can translate the first ques-
tion into the language of statistics 
and probability: Given the two data 
sets and what we know about the ice 
sheet model by running it at vari-
ous parameter settings, what is our 
estimate of the probability distribu-
tion of the model parameters? The 
probability distribution captures 
our knowledge about the param-
eters given what we knew about the 
parameters (prior scientific infor-
mation) and what information the 
model runs and the observations 
provide about the parameters. 

This fits naturally into the lan-
guage of Bayesian inference which 
allows us to combine prior informa-
tion with information from the data 
to obtain a posterior distribution of 
the parameters. 

An advantage of this approach is 
that once we have an estimate of the 
posterior probability distribution 
of the model parameters, it can be 
used to answer the second question. 
Essentially, we need only see what 
the ice sheet model projections look 
like at various parameter settings, 
and weight the probability of these 
projections according to the poste-
rior distribution of the parameters. 

To summarize, we have: (1) a 
deterministic computer model that 
describes the ice sheet behavior 

as a function of parameters, but 
only simulations of this model at a 
limited number of parameter set-
tings, and (2) observations of the 
ice sheet, both modern satellite 
ones and paleo-reconstructions of 
the ice sheet from the distant past. 
We need to formulate a statistical 
model that combines all of this 
information, while allowing for 
measurement errors and imperfec-
tions in the computer model.

The formulation of the statistical 
problem may seem pretty standard, 
except for one important twist: For 
Bayesian inference, we need both 
a prior distribution of the param-
eters and a probability model that 
connects the observations with the 
parameters. More specifically, the 
probability model provides a dis-
tribution for the observations—in 
this case, the satellite data and the 
paleo-reconstructed data—at each 
parameter value. This probability 
model is used to obtain a likelihood 
function, and then the rest of it is, 
modulo computational challenges, 
routine Bayesian inference. 

Here, the only connection we 
have between the parameters and 
the observations is via the ice sheet 
model. This poses some challenges: 
(1) The model is deterministic, not 
probabilistic, so it does not pro-
vide a probability model on its own; 
(2) We only see the model output 

Figure 3. Parameters and initial values drive the ice sheet model. Its output describes the behavior of the ice sheet through 
time. Because this is an imperfect model, we account for noise (measurement error) and biases (missing processes in 
the model) to develop a model for the ice sheet observations. The ice sheet model is a “black box”—we only see model 
output for any given set of parameters. Example parameters include those that determine the basal sliding of the ice 
sheet and the sensitivity of the ice sheet to the surrounding ocean water temperatures. Emulation approximates via a 
Gaussian process of how this ice sheet model maps parameters into model output. This approximate model, combined 
with a model for error and bias, is used as a statistical model for the ice sheet data (observations) on the far right.
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at a few (relatively small number 
of ) parameter values; and (3) We 
know that the ice sheet model is an  
imperfect representation of the 
observations. The problem and 
an outline of how we can think 
about solving it are summarized in  
Figure 3. 

What makes the problem chal-
lenging is the fact that the output 
from the model is high-dimensional 
and in the form of spatial or tempo-
ral data. These data are not always 
not easily modeled using Gauss-
ian models. New, computationally 
efficient statistical methodology is, 
therefore, necessary for addressing 
these issues. 

Ice Sheet Model 
Emulation and 
Calibration
How do we solve this problem? We 
can do this in two main stages. 

We first approximate the ice 
sheet model with a statistical 
model; that is, we develop a statis-
tical model that can predict how the 
ice sheet model will behave at new  

parameter values. Think of this 
problem as needing a flexible 
regression-type approach: Given 
many predictors (various param-
eter settings) and corresponding 
model output (responses), the 
model output at new predictors 
(any new parameter setting) can be 
predicted, along with some uncer-
tainty about the model output. This 
kind of uncertainty may be referred 
to as epistemic, meaning that the 
uncertainty arises from our lack of 
knowledge (episteme is Greek for 
“knowledge”) about what the model 
will do, not the fact that there is 
anything random associated with 
the model—it is deterministic. 

This process of approximating 
the model is called emulation. Emu-
lation results in a probability model 
that links the parameters of the ice 
sheet model to the output of the ice 
sheet model. The statistical model 
used for emulation is a Gaussian 
process, a popular model in spatial 
statistics, which is well-suited to 
interpolating functions. 

Consider the simple example 
in Figure 4, where we consider a  

collection of random variables that 
are a function of a single parameter. 
There are, of course, infinite such 
random variables on any given range 
of parameter values—say, between 0 
and 1. A Gaussian process model 
states that any finite collection of 
random variables—for example, the 
six function values between 0 and 
1 (black dots on Figure 4)—has a 
joint normal distribution. Crucially, 
the dependence among the random 
variables decreases as a function of 
the distance between them, mak-
ing two random variables that are 
close to each other (in parameter 
value) more dependent and, thus, 
more alike. 

This suggests how Gaussian 
processes provide a useful approach 
for interpolation: The predicted 
value for a random variable at any 
parameter value, such as a func-
tion value in between the six black 
dots, is more like—more depen-
dent on—values that are close 
to it, and depends less on values 
that are far from it. The precise 
dependence between the random 
variables at various parameter 

Figure 4. Emulation for a toy example: Black dots correspond to input parameters for which the computer model was 
run (left); red dashed lines are interpolations by a Gaussian process—they provide approximate computer model 
output at every parameter value (right). The dotted red curves correspond to uncertainties; there is greater uncertainty 
as we get further from places where we have data. 
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values is controlled by a covari-
ance function that describes how 
covariances change as a func-
tion of distance. Hence, Gauss-
ian processes provide a simple and  
effective way to interpolate a func-
tion, using dependence, without  
having to detemine a specific form 
for the function. 

This idea extends in principle to 
functions of multiple parameters as 
well. Figure 4 (right) shows what a 
Gaussian process interpolator pro-
duces for a toy example with only 
one input parameter. 

We need the model for the obser-
vations to allow for the fact that 
the ice sheet model is not a perfect 
representation of the observations 
of the ice sheet. For this, we add a 
component to the model for errors 
(variability in the observations) and 
sources of systematic biases, called 
a model-data “discrepancy” term. 
Once we put these pieces together, 
we have a model that is potentially 
useful for observations of the ice 
sheet that serves as the probability 
model for the observations given 
the parameters. 

Figure 5 shows how calibration 
works for a toy example where the 
model output is just a scalar and 
the observation consists of only a 
scalar as well.

We can summarize the entire 
approach as follows. 

(1) Generate an ensemble of 
model runs: Run the ice sheet 
model at various parameter  
settings. This provides pairs of 
parameters and model output, just 
as in a regression problem.

(2) Emulate the ice sheet 
model: Use a statistical model 
to approximate the relationship 
between the parameters and the 
model output. This is similar to 
fitting a flexible regression model, 
except the response is multivariate, 
spatial (satellite data), and temporal 
(paleo-reconstructed data). 

(3) Construct a model for the 
observations: This is the fitted 
Gaussian process model + a model 
for errors and biases. We only 
specify the form of the errors and 
biases; their parameters still need 
to be inferred from the data (from  
Step 4, below).

(4) Calibration: Fit the model 
to the observations. This gives us 
a distribution on the parameters, 
while providing some information 
about the errors and biases. 

(5) Project the future of the 
ice sheet: Use the posterior dis-
tribution on the parameters to 
run the model forward and pro-
vide the future of the ice sheet in  
the form of a (“posterior predic-
tive”) distribution. 

Of course, here the model out-
put is quite a bit more complicated 
than a standard regression response 
because the model output is a map 
of the current ice sheet (a spatial 
data set), along with information 
about the ice sheet’s past over time 
(a time series data set). The rela-
tionship between the parameters 
and the model output also can be  
quite complicated. 

There are additional complica-
tions because the data tend not to 
be Gaussian. For example, the ice 
sheet data are modeled as pres-
ence-absence. A spatial generalized  
linear model version of a Gauss-
ian process lets us approximate 

Figure 5. Calibration for a toy example. The blue horizontal line (left) represents a single data point. Calibration 
attempts to find parameter values that are compatible with that observation while taking into account uncertainties 
due to variability represented by the blue dotted lines). Bayesian inference provides the (posterior) distribution on the 
right, which summarizes what we know about the parameter. There are three peaks in this density, corresponding to 
three black dots (left figure) closest to the observations.
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Figure 6. Comparison of actual model output (left) with emulated model output (right). Blue corresponds to “no ice 
sheet” and white corresponds to “ice sheet presence.” The emulator is able to mimic the model run quite well.

the deterministic model with non-
Gaussian output by a probabilistic 
model. The high-dimensionality 
of the data also necessitates some 
dimension-reduction approaches. 
We use a principle components 
analysis-based approach. 

The Gaussian process meth-
odology is remarkably flexible, 
allowing us to emulate the ice sheet 
model quite well. How well can be 
studied by using cross-validation, 
such as by leaving out 10 percent 
of the model runs (parameter set-
tings) when fitting the Gaussian 
process model to the ice sheet 
model runs, then looking at what 
the Gaussian process model pre-
dicts for the parameter settings 
that were left out. If it resembles 
what the model actually outputs 
at those parameter settings, it sug-
gests that emulation is working 
well. Figure 6 illustrates this.

Results 
Using emulation and calibration 
methods to these data and mod-
els makes it possible to obtain 
parameter estimates and resulting 
probability distributions for future 
projections. This is summarized in 

Figure 7, which shows the distribu-
tion of potential sea level rise due to 
the melting of WAIS in 500 years. 
Calibration with both the modern 
and paleo data results in different 
sea level rise projections (red curve, 
“current approach”) when compared 
to projections with calibration using 
only the modern data (dash-dot 
blue curve, “modern obs only”). 

In particular, using both sources 
of data eliminates any possibility of 
there being no sea level rise; that is, 
the value 0 is included in the distri-
bution for the modern data, while 
it is essentially excluded when both 
data are used. 

Our research shows that sea 
level rise is inevitable, although our 
results are relatively conservative 
in stating that it is most likely to 
be around 2 meters. Even 2 meters 
of sea level rise will leave many 
low-lying regions in the world 
completely submerged, and would 
put many more areas—such as the 
Netherlands and the Maldives—at 
high risk of potentially devastating 
storm surge damage. Future storm 
surges are likely to cause much 
greater devastation through flood-
ing. Recently developed models 

that incorporate a few additional 
features of the ice sheet dynamics 
suggest that sea level rise may be 
even more dramatic. 

Caveats 
With all the complicated sources 
of information that have gone into 
this research, we have to be cau-
tious about our conclusions. The ice 
sheet model does not include all the 
processes that affect the ice sheet. 
Uncertainties in the paleo data have 
not been accounted for. The ice 
sheet model will behave differently 
for different initial values; ideally, 
we would incorporate uncertainties 
due to this variation, too. 

Similarly, external forcings—
climate variables that are external 
to the ice sheet—may change over 
time in a number of different ways. 
These also affect how the ice sheet 
behaves. 

Incorporating all these uncer-
tainties is daunting largely because 
of the computational challenges 
involved. Hence, whatever we say 
about the behavior of the ice sheets 
in the future is necessarily imper-
fect. However, the information 
summarized here incorporates  
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cutting-edge physics and multiple 
observation data sets, and pieces 
the information together in a prin-
cipled manner, so in spite of all 
these caveats, we have made prog-
ress. To quote Einstein, “…all  
our science, measured against  
reality, is primitive and childlike—
and yet it is the most precious thing 
we have.”  
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Figure 7. Posterior predictive distribution of projected ice sheet contribution to sea level rise. Adding the paleoclimate 
data results in a much-sharper projection (red curve) than when only modern satellite data are used (blue curve). In 
particular, the possibility of no (zero) sea level rise due to ice volume change is virtually eliminated in the red curve. 
Reproduced from Chang, et al. 
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Consensus has been build-
ing in recent decades 
that human activities are  

contributing to substantial modifi-
cation of the Earth’s climate system, 
leading to growing interest in the 
detection and assessment of poten-
tial biological impacts associated 
with this changing climate. Mul-
tiple approaches have attempted to 
link ecological impacts with climate 
change, but all have been limited, 
more or less, by the difficulty of 
adequately representing ecosystem 
complexities in these analyses. 

That is, to understand how an 
ecosystem will respond to climate 
changes requires accounting for 
the myriad interactions between 
biological and physical processes 
across spatial scales ranging from 
very local to global, and temporal 
scales ranging from within a day 
to decades. 

Ecological Impacts of 
Climate Change: the 
Importance of Temporal 
and Spatial Synchrony 
Christopher K. Wikle

This problem is particularly vis-
ible in ecological processes that 
exhibit synchrony, which can be 
defined to occur when critical 
phases of species’ life cycles are 
closely linked to temporal cycles 
in environmental variables. For 
example, the onset of budding in 
a plant is tied to light availability 
and temperature, and the return  
of migratory waterfowl in the 
spring could be affected by 
weather conditions at various geo- 
graphical locations. 

Such synchronous behavior can 
be exhibited across space as well, 
and the synchrony of one species 
can affect those species that co-
occur in a geographical area. For 
example, spawning groups on 
coral reefs could be affected by 
ocean conditions, and such condi-
tions might alter the competitive  

balances of the various populations 
on the reef. 

As the climate changes, there 
is growing evidence that many of 
the cyclical environmental variables 
involved in these types of synchro-
nous behaviors will also change. 
For instance, temperature cycles 
are driven by the solar cycle, which 
is very predictable, but temperature 
cycles are also affected by shifts in 
global weather patterns, local land 
use changes, and contrasts between 
heating on land versus the sea. Sim-
ilarly, precipitation often occurs in 
cycles, such as with the monsoon 
wet seasons, but the timing of the 
onsets of these wet periods is again a 
function of global weather patterns, 
which can change year-to-year. 

It is not clear whether our 
current ability to project climate  
into the future has the sufficient 
resolution in time and space to 
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adequately characterize the impact 
of these changing cyclical variations 
on ecosystems. 

In the concept of temporal 
synchrony, time cycles in an envi-
ronmental variable influence an 
ecological process. In particular, 
this is illustrated with an important  
ecosystem in the ocean cor-
responding to the life cycle of  
phytoplankton and zooplankton, 
both of which are very important 
components at the lower end of the 
ocean food chain. Phytoplankton 
are a type of algae that, like ter-
restrial plants, need sunlight and 
inorganic nutrients to grow by 
photosynthesis. Zooplankton are 
animals that rely on phytoplankton 

as a food source, and are themselves 
an important food source for ani-
mals higher in the food chain, such 
as fish and marine mammals. 

Seemingly small changes in the 
winds and ocean currents near the 
shore can have a significant impact 
on this ecosystem. Changes in tem-
poral synchrony for this system can 
change with space because the ocean 
currents vary significantly across 
space. The interactions between the 
ocean and this ecosystem also might 
change in the future, and it is dif-
ficult to obtain realistic projections 
of future climate conditions at fine-
scale geographical resolutions. 

Overall, our ability to man-
age ecosystems that show strong 

Box 1. Cartoon depiction of the simple 3-component ocean ecosystem with nutrients, phytoplankton, and zooplankton 
(left). The time series plot (right) shows a simulation of this system across a year. Nutrients are brought to the surface 
of the ocean through upwelling (see Figure 1). With the availability of sunlight, phytoplankton abundance increases 
due to photosynthesis, providing a food source for zooplankton, which deplete the phytoplankton population and 
eventually die off due to lack of a food source. The dead zooplankton and waste drop to the ocean bottom as detritus, 
which provides a source of nutrients for the cycle to continue. 
Author-created figure with two Wikimedia images of phytoplankton and zooplankton: https://commons.wikimedia.org/wiki/
File:Diatoms_through_the_microscope.jpg and https://en.wikipedia.org/wiki/Swarm_behaviour#/media/File:Krill_swarm.jpg.

sensitivity to weather and climate 
variables depends on our ability to 
obtain realistic future projections 
of these variables. It is especially 
important that these projections be 
realistic in their ability to capture 
small geographic changes in sea-
sonal cycles. 

An Example of 
Temporal Synchrony
Phenology is the study of the sea-
sonality or cyclic behavior in plant 
and animal life. Perhaps not sur-
prisingly, the phenology of many 
plant and animal species is tied to 
the solar cycle, but it is also tied 
to temperature, precipitation, and 
habitat conditions, which have 
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less-regular cycles. For example, 
phytoplankton blooms in the 
ocean require photosynthesis, and 
thus, are dependent on the solar 
cycle for light availability. Phy-
toplankton also require nutrients 
to thrive, so for there to be a sub-
stantial increase in phytoplankton 
abundance, there must be nutrients 
available at the same time that light 
is available. Nutrient availability  
is related to surface winds and 
deeper ocean currents. 

Other examples of the connec-
tion between environmental cycles 
and ecological cycles include famil-
iar processes such as when budding 
occurs in the spring and insect lar-
vae transition to adulthood. Often, 
the interaction between species in 
an ecosystem, known as “symbio-
sis,” also depends on these cycles. 
Since there is a predator-prey rela-
tionship between phytoplankton 
and zooplankton in the ocean, for 
instance, if the phytoplankton are 
limited by either the available light 

or nutrients, this will affect the 
zooplankton population because 
they feed upon the phytoplankton. 

There is mounting evidence that 
climate change modification of 
seasonal cycles can have an impact 
on this cross-species symbiosis. A 
well-studied example of this is the 
relative explosion of bark beetles 
that have been decimating western 
North American forests in recent 
years. Historically, very cold winter 
temperatures kept the beetle popu-
lation in check. In recent winters, 
the temperatures have not been 
consistently cold enough to limit 
the growth of the beetle population. 

As another example, consider 
a general predator-prey ecosystem 
setting, where habitat conditions 
vary as a function of an environ-
mental time series covariate that 
changes according to an annual 
cycle. Assume that prey abundance 
is a function of these habitat con-
ditions, but the ability of the prey 
to use this habitat is dependent 

Figure 1. Cartoon depiction of coastal upwelling. Coriolis effects from southerly winds blowing along the coast push 
near-coast surface waters out to sea, and that water is replaced by colder water from below, which also brings 
nutrients up from the bottom. 
Images source: https://commons.wikimedia.org/wiki/File:Upwelling2.jpg.

on a different annual cycle. Since 
the predator is dependent on the 
availability of the prey, seasonality 
is indirectly driving the population 
dynamics of the predator. If this 
seasonality is modified by climate 
change, it could have significant 
effects on the abundance of both 
the prey and the predators. 

There are a number of systems 
for which this could serve as an 
analogy, but we focus our atten-
tion on the ocean ecosystem for 
illustration. 

 In considering the lowest levels 
of the ocean food chain near the 
shore, a simple model for this eco-
system consists of phytoplankton 
(P), zooplankton (Z), and nutri-
ents (N). In this simple ecosystem 
representation, the “habitat” cor-
responds to the available nutrients 
and sunlight, phytoplankton are the 
prey and zooplankton correspond 
to the predators. More specifically, 
as outlined in Box 1, nutrients 
are taken up by phytoplankton,  
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Box 2: A set of differential equations (top) describing the simple 3-component ecosystem model shown in  
Box 1. The variables and parameters in the model are defined in the list (bottom).
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Figure 2. Image from NASA's SeaWiFS instrument that measures ocean color. Ocean color is a good proxy for 
phytoplankton abundance near the surface of the ocean. This image shows the ocean color on October 6, 2002, 
along the northern coast of California. The relative abundance of phytoplankton is given by the color, with blue the 
lowest and red the highest abundance. 
Image Source: NASA SeaWiFS Ocean Color.

phytoplankton are eaten by zoo-
plankton, zooplankton losses due 
to metabolic processes are then 
available as nutrients, and the cycle 
continues.

Although this simple model 
illustrates predator-prey and nutri-
ent dependence in the ecosystem, it 
requires a mechanism to transport 
nutrients so they are available to be 
consumed by phytoplankton. For 
example, there is often a vertical 
transport of water toward the sur-
face in coastal environments known 
as “upwelling” (see Figure 1). 

Upwelling transports nutrients 
toward the surface, where they are 
available for phytoplankton photo-
synthesis. Upwelling is a physical 
process in the ocean driven by near 
surface winds, so changes in wind 

conditions on short-term, seasonal, 
inter-annual, and climatological 
time scales will affect it. This is 
accounted for in the very simple 
model of the ocean ecosystem out-
lined in Box 2 through a term that 
considers seasonal changes of the 
ocean “mixed layer.” 

The mixed layer of the ocean 
is a shallow layer in which turbu-
lence caused by surface winds and 
waves mix the water column so 
the density of the water is about 
the same throughout the layer. The 
mixing leads to the loss of a por-
tion of the available phytoplankton 
near the surface, but brings much-
needed additional nutrients from 
below for phytoplankton growth,  
assuming light availability for 
photosynthesis (this is a highly 

idealized representation of the 
real-world ecosystem). 

Because of seasonal changes in 
near-surface winds and larger-scale 
ocean currents, the mixed layer 
changes throughout a season. In 
addition, these physical processes 
vary quite substantially over small 
geographical areas. 

For example, Figure 2 shows 
an image along the northern coast 
of California obtained from the 
NASA SeaWiFS instrument that 
measures ocean color. Ocean color 
is a good proxy for phytoplankton 
abundance in the near surface levels 
of the ocean. It is clear from this 
image that there is substantial varia-
tion in phytoplankton in this region.

Consider the effects on this 
ocean ecosystem from the two  
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Figure 4. Panel (a) Simulation of NPZ model in Box 2 in which the seasonal upwelling is given by the blue solid line 
in Figure 3. Panel (b) shows the same simulation except with seasonal upwelling, given by the red dashed line in 
Figure 3. In both cases, phytoplankton is indicated by the red curve, zooplankton by the blue curve, and nutrients by 
the green curve. Both the intensity and the timing of the peaks in phytoplankton and zooplankton are affected by the 
relatively small differences in the seasonal upwelling.

Figure 3. Time series showing seasonal ocean upwelling for the two simulations in Figure 4. These curves were derived 
from a regression analysis on the daily upwelling index at (60N, 146W), as available from NOAA’s Pacific Fisheries 
Environmental Laboratory (www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_download.
html). The Case (1) (blue solid) curve corresponds to the period from January 1, 1967–December 31, 1991, and the 
Case (2) (red dashed) curve corresponds to the period from January 1, 1992–December 31, 2016. Although these 
time series seem fairly similar, their impact on the simple ecological system described in Box 2 can be substantial 
(see Figure 4).
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different seasonal time series of 
ocean upwelling, shown in Figure 3.  
Figure 4a shows the nutrient,  
phytoplankton, and zooplankton 
time series over a year from the  
integration of the model in Box 
2, where the seasonal upwelling 
is specified by the blue solid-line 
time series in Figure 3. Figure 4b 
shows the same simulation, but the  
seasonal upwelling is given by the 
red-dashed seasonal time series 
given in Figure 3. 

There are clear differences 
between these two cases, with 
a later and more-intense phyto-
plankton peak in case 1. The differ-
ence between these two scenarios 

is also evident for the zooplankton  
population shown in Figure 4, with 
later and a more-intense initial peak 
in case 1. These marked differences 
are perhaps somewhat surprising, 
given that the seasonal variation 
between the upwelling components 
in these two cases does not seem that 
substantial. Yet, differences such 
as these in zooplankton response 
could have important effects at 
the higher levels of the ocean food 
chain, because zooplankton are a 
primary food source for many fish 
and marine mammals.

A reasonable question in 
response to the simple simula-
tion in Figure 4 is whether such 

Figure 5. The first three top panels show (left to right) the combined annual and semiannual components, annual 
components, and semiannual components, for January 1, 1967–December 31, 1991 (blue), and the period from 
January 1, 1992–December 31, 2016 (dashed red) for the ocean upwelling index at (60N, 146W). The bottom 
panels show the same plots, but for a station at (54N, 137W). The solid black lines in the right panels show the 
differences between the total seasonality (annual + semiannual cycles) for the two time periods (first period–second 
period); that is, the difference between the solid blue and dashed red lines in the left-most panels. This shows that 
the main components of the seasonal cycle can change with time and vary substantially at nearby spatial locations.

changes actually occur in real-
world time series. Indeed, they do. 
The plots in Figure 3 correspond 
to a scaled version of the first two 
harmonics from the daily upwell-
ing index for a location in the east-
ern Pacific Ocean at (60N, 146W) 
for the periods January 1, 1967– 
December 31, 1991, and January 1, 
1992–December 31, 2016, respec-
tively. This plot shows that there is a 
small, but fairly distinct, difference 
in the seasonal variation between 
the two time-periods. 

This can be seen more clearly 
in the first three panels in the top 
row of Figure 5, which shows 
the first two seasonal harmonic  
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components for these ocean upwell-
ing index series. An annual seasonal 
harmonic corresponds to fitting  
a sinusoid with a period of one year 
to the time series, estimating the 
phase and amplitude of the sinu-
soid. The second (semi-annual) 
harmonic corresponds to fitting a 
sinusoid with a period of one-half 
year to the time series, again esti-
mating its amplitude and phase. 

It is clear that, in this case, 
there is no substantial change in 
the phase of the annual and semi-
annual cycles for each time series, 
but there is a large difference in 
the respective amplitudes. This dif-
ference in amplitudes lead to the 
noticeable differences between the 
seasonal cycles of the time series, 
as shown in the last panel in the 
top row of Figure 5. In this case, 
the seasonal cycle is just the sum  
of the fitted annual and semi-
annual harmonics.

In addition, note that this sea-
sonal cycle in the upwelling time 
series changes as a function of 
geographic location. For example, 
the seasonal cycles for a “nearby” 
location (54N, 137W), given in the  
bottom row of Figure 5, show rela-
tively little difference between the 
early and later time periods. This 
leads us to believe that the spatial 
variation in the change in seasonal-
ity could be important ecologically. 

As we have shown, fairly small 
differences in the seasonal abun-
dance in one species can have 
a somewhat dramatic impact on 
interacting species. This sug-
gests that regional differences in  
temporal synchrony could lead 
to large differences in the spatial  
distribution of the relevant ecologi-
cal variables. 

This notion of geographical dif-
ferences in temporal synchrony is 
related to the concept of “spatial 
synchrony” in the literature. 

Spatial Synchrony
It has long been known that 
ecological populations that are geo-
graphically separated can change 
together, which is called “spa-
tial synchrony.” Such synchronies 
can occur due to dispersal among 
meta-populations; dependence on a  
common covariate, such as a 
weather variable; or interactions 
with other nearby populations. 
This suggests that if cycles in the 
environmental covariates men-
tioned in the previous section vary  
non-homogeneously across a geo-
graphic landscape, it could affect 
spatial synchrony. 

There is evidence of such climate 
change induced variations in spa-
tial synchrony in the literature. For 
example, bark beetle infestations in 
the western U.S., the distribution 
of migratory breeding birds, the 
gypsy moth invasion in the eastern 
U.S., and the ecosystem dynam-
ics described above have all been 
shown to exhibit this effect. 

Figure 5 shows the different 
time patterns in the first two har-
monics between a location at (60N, 
146W) and one at (54N, 137W). 
More generally, it is known that 
spatial differences of the first and 
second harmonic phase and ampli-
tude in atmospheric temperature 
and precipitation fields exhibit  
distinct large-scale geographic dif-
ferences, due to the difference in 
heating rates between land and 
sea. It is expected that these pat-
terns are also present in the ocean 
and that they may be altered in  
a  human-induced c l imate  
change environment.

Consider the satellite image off 
the coast of California in Figure 
2. The abrupt transition in ocean 
color across small spatial regions 
suggests that trying to under-
stand ecological impacts due to 
spatial synchrony in a changing 
environment will require climate  
projections that capture the seasonal 

cycle in reasonable temporal detail 
and are at a high spatial resolution. 
Indeed, one of the mechanisms of 
spatial synchrony is the movement 
of a population from one region  
to another. 

For example, it is well known 
that the horizontal transport of 
phytoplankton, zooplankton, and 
nutrients in the ocean ecosystem is 
important to maintaining healthy 
populations. Thus, it is essential to 
capture the time and spatial scales 
of this process realistically to obtain 
future projections of the ocean  
ecosystem that are useful to manag-
ers and policy makers. Currently, 
this is done through projecting 
output from fairly low-resolution 
global climate simulation models 
to smaller scales, a process known 
as “downscaling.” 

Challenges of 
Downscaling
The current generation of global  
climate models (GCMs) used to 
project future climate under dif-
ferent greenhouse gas emission 
scenarios cannot be evaluated at 
resolutions that can accommodate 
the spatial and temporal scales  
adequately to project potential 
ecological impacts discussed above. 
That is, the ecological response to 
large-scale climate change must 
take into account local scale and 
site-specific features. 

To obtain fine-scale informa-
tion, the GCM output is typically 
downscaled either dynamically 
or statistically. Dynamic down-
scaling is performed by linking a 
higher-resolution numerical simu-
lation model, typically applicable 
at some regional scale, with the 
global-scale GCM. In contrast, 
statistical downscaling calibrates a 
GCM run over a historical period 
with historical small spatial-scale 
observations, such as those that 
come from historical weather  
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stations. Typically, this calibration 
is a type of regression model. This 
fitted model relationship is then 
assumed to hold for a GCM run 
under different conditions. 

In both cases, the downscal-
ing relationship is used to obtain 
higher-resolution projections 
from GCMs run in future climate 
change scenarios. The fundamen-
tal assumption in downscaling is 
that the inherent relationships and 
biases that drive GCM models and 
downscaling procedures are station-
ary—that is, the bias corrections 
and calibrations derived under his-
torical conditions are appropriate 
for future scenarios. It is not always 
clear that this assumption is valid.

Only recently have comprehen-
sive studies attempted to quantify 
the uncertainty associated with 
downscaling methods. It is widely 
accepted that these procedures are 
likely to be better at projecting 
temperature than precipitation and 
are better at capturing climatologi-
cal averages than extremes. 

Many studies have demon-
strated spatial biases among  
various regional-scale climate 
model outputs. Recent studies in 
the ecological literature have been 
somewhat conflicted about the 
ability of these models to accom-
modate ecologically realistic spatial 
structure at fine geographic reso-
lutions. In particular, the ability 
of these models to project realis-
tic ecological behavior varies by 
region, season, type of method, and 
source of validation data. 

As stated in Bucklin, et al. 
(2013), the “uncertainty associ-
ated with alternative downscaling 
methods may rival that of other, 
more widely appreciated sources of 
variation, such as the general circu-
lation model or emission scenario 
with which future climate projec-
tions are created.” 

Th i s  i s  d i s conce r t ing , 
since it suggests that if these  

models cannot capture the realis-
tic spatial distribution of temporal 
environmental variables such as  
temperature, precipitation, and 
upwelling adequately, then the 
projected ecological impacts on 
processes subject to temporal and 
spatial synchrony are likely to be 
too uncertain to be useful for man-
agers interested in mitigating the 
effects of climate change.

Discussion
The yearly time course of many 
ecological processes is shown to 
be tied closely to cycles in envi-
ronmental variables and that the 
cycles in one component of a com-
plex ecosystem can directly affect 
another component, such as with a 
predator-prey system. If the cycles 
in the environmental variables are 
altered due to climate change—
and there is evidence to suggest 
that these changes are indeed hap-
pening—then it can have serious 
effects on the ecosystem. 

In some cases, cycles in envi-
ronmental and ecological variables 
change quite substantially over 
fairly small geographical scales, 

so, to project potential impacts of 
climate change, climate simulation 
models must represent seasonality 
accurately over very small scales—
which, unfortunately, is beyond the 
capacity of the current generation 
of global climate models. Attempts 
to mitigate this through the use  
of downscaling techniques prob-
ably cannot yet give realistic  
fine-scale spatial representations of 
seasonal variability. 

Many authors caution that 
we must be aware that the myr-
iad interactions across scales and  
species, and between physical, 
chemical, and biological systems, 
makes the study of ecological 
impacts due to climate change a 
challenging problem. Adequately 
quantifying uncertainty across 
all of these factors is still a mov-
ing target, and will continue to 
be the subject of research in the 
future. The more-specific problem 
of capturing spatial and temporal 
variation in temporal and spatial 
synchrony of ecological processes 
has been given relatively little 
attention, and is a fruitful area of 
research for statisticians. 

Phytoplankton is the base of several aquatic food webs. In a balanced ecosystem, they provide 
food for a wide range of sea creatures including whales, shrimp, snails, and jellyfish.
Photo courtesy of NOAA.
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Hierarchical statistical models 
have been shown to be effective 
for similar problems because of 
their ability to easily account for 
uncertainties in different sources 
of data, accommodate different 
data resolutions, and build com-
plex multivariate spatio-temporal 
dependencies. These models are 
seeing increasing use at the inter-
face of climate and statistics and at 
the interface of ecology and statis-
tics. It is only natural that they will 
provide a framework to consider 
the complex interaction necessary 
to model climate changes to spatial 
and temporal synchrony for com-
plex ecosystems. 

Indeed, understanding syn-
chrony of ecological processes under 
historical climate conditions can 

provide insight into potential 
impacts of future climate change. 
In this regard, new developments 
in downscaling and higher resolu-
tion GCMs that resolve cloud 
dynamics will surely improve the 
ability of the models to capture 
realistic local behavior. The output 
of such studies will provide essen-
tial information for mangers and 
policy makers who must attempt 
to mitigate the unwanted effects of 
climate change.  
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Global climate change 
affects human health most 
notably by increasing the 

frequency and intensity of dan-
gerous heat waves, wildfires, and 
hurricanes. In addition to extreme 
weather events, climate change 
can lead to a myriad of persistent 
environmental changes that affect 
public health. One important area 
of climate science research is to 
understand health risks associated 
with the changing environment. 

Changes in local weather pat-
terns can create favorable condi-
tions for higher concentration of 
ground-level ozone, an air pol-
lutant linked to asthma exacerba-
tion. After heavy rainfalls, drinking 
water quality can decrease due to 
contaminated runoffs, especially in 
rural settings. Ecological changes in 

Projecting Health 
Impacts of Climate 
Change: Embracing  
an Uncertain Future
Howard H. Chang, Stefanie Ebelt Sarnat, and Yang Liu

vector habitats can encourage the 
transmission of infectious diseases 
such as dengue and malaria. 

Health impact assessment 
refers to the analytic framework 
for evaluating how a policy or pro-
gram affects population health. It 
is frequently applied in climate and 
public health research to quan-
tify future health and economic 
burdens attributable to various 
consequences of climate change. 
For example, the World Health 
Organization estimated that cli-
mate change is expected to cause 
approximately 250,000 additional 
deaths globally annually from 2030 
to 2050. This estimate includes 
deaths due to heat, flooding, diar-
rheal diseases, malnutrition, and 
infectious diseases that can vary 
across age groups and world regions. 

Quantitative measures of future 
health impacts can play an impor-
tant role in communicating the 
significance of climate change. 
Health impact assessment can also 
be conducted at the national or local 
level to provide crucial informa-
tion for decision-makers who are 
developing long-term strategies for 
mitigating environmental risks and 
improving disaster preparedness. 

Performing health impact 
assessment entails the integration of 
various data. For projecting future 
climate-related health impacts, 
analyses require three sources of 
information: (1) health effects of 
environmental exposures, (2) pro-
jections of future exposures, and 
(3) distributions of exposures and 
effects in the future population. 
However, each information source 
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is subject to uncertainty because of 
data availability and assumptions 
made for the future. 

The use of the word projection, 
instead of prediction or forecast, 
explicitly reflects the high degree 
of uncertainty in these estimates. 
Because uncertainty in projec-
tion is unavoidable, one important 
aspect for health impact analysis 
is the need to consider, quantify, 
and incorporate various sources of 
uncertainty in the final estimate. 

This case study projects the 
number of emergency department 
(ED) visits due to future heat waves 
in Atlanta, Georgia. The analysis 
consists of three steps: estimating 
the association between heat waves 
and ED visits for all internal causes 
using historical data from 1992 
to 2012; estimating future heat 
wave occurrences for 2055–2059 
using climate model outputs; and  
estimating future ED visits attrib-
utable to heat waves. The case study 
describes and illustrates how sta-
tistical modeling contributes to 
various components of performing 
health impact projections. 

Estimating Health 
Effects of Heat Waves
Estimates of large-scale health 
effects of environmental expo-
sures are typically obtained from 
population-based epidemiologic  
studies. These studies link databases 
for adverse health outcomes (such 
as records of death certificates or 
medical records) to measurements 
of environmental risks (tempera-
ture, water quality, or air pollution). 
Environmental health studies 
are predominantly observational 
because exposures are seldom ran-
domly assigned to the population. 

Moreover, risks between com-
mon adverse health outcomes and 
exposures are often small, despite 
having considerable public health 
consequences thanks to their ubiq-
uitous exposures. Various study 

designs and statistical methods 
have been developed specifically 
for population-based environmen-
tal epidemiology. 

To estimate the association 
between heat waves and ED vis-
its, we first obtained the following 
health and exposure data sets: daily 
counts of ED visits for all internal 
causes from local hospitals and the 
Georgia Hospital Association, and 
daily meteorology data from the 
National Climatic Data Center 
collected at Hartsfield Interna-
tional Airport. 

A heat wave is typically char-
acterized by a period of sustained 
hotter temperature compared to 
historical records. To reflect this 
prolonged exposure to extreme heat, 
we defined heat waves as periods 
of ≥2 consecutive days with daily 
maximum temperature beyond the 
98th percentiles, calculated using 
records from 1945 to 2012. Heat 
wave days were indicated as a 1 and 
non-heat wave days were given a 0; 
the first day of a heat wave period 
was classified as a non-heat wave 
day so the research would capture 
only the health effect of sustained 
heat exposure. Overall, the data set 
contained about 19 million ED vis-
its and 91 heat wave days. 

Figure 1 shows time series plots 
of daily maximum temperature and 
ED visits in the 20-county Atlanta 
metropolitan area for 2001 to 2010. 
Note that daily ED visit shows an 
overall increasing trend due to 
population growth and a seasonal 
trend, with higher ED visits dur-
ing the winter. This is probably due 
to increased respiratory infections 
during colder months. Particularly, 
the two spikes observed in the  
winter of 2003–2004 and the winter 
of 2009 may correspond to, respec-
tively, the emergence of the Fujian 
H3N2 subtype of the influenza A 
virus and the 2009 H1N1 influenza 
pandemic. However, heat waves 
occur only during the summer. 

Because of this seasonal dif-
ference in ED visits, a simple  
regression model that treats the 
daily ED visit count as the outcome 
variable and our exposure of interest 
(heat wave vs. non-heat wave days) 
as the predictor results in an over-
all protective effect of heat waves 
(about 28% fewer ED visits on heat  
wave days).

To estimate daily changes in ED 
visits that are attributable only to 
heat waves (i.e., not just due to the 
summer-versus-winter difference), 
the model has to include variables, 
known as confounders, that are 
causally related to ED visits and 
also independently associated with 
heat waves. Figure 2 illustrates rela-
tionships between outcome (Y), 
exposure (X), and confounder (C). 

For a variable to be a confounder, 
it has to be a risk factor for the 
outcome, be associated with the 
exposure, and not be in the causal 
pathway between the exposure and 
the outcome. Therefore, a typical 
health effect model for heat waves 
will include variables such as mete-
orology (continuous temperature 
and humidity) and time trends 
(long-term and seasonal). 

After adjusting for confounder 
variables flexibly in the model 
to account for their non-linear  
associations with ED visits, there 
is a relative risk of 1.020 with a 
95% confidence interval of (1.013, 
1.028). Relative risk is a commonly 
used measure in epidemiology to 
describe how a binary disease out-
come varies by a risk factor. It is 
defined as the ratio of disease rates 
between the exposed and the unex-
posed group, where a relative risk 
greater (less) than 1 indicates the 
risk factor positively (negatively) 
affects disease occurrence. 

In this analysis, a relative risk 
of 1.020 implies that there is an 
estimated 2% increase in ED visits 
during heat wave days compared to 
non-heat wave days with the same 
temperature, humidity, and season. 
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Figure 1. Time series plots of daily emergency department visits for all internal causes in 20-county Atlanta metropolitan 
area and daily maximum temperature, 2001–2010. The 98th percentile of daily maximum temperature threshold for 
the heat wave definition is indicated by the red line.

The modeling decisions made 
in this case study include first 
defining extreme temperature as 
the 98th percentile of historical 
records. Using the 99th percentile 
is another possibility, but will result 
in a reduction of statistical power 

due to a reduced number of heat 
waves identified. Heat waves use 
daily maximum temperature; other 
temperature metrics—such as min-
imum temperature, which reflects 
night-time temperature, and appar-
ent temperature, which reflects 

human discomfort—may create 
different risks. Heat waves may 
also have a delayed effect, driven by 
physiological responses to heat or 
healthcare-seeking behaviors. 

This case study found a weaker 
increase in ED visits (relative risk of 

Figure 2. Illustration of relations between outcome (Y), exposure (X), and confounder (C). 
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1.012) when exposure was defined 
as the previous day being a heat 
wave day, compared to the previous 
day not being a heat wave day. 

Finally, the health outcome 
represents an aggregated measure 
of ED visit morbidity (e.g., across 
all ages and outcomes). Audiences 
for health impact assessments are 
often interested in identifying sub- 
populations that are particularly 
vulnerable to the negative con-
sequences of climate change. For 
example, children with asthma 
may be more sensitive to increas-
ing air pollution concentration, and 
individuals who spend more time  
outdoor may be more at risk for 
heat stroke. 

Projecting Future 
Heat Waves
Projections of future meteorology 
are accomplished mainly through 
computationally expensive regional 
or global climate models. Climate 
models are three-dimensional 
mathematical representations of the 
Earth’s climate and reflect state-of-
the-art scientific knowledge of the 
physical and chemical processes. 
Climate projections have to account 
for both the current climate and fac-
tors that affect the climate system. 
The International Panel on Climate 
Change (IPCC) has developed var-
ious scenarios to represent a range 
of future greenhouse gas emissions. 
The most-recent scenarios are 
known as Representative Concen-
tration Pathways (RCPs). 

These scenarios are often tied 
to additional assumptions about 
future technology progress, regu-
latory policies, and coordination 
across countries. Because of the 
complexity in climate modeling, 
a global community of scientists 
has developed different modeling 
strategies with regard to the Earth’s 
atmosphere, ocean, land surface, 
and ice, and their interactions. The 

climate scenarios and the choice 
of climate model constitute an 
important source of variability in 
health projection. 

Climate model simulations  
typically include both histori-
cal (hindcast) and future periods. 
Because climate models are deter-
ministic computer models, their 
outputs can exhibit complex biases 
over space and time when com-
pared to historical measurements. 
Biases can arise from insufficient 
characterization of the climate sys-
tem with mathematical equations 
and discretization of the continu-
ous environmental field in space 
and time. 

For health impact projects, two 
common approaches are used to 
address bias in climate model out-
puts. The first approach evaluates 
health risks using both the hind-
cast and the future periods. Health 
impacts attributed to climate 
change are then calculated by taking 
the difference between these two 
periods, assuming the bias cancels 
out. However, this approach forces 
the hindcast period to serve as the 
reference period. 

More recently, methods have 
been developed to bias-correct 
climate model outputs. Bias- 
correction is accomplished by first 
modeling the discrepancy between 
observations and hindcast simula-
tions, and then assuming this bias 
can be extrapolated to future peri-
ods. While bias correction offers a 
more-flexible framework for evalu-
ating future climates, it makes the 
assumption that the bias observed 
during the historical period will 
remain the same in the future 
period. This is a particular concern 
if bias correction is done one vari-
able at a time, ignoring complex 
interactions between variables in a 
dynamic climate system. 

Climate models perform simu-
lations over a three-dimensional 
grid over the Earth’s surface. This 

heat wave and ED visit case study 
used high-resolution regional 
climate model outputs from the 
Weather Research and Forecasting 
model (WRF) 3.2.1. It involved 
running the WRF model for a 
historical period 2001–2004 and 
a future period of 2055–2059 at 
a spatial grid resolution of 12 km 
over the continental U.S. We exam-
ined a low greenhouse gas emission 
scenario (RCP 4.5) and a high-
emission scenario (RCP 8.5). The 
regional WRF outputs were based 
on inputs from the Community 
Earth System Model version 1.0 
(CESM 1.0) climate model, which 
was run globally with a cruder spa-
tial resolution. 

We first extracted the single grid 
cell from WRF that includes the 
weather station in Atlanta used to 
conduct the previous health effect 
analysis. Figure 3 shows the quan-
tile functions of daily maximum 
temperature (March–October) 
during the historical period 2001–
2004 for observations and climate 
model simulations. Even though 
the day-to-day correlation is only 
moderate (Pearson’s correlation of 
0.63), the climate model is able to 
capture the overall distribution of 
daily maximum temperature quite 
well, with a small positive bias at 
the extremes. 

One bias-correction method—
quantile-mapping—tries to resolve 
the difference in quantile functions. 
Working with quantile function 
has the advantage of not having to 
assume a distribution for maximum 
temperature (e.g., normal or log-
normal). We first estimated the bias 
across quantile levels between daily 
maximum temperature observa-
tions and model simulations during 
2001–2004, and then calculated the 
number of heat wave days for two 
RCP scenarios using bias-corrected 
future projections for 2055–2059 
(Figure 4). 
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Figure 3. Quantile functions of daily maximum temperature (March–October) in Atlanta, Georgia, from 2001  
and 2004. 

Figure 4. Projected number of heat wave days in Atlanta, Georgia, for the period 2055 to 2059 under two  
Representative Concentration Pathways (RCP). The histogram represents uncertainty in the projection and the blue  
line indicates projection by climate model outputs without bias correction. 
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Here, the histogram reflects  
statistical uncertainty about the  
projection and the blue line indi-
cates projection by climate model 
outputs without bias correction. 
Deterministic projections are 
higher than the mean of bias-
corrected projections, probably 
because model outputs show posi-
tive bias at higher temperatures 
during the hindcast period. 

Projecting Future 
Health Impacts
Several important characteristics of 
the future population will determine 
the projected number of future ED 
visits due to heat waves. Because the 
estimated risk association between 
ED visits and heat waves is a relative 
rate, the health burden depends on 
the baseline number of ED visits. 
This baseline number is determined 
by both the at-risk population size 
and the baseline risk. 

Given its historical trend, the 
Atlanta population is likely to be 
larger in the 2050s compared to 
the current day. Population change 
is driven by migration, life expec-
tancy, and fertility; these vari-
ables are interrelated to economic  
development, urbanization, and 
anthropogenic emission. 

The future baseline ED visit rate 
also may change in response to the 
overall health of the population, as 
well as changes in healthcare access. 
Similar to IPCC’s emission scenar-
ios, a set of five scenarios for future 
populations known as the Shared 
Socioeconomic Pathways (SSP) has 
been developed. Again, a commu-
nity of demography and economy 
modelers has been involved to  
provide projections of future  
country-specific population size, 
age and sex composition, and gross 
domestic product. 

Another consideration for pro-
jecting health impacts is whether 
the estimated heat wave and ED 
visit association will change in 
the future. For instance, adapta-
tion describes how we can reduce 
our susceptibility to environmental 
changes and, thus, reduce future 
health risks. 

Adaptation can be accomplished 
via various routes. In response to 
heat waves, local authorities may 
develop more-effective warning 
systems or provide more cooling 
centers. Increasing prevalence of air 
conditioning may also reduce the 
risk of exposure. 

Finally, there is recent epide-
miologic evidence that over the last 
few decades, associations between 

Emission Pathway
SSP Narrative % Population Change RCP 4.5 RCP 8.5

SSP 1: Sustainability 24.8 34 – 226 281 – 668
SSP 2: Middle of the Road 23.0 33 – 222 277 – 653 
SSP 3: Regional Rivalry 9.1 29 – 201 247 – 584
SSP 4: Inequality – Road Divided 18.5 32 – 218 268 – 636
SSP 5: Fossil-fuel Development 37.4 37 – 257 310 – 740 

Table 1—Projection Intervals of Annual Emergency Department Visits for All 
Internal Causes Attributable to Heat Waves in Atlanta from 2055–2059

Projections were conducted under five different Shared Socioeconomic Pathways (SSPs) and two Repre-
sentative Concentration Pathways (RCPs). 

high temperature and mortality  
have decreased. 

We obtained population pro-
jections for the U.S. for five SSP 
scenarios from the National Center 
for Atmospheric Research using the 
Community Demographic Model 
and assumed Atlanta’s population 
will increase proportional as the 
U.S. We assumed the baseline ED 
visit rates to be the same as the 
most recent five-year period (2,630 
visits per day), and the relative risk 
for heat wave to be unchanged (i.e.  
no adaptation). 

To incorporate uncertainties 
from both health effect estimates 
and projected future heat waves, 
we conducted a Monte Carlo sim-
ulation experiment by repeatedly 
simulating realizations using the 
point estimates of the relative risk 
and its standard error and poste-
rior samples of the number of heat 
waves during 2055–2059. Table 1 
gives the projected number of future 
ED visits per year attributable  
to heat waves under different 
combinations of population and  
emission scenarios. 

The projection interval repre-
sents the 2.5% and 97.5% quantiles 
of the simulation. Each interval 
reflects uncertainty in the health 
effects and in the number of pro-
jected future heat wave days, while 
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uncertainty in emission and popu-
lation changes is described by the 
combination of different SSP and 
RCP scenarios. It should be noted 
that sometimes not all combina-
tions of RCP and SSP are realistic 
scenarios for a given population.

In this case study, differences 
between the two future RCP 
emission scenarios appear to have 
a larger impact on projection 
uncertainty than future popula-
tion changes under different SSPs. 
Specifically, projection intervals are 
similar across different SSP narra-
tives under either RCP 4.5 or RCP 
8.5. In contrast, the lower inter-
val bound under RCP 8.5 within 
each SSP narrative is consistently 
higher than the upper interval 
bound under RCP 4.5.

Conclusions
Climate change research is highly 
interdisciplinary, bringing together 
tremendous amounts of data,  
theory, and modeling efforts to 
provide timely knowledge for one 
of the most-pressing issues of our 
time. Uncertainty in projecting  
the future climate and its conse-
quences is well-recognized and 
will remain an integral part of the 
scientific endeavor. 

Uncertainty arises from future 
storylines (e.g., emission and socio-
economic scenarios, adaption) and 
data availability and quality (e.g., 

heterogeneous health risks, stan-
dard error associated with health 
risk estimates, bias in climate model 
outputs). Uncertainty analysis 
should be viewed as an integral 
component of projection analysis, 
where statistical modeling tech-
niques and probabilistic reasoning 
can help ensure these findings are 
informative, accurate, and repro-
ducible.  
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The American Statisti-
cal Association (ASA) 
Undergraduate Guidelines  

Workgroup in the Curriculum 
Guidelines for Undergraduate  
Programs in Statistical Science 
emphasizes the importance of 
study design as an essential skill for 
undergraduate programs in statis-
tics (ASA, 2014). The guidelines 
also stress communication skills, 
along with teamwork and collabora-
tion, as vital elements for statistical 
practice. In addition, the Guidelines 
for Assessment and Instruction in 
Statistics Education (GAISE)  
College Report notes the impor-
tance of concepts like bias and causal  
inference in study design (ASA, 
2016). To achieve these goals, the 
GAISE College Report includes 
several recommendations, one 
of which reiterates the impor-
tance of fostering active learning  
through discussions.

This article describes an activ-
ity that is appropriate for students 
in introductory and intermediate  
statistics courses to practice 
interpreting research results and  
scrutinizing the design and analy-
sis of studies. The activity includes 
a component of group work to 

Using a “Study of 
Studies” to Help 
Statistics Students Assess 
Research Findings
Azka Javaid, Xiaofei Wang, and Nicholas J. Horton

[Taking a Chance in the Classroom]
Dalene Stangl and Mine Çetinkaya-Rundel
Column Editors

improve students’ communication 
and collaboration skills. 

Traditional textbooks used in 
the introductory statistics curricu-
lum stress the importance of survey 
design. As an example, the fourth 
edition of Intro Stats (IS) reinforces 
concepts relevant to experimental 
design, including bias, randomiza-
tion and sample size in Chapter 
12 (“Sample Surveys”) (De Veaux, 
Velleman, and Bock, 2013).

Additional sample design 
concepts, such as observational 
studies, control groups, statisti-
cal significance, and confounding 
variables, are presented in Chapter 
13 (“Experiments and Observa-
tional Studies”) of Intro Stats. Other 
textbooks (e.g., OpenIntro Statistics, 
2015) follow a similar approach.

How can textbook readings be 
reinforced in a class? This activ-
ity can help students explore 
aspects of design, assess research 
findings in published papers,  
and critique representations and 
interpretations of original research.

The Activity
This activity is based on a “Study 
of Studies” column in the Atlantic 
magazine. Each “Study of Stud-
ies” analyzes a different topic 

using published research articles. 
Table 1 lists the name, author, 
and date for all the past published  
“Studies.” For this activity, we 
used one of the “Study of Stud-
ies” articles —“Diner Beware: 
How restaurants trick you into 
eating less and spending more” 
(http://theatln.tc/2yBKLGk) (Lam, 
2015). Author Bourree Lam  
analyzes how restaurants manipu-
late seating arrangement, server 
posture, plate color and size, and 
music to attract more customers  
and revenue. 

Implementation
The students received copies of 
the one-page “Diner Beware” col-
umn, which was read aloud by the 
class. Next, they were split into 
groups of two to four students 
and each received a copy of one 
of the 12 research articles cited 
in “Diner Beware.” The research 
articles ranged in length from  
4 to 28 pages, with an average of 
10 pages.

The students were asked to skim 
the research article and, as a group, 
summarize the original research 
study design (i.e., describe the study’s 
sample design, determine whether 
the study was randomized or  
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Title Author Publication Date
You Can Be Too Beautiful James Hamblin March 2013

The Queen Bee’s Guide to Parenting Lindsey Abrams April 2013

Various Ways You Might Accidentally Get Drunk James Hamblin May 2013

The Unexpected Ways a Fetus is Shaped by a Mother’s Environment Lindsey Abrams June 2013

The Worst Time to Have Surgery James Hamblin July/August 2013

Is There Really Such a Thing as a ‘Workaholic’? Jordan Weissmann September 2013

Violence Is Contagious Rebecca J. Rosen October 2013

Why You Look Like Your Dog Sarah Yager November 2013

How Women Change Men Sarah Yager December 2013

Who Cheats—and Why Julie Beck January/February 2014

Why You Can’t Keep a Secret Sarah Yager March 2014

The Optimal Office Julie Beck April 2014

Our Gullible Brains Sarah Yager May 2014

Funny or Die Julie Beck June 2014

What is Art? Matthew Hutson July/August 2014

How to Look Smart Julie Beck September 2014

Status Anxiety Matthew Hutson October 2014

Keeping the Faith Emma Green November 2014

Faking It Julie Beck December 2014

You Are Just Like Me! Matthew Hutson January/February 2015

The Secret of Superstition Matthew Hutson March 2015

Diner Beware Bourree Lam April 2015

When Emotional Intelligence Goes Wrong Andrew Giambrone May 2015

The Hypocrisy of Professional Ethicists Emma Green June 2015

Palm Reading Is Real? Eleanor Smith July/August 2015

A Scientific Look at Bad Science Bourree Lam September 2015

Why We Compete Matthew Hutson October 2015

The Strange Origins of Urban Legends Matthew Hutson November 2015

Why You Bought That Ugly Sweater Eleanor Smith December 2015

A Strategic Guide to Swearing Stephanie Hayes January/February 2016

People Are Pretty Bad At Reading Faces Naomi Sharp March 2016

CEOs Behaving Badly Alyza Sebenius April 2016

How to Boast on the Sly Matthew Hutson May 2016

Life Isn’t Fair Matthew Hutson June 2016

The Science of Beer Goggles Stephanie Hayes July/August 2016

The Charisma Effect Matthew Hutson September 2016

Do People Need Small Talk to Be Happy? Stephanie Hayes October 2016

How Voters Respond to Electoral Defeat Ben Rowen November 2016

Why Kids Need Recess Alia Wong December 2016

Awesomeness Is Everything Matthew Hutson January/February 2017

Unsafe at Any Speed Jake Pelini March 2017

How to Buy Happiness Isabella Kwai April 2017

Puppy Love Katherine Riley May 2017

Boredom Is Good for You Jude Stewart June 2017

How Vanity Could Save the Planet Matthew Hutson July/August 2017

How to Cut in Line Jude Stewart September 2017

When the Mind Wanders Jake Pelini October 2017

Table 1—Past “Study of Studies” Published in the Atlantic
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observational), and assess the valid-
ity of the claims presented in their 
“Diner Beware” article.

Students made a brief set of 
slides summarizing their original 
article using RMarkdown (Bau-
mer, Çetinkaya Rundel, Bray, Loi, 
and Horton, 2014). The RMark-
down slides were then shared with 
the class via RPubs, a platform for 
web publishing from RStudio (the 
slides could be submitted in other 
ways, such as by e-mailing the 

instructor). Lastly, students were 
given 5 to 10 minutes to present 
their findings. The student presen-
tations were intended to improve 
communication skills and give  
students experience with techno-
logical innovations like RPubs.

An example of this process can 
be presented with the research 
article titled “Odors and consumer 
behavior in a restaurant” (Guéguen 
and Petr, 2006). Guéguen and Petr’s 
work analyzed the effect of lemon 

Title and Author Publication
Odors and Consumer Behavior in a Restaurant 
(Guéguen and Petr, 2006) International Journal of Hospitality Management

Plate Size and Color Suggestibility (Ittersum and 
Wansink, 2012) Journal of Consumer Research

Assessing the Influence of the Color of the Plate on 
the Perception of a Complex Food in a Restaurant 
Setting (Fiszman, Giboreau, and Spence, 2013)

Flavour

Dining in the Dark (Scheibehenne, Todd, and  
Wansink, 2010) Appetite

The Effect of Musical Style on Restaurant Customers’ 
Spending (North, Shilcock, and Hargreaves, 2003) Environment and Behavior

The Influence of Background Music on the Behavior 
of Restaurant Patrons (Milliman, 1986) Journal of Consumer Research

The Impact of Restaurant Table Characteristics on 
Meal Duration and Spending (Kimes and Robson, 
2004)

Cornell Hotel and Restaurant Administration 
Quarterly

How a Crowded Restaurant Affects Consumers’ 
Attribution Behavior (Tse, Sin, and Yim, 2002) International Journal of Hospitality Management

Lower Buffet Prices Lead to Less Taste Satisfaction 
(Just, Sigirci and Wansink, 2014) Journal of Sensory Studies

Determinants and Consequences of Female  
Attractiveness and Sexiness (Lynn, 2009) Archives of Sexual Behavior

Effect of Server Posture on Restaurant Tipping  
(Lynn and Mynier, 1993) Journal of Applied Social Psychology

Effect on Restaurant Tipping of Male and Female 
Servers Drawing a Happy, Smiling Face on the 
Backs of Customers’ Checks (Rind and Bordia, 
1996)

Journal of Applied Social Psychology

 Table 2—12 papers in Bourree Lam’s “Study of Studies”  
on Restaurants and Dining, the Atlantic (April 2015)

and lavender scents on the duration 
of time and the amount of money 
spent by customers in a restaurant. 
They carried out their study from 8 
p.m.–11 p.m. on three Saturdays in 
May with 88 patrons, and hypoth-
esized that lavender is considered 
a relaxing odor while lemon is a 
stimulating odor. 

Another example is presented 
by the research article titled “The 
Impact of Restaurant Table Char-
acteristics on Meal Duration and 
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Spending” (Kimes and Robson, 
2004). The authors assessed how 
table type and table location can 
affect average spending per minute 
(SPM) of a customer.

Lam summarizes Guéguen and 
Petr’s research article with only 
this: “… particular scents also 
have an effect: diners who got a 
whiff of lavender stayed longer 
and spent more than those who 
smelled lemon, or no scent” (Lam, 
2015). Similarly, Lam provides 
a terse summary for Kimes and  
Robson’s article: “Diners at ban-
quettes stayed the longest …  Diners 
at bad tables—next to the kitchen 
door, say—spent nearly as much 
as others but soon fled.” The stu-
dents were asked to reconcile these 
statements with the conclusions 
in the original research articles. 
Lam's summaries are intention-
ally terse: The format provides an 
opportunity to show students the 
pitfalls of taking short news articles 
at face value.

Results
The activity was conducted with 
introductory and intermedi-
ate statistics students at Amherst  
College during the  fall 2015 and 
spring 2016 academic semesters. 
The Amherst College Institutional 
Review Board (IRB) approved this 
study. On average, 20–25 students 
in each class engaged in the activ-
ity. Approximately 80 minutes were 
allotted to the activity.

In summary, students correctly 
identified basic conceptual elements 
in the designs of the original studies. 
These elements include sample size, 
the research question, conclusion, 
and classification of the study as 
observational or randomized. Many 
students were skeptical of the brief 
claims about the original studies 
given in the “Study of Studies.”

For example, student work cor-
rectly identified Guéguen and Petr’s 

sample size of patrons from a small 
pizzeria in Brittany, France. The stu-
dents also describe how “lavender, 
but not lemon, increased the length 
of stay of customers and the amount 
of purchasing,” which indicates that 
the students’ picked up on Guéguen 
and Petr’s hypothesis and research 
conclusions.

The students criticized the way 
the conclusions were portrayed in 
the “Diner Beware” article, point-
ing out that the “Diner Beware”  
summary does not account for the 
possibility of “cultural bias/geo-
graphical bias.” Geographical bias 
stems from the fact that the study 
was only conducted in a small town 
in France, so the conclusions regard-
ing scent and customer spending 
behavior may not generalize well 
to people of non-French heritage or 
individuals from urban areas. 

In their article, Guéguen and 
Petr acknowledge that a small 
sample size and the use of only one 
restaurant are limitations of their 
study; students picked up on these 
caveats. Students also recognized 
that “limiting the study to three 
Saturdays in May between 8 p.m.–
11 p.m. further creates sampling 
bias (targets a specific population).” 
Daytime and weekday visitors are 
evidently not represented. More-
over, since there was no replication, 
it is highly possible that another 
factor may have confounded  
the results.

Student analysis of Kimes and 
Robson’s article also revealed com-
prehension of the research’s design. 
In their analysis, the students cor-
rectly identified the sample size of 
1,413 and the single-blinded nature 
of the study, since in students’ words, 
“the participants did not know the 
true nature of the experiment.” 
The students expressed skepticism 
regarding the causal statements 
made in Lam’s article regarding 
Kimes and Robson’s study, consid-
ering the observational nature of the 

study and the fact that Kimes and 
Robson “excluded some informa-
tion, like the bar and patio seating” 
and that they “only took data from 
busy times.” 

Kimes and Robson’s limita-
tions stem from the fact that they  
only used one restaurant to draw 
conclusions, a shortcoming that 
relates to the limitation students 
picked up in regard to the limited 
focus of the study (i.e., inattention 
paid to less-busy hours). 

Another student group sum-
marized the limitation of Lam’s 
synthesis as the inability to gen-
eralize the original research’s find-
ings, since the “conclusion for this 
specific restaurant may not apply to 
all restaurants.” 

Students’ propensity for critique 
allows for challenging conventions, 
which produces a skepticism- and 
curiosity-driven outlook. This  
outlook, though, may have to be 
calibrated since student skepticism 
may be excessive.

Discussion
In an activity that linked summaries 
of research studies with published 
scientific papers, students gener-
ally accurately reported the original 
research’s study design—in particu-
lar, the study’s sample size; whether 
it was observational or experimen-
tal; and the general hypothesis, as 
well as the overarching conclu-
sions. Students were often critical 
of the extremely terse representa-
tions of the original research in 
Lam’s “Diner Beware” article in 
the Atlantic’s “Study of Studies” 
column. This is not surprising, 
given that the goal of the “Study of  
Studies” is to introduce provocative 
or idiosyncratic research findings, 
not to review or assess them com-
prehensively.

If time permits, the instruc-
tor might spend some time on 
debunking misplaced criticism, 
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ensuring that students have a thor-
ough understanding of the original 
research, can acknowledge cred-
ible published findings, and do not 
develop “knee-jerk” skepticism.

Overall, this activity was imple-
mented successfully. It raised 
awareness about study design and 
secondary representations of orig-
inal research. The activity can be 

undertaken with introductory and 
intermediate statistics students in 
a single class period, and may help 
improve communication skills by 
fostering discussion about experi-
mental design. 

We recommend that the study 
be undertaken after one lecture or 
more in study design. Conduct-
ing the study after few lectures 
would provide an informal student   
assessment and in the process, help 
reinforce previously learned study 
design concepts.

Numerous other articles pub-
lished in the “Study of Studies”  
column could be used in the same 
way as the “Diner Beware” article 
(see Table 1 for a comprehensive 
list of candidate articles).
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Picture the first class session 
after a long holiday break. 
Ask your students, “Did you 

work on your semester projects 
over the break?” How would they 
react? Maybe confusion: “Were we 
supposed to be working?” Maybe 
confidence: “Of course we were 
working, professor!” Now, picture 
how they might react when you 
say this: “Well, I hope you weren’t 
working on them, because as of 
today, they’re someone else’s projects! 
Your new task for the rest of the 
semester is to serve as statistical con-
sultants for your fellow students.”

Life on an Island:  
Using Peer Consulting in 
Applied Statistics Courses
Aimee Schwab-McCoy

Welcome to the newest column in CHANCE, devoted to teaching statistics, especially in the health sciences. 

We won’t deal with statistics classes in grade school (not around when many of us were young), nor with 
the education of future statisticians. Our interest is statistical pedagogy, mainly for those who will need to 
understand data analyses (such as for reading journals in their fields) and/or use statistics as a part of their 
own research, but are not going to be statisticians.

The ASA Section on Teaching of Statistics in the Health Sciences (TSHS) focuses its educational efforts on 
health professionals. From medical students to physicians, physical therapists to music therapists, biomedical 
bench scientists to epidemiologists, and more, they all read extensively in their respective literatures, and many 
of them perform research in their fields as well. We teach them all!

Don't stop reading this section if you work in a different field, however. Much of what we do in TSHS is quite 
general and overlaps with what other statistical educators do. From best practices and how to explain p-values 
to novices, to innovative and modern techniques like flipped classrooms, clickers, and problem-based learning, 
we touch on a wide variety of useful methods. If learning new techniques and ideas interests you, whatever 
you teach, then check out this column. Skilled teachers will share their experiences and ideas, and a variety of 
other content likely to be of interest to statistics educators.

We start our new column with this article about peer consulting.

[Teaching Statistics in the Health Sciences]
Bob Oster and Ed Gracely

Column Editors

This is exactly what the students 
at the University of Nebraska- 
Lincoln (UNL) heard in a second 
statistics course, as an exercise in  
peer consulting. 

Clearly, statistical consulting 
is an important piece of profes-
sional statistical practice, but it is 
an experience that few students 
have in their undergraduate statis-
tics curriculum. While the Center 
for Applied Statistics and Evalu-
ation (CASE) at Truman State  
University and the Statistical 
Consulting Center at Winona 
State University provide excellent 
examples of thriving undergraduate 

consulting centers, many statistics 
programs may not have the time or 
resources to dedicate to an under-
graduate consulting experience. An 
alternative option is to introduce 
peer consulting into the curricu-
lum through in-class activities or 
semester-long projects. 

What is “peer consulting” and 
why is it useful? Simply put, in 
a peer consulting experience, 
students play out the roles of  
consultants and clients in a research 
setting. This column describes 
one model for implementing peer  
consulting in an undergraduate  
statistics course, and offers tips  
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and guidelines for use in your  
own classrooms.

Giving students realistic peer 
consulting experiences was the 
motivation for a semester-long 
project in “STAT 318: Intro-
duction to Statistics II” at the  
University of Nebraska-Lincoln. 
The course is a follow-up to a  
traditional algebra-based introduc-
tory course, covering topics such 
as analysis of variance, experimen-
tal design, non-parametrics and 
randomization tests, and simple/ 
multiple linear regression. The 
course emphasizes professional 
statistical skills and communi-
cation, and usually assesses that 
with at least one significant writ-
ing component. Enrollment typi-
cally ranges from 15–25 students, 
enabling active in-class discussion 
and team exercises.

In the spring 2014 semester, 
22 students were enrolled, most of 
whom were juniors and seniors. In 
a “getting to know you” informal 
survey administered during the first 
week of class, most of the students 
expressed interest in pursuing 
either graduate school in statistics 
or employment as a statistician or 
data scientist. Many, but not all, 
of the students were mathematics 
majors and in general, students felt 
confident in their mathematical 
skills. However, students expressed 
significantly lower levels of  
confidence in their hands-on data 
analysis skills.

The class project began like many 
statistics projects typically do. Dur-
ing Phase One, students worked in 

teams of two or three to design an 
experimental or observational study 
to carry out on a virtual popula-
tion of subjects living on the Islands 
(http://islands.smp.uq.edu.au). Each 
group collected four to six variables 
during their experiment, in addition 
to basic demographic information 
such as name, age, and hometown. 

The students submitted writ-
ten project proposals at the end of 
Week 6 in a 16-week semester that 
included the research objective and 
study motivation, a literature review, 
and a complete outline of the study 
procedure. Each group received 
feedback on their project proposals 
before being approved to begin data 
collection. Finalized data sets were 
due at the end of Week 10, which 
gave the student groups about four 
weeks to complete their data collec-
tion process. At UNL, Week 10 is 
usually immediately before spring 
break.

Date Material Due
Week 3 Tentative research 

objective, project 
groups

Week 6 Project proposals
Week 10 Data collection 

completed
Spring 
break

Client-consultant 
pairs assigned

Week 11 Initial in-class  
consultation

Week 14 Second in-class 
consultation

Week 15 Presentations

After the students returned from 
spring break, they were in for a  
surprise: During the first class  
meeting, the real objective of the 
project was explained—each stu-
dent group would now work as 
statistical consultants on a project 
other than their own. The assign-
ments went in a “round robin”  
fashion. For example, Team B’s data 
would be given to Team C, who 
would serve as their statistical con-
sultants and continue the analysis. 
Team B then receives Team A’s data, 
and in addition to being the clients 
for Team C, they would now also 
be the consultants for Team A (see 
Figure 1). 

 Assigning student groups to 
client-consultant pairs had several 
advantages. In terms of classroom 
dynamics, teams had been working 
well together on their projects up 
to this point, but tended to use the 
same groupings for in-class activi-
ties and out-of-class study. With 
the client-consultant pairs, students 
were now working with others 
outside their majors or established  
peer groups. 

More importantly, this gave the 
student groups experience in the 
role of a real statistical consultant. 
Very few of these students had any 
prior research or data analysis expe-
riences beyond the classroom, and 
none had ever worked with a client. 
This allowed students to practice 
the “soft” statistical skills of written 
and verbal communication, as well 
as listening to a client’s goals and 
expertise on a topic. 

Figure 1. How a hypothetical class with five student groups might have client-consultant pairs assigned. Each student 
group is now working with two others: as the client of one group and the consultant to another.

Team A

•	Client:  
Team B

•	Consultant:  
Team E

Team B

•	Client:  
Team C

•	Consultant:  
Team A

Team C

•	Client:  
Team D

•	Consultant:  
Team B

Team D

•	Client:  
Team E

•	Consultant:  
Team C

Team E

•	Client:  
Team A

•	Consultant:  
Team D
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The student groups in this course 
also experienced a side of statistical 
consulting that very few statisticians 
themselves ever see: the client’s per-
spective. Students were engaged in 
their projects, and had developed a 
genuine curiosity about what the 
results would show. By allowing 
other groups to analyze their data, 
they experienced what it is like to be 
the one asking the questions about 
an analysis.

Client-consultant pairs met 
twice during class to discuss the 
project. At the end of Week 11, 
each group met to ask their “cli-
ents” questions about the research 
project they would be picking up. 
Each team participated in an ini-
tial consultation twice: once as the 
consultant, and once as the cli-
ent. The initial consultations were 
“client-led”: Each client group was 
expected to describe the research 
objective for their consultants, and 
explain any necessary background 
about the research objective or study 
design. Consultants took notes and 
asked questions where necessary.

Three weeks later, near the end 
of the semester, client-consultant 
pairs met again to discuss their pre-
liminary analyses. This time, the 
“consultants” took the lead during 
the meetings to present prelimi-
nary data analysis results,  justify 
selection of statistical procedures 
or models, and provide an initial 
answer to the research objective. 
During this meeting, the “clients” 
asked questions, took notes, and sug-
gested additional parts of the study 
design that might be relevant to the  
final analysis.

For each client-consultant meet-
ing, the clients and consultants 
received a list of possible objectives 
or points of discussion to help them 
get started, but the discussions were 
largely their own. 

To aid with assessment, all cli-
ent-consultant meetings that took 
place during class were recorded. 

This allowed the instructor to check 
in with other groups as the meet-
ings were happening in one area 
of the classroom, and encouraged 
the students to take charge of the 
discussions since the instructor was 
not there to guide them. Grades 
were assigned for each client- 
consultant meeting after class based 
on the recordings; these were mostly 
participation-based. 

Consultants presented two 
final products: a 5- to 10-minute 
in-class presentation summarizing 
their results and statistical methods 
used, and a research poster detail-
ing the analysis in more depth. 
These posters were similar to what 
would be presented at an under-
graduate research fair. Each student 
also submitted a “self-assessment” 
at the end of the course. In this 
self-assessment, students evaluated 
themselves in three roles: as cli-
ents, as consultants, and in their  
partner groups.

This peer consulting experience 
was designed to teach a variety of 
professional statistical skills not 
typically found in the undergradu-
ate curriculum. Students learned 
statistical thinking skills by work-
ing as a team to answer a scientific 
research question by designing a 
study and collecting data. Students 
also learned first-hand what it is 
like to join a statistical investigation 
after data collection, and obtained 
practice in making decisions about 
the most-effective or appropriate 
analysis for a given situation. 

All studies contained at least 
four to six variables, in addition to 
demographic information about 
each Islander, giving students a 
rich, realistic, multivariate data set 
to explore. 

In most consulting situations, 
the client is interested in the con-
textual implications, conceptual 
understanding, and bigger picture 
of the analysis, not necessarily the 
fine-tuned details. In this project, 

students learned about the nuances 
of statistical writing for two dif-
ferent professional audiences: the  
fellow statistician and the client. 
The data collected in this project  
is, of course, not real, since the 
Islanders are a computer-simulated 
population. However, it is realistic. 

On the Island, data are not 
recorded automatically. Students 
must record the data themselves, 
much like most researchers in the 
social sciences and STEM fields. This 
may seem like a hassle to students, 
but it mimics the actual data col-
lection process in scientific research. 
Students get a firsthand sense for the 
costs associated with collecting data, 
both in terms of financial resources 
with real subjects and the researcher’s 
time commitment.

From the instructor’s perspec-
tive, there were several benefits  
and challenges to this peer  
consulting project. Some of the 
benefits included:

•	 Increased communication 
between student groups—by 
assigning student teams to 
work with other student teams, 
there were more pathways for 
students to work together.

•	 More accountability in terms 
of group performance—if a 
group or team member didn’t 
meet expectations, they weren’t 
just letting down their instruc-
tor. They also had a client with 
expectations for their work. 

•	 More realistic motivation to 
learn and practice—group 
work was not just to keep 
students busy; the project 
was designed to be as close to 
real life as possible in terms 
of project deliverables (report 
for client and scientific poster), 
timeline (6 weeks overall to do 
the consulting), and design and 
data collection. 
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•	 Increased curiosity—students 
working with the Island tend 
to grow attached to their vir-
tual population. Since this is a 
designed population, students 
and instructors don’t know 
which parts of the simulation 
are “true” to real life and which 
ones aren’t, further stimulating 
student curiosity.

•	 Exposure to multiple stud-
ies—students designed their 
own studies and collected data, 
but then analyzed completely  
different scenarios. To do this, 
students had to think about 
how experimental design 
and statistical analysis inter-
act. They may have designed 
a study thinking it was a 
“regression example,” but their 
final consulting product may  
have ended up being drastic-
ally different.

•	 A view into the life of a con-
sulting statistician—to the 
statistician’s lament, we are 
often brought in to a study or 
experiment after data are col-
lected, not before. By the time 
the students viewed their cli-
ents’ data, their statistical skills 
had become more sophisti-
cated, and many groups were 
able to identify things they 
would have done differently 
in both their clients’ data and 
their own data. At the end of 
the semester, a student wrote: 
“one big benefit of presenting 
another group’s project is when 
we found issues with the data 
they’d gathered, we couldn’t go 
back and ‘fix‘ it by gathering 
more data. … [it] much more 
closely mirrored real life.”

Some of the challenges unique 
to peer consulting projects are:

•	 Increased time commitment 
for the instructor—not only is 
the instructor supervising and 

monitoring student teams, but 
now there is now the added 
dimension of how student 
teams interact with each other. 
Making expectations clear can 
help. Consider building a com-
mon communication space  
in your school’s learning 
management system (LMS) 
for shared documents and to 
monitor student participation.

•	 Less-than-favorable student 
reactions—some students 
will be very attached to their 
research question or objective, 
and may not see the point of 
peer consulting immediately. 
Sell it! Explain your rationale 
clearly, use examples of your 
own consulting work, or per-
haps ask a professional con-
sultant to speak to the class 
about the importance of con-
sulting in statistical practice. 
Some students may continue 
to see it as added busywork, so 
the instructor must continue 
to emphasize the importance 
of learning good professional 
communication skills. 

•	 Added time in class for client-
consultant meetings—another 
option may be to schedule 
meetings outside of class dur-
ing office hours—this is an 
even greater instructor time 
commitment. Formal meet-
ings should be assessed in some 
way, not necessarily by the 
instructor. Consider assign-
ing students reflective writing 
prompts after each meeting, 
to assess their experiences as 
clients and as consultants.

•	 Timing and execution— 
timing is critical to introduc-
ing peer consulting exercises. 
Wait too long and students will 
begin analyzing their original 
data set. In this course, the con-
sulting element was introduced 

as a surprise, but for a variety 
of reasons (scheduling, rumors 
from former students), this 
might not always work. 

What is most important about 
the peer consulting exercise isn’t the 
surprise element—although that 
part is fun—but the investment. 
Students should be invested in the 
project on both sides, as a client and 
as a consultant. If students know 
that their projects will be switched 
in the second half of the semester, 
they may be tempted to put less 
effort into the experimental design 
or data collection. This could be 
avoided by grading student research 
proposals, or even giving students a 
choice about which project they’d 
like to peer consult for. 

No matter whether the switch to 
a peer consulting model is known 
ahead of time or a surprise, consider 
designing student projects with 
checkpoints to prevent “working 
ahead” of the switch.

This peer consulting project was 
used successfully in a second sta-
tistics course, but there are ways 
to implement peer consulting in 
courses at other levels. Instructors 
might consider using consulting 
projects across the curriculum, 
where students in an upper-level 
statistics course could serve as peer 
consultants for a lower-level course. 
Another possible implementation 
might be collaborating across sec-
tions, schools, or departments. The 
added separation may make the 
consulting experience feel more 
realistic, and this gives the instruc-
tor the chance to collaborate and 
share the added workload of peer 
consulting projects with colleagues 
in other departments or institutions.

A major component of 
this project was the client- 
consultant meetings. Where  
possible, client-consultant meetings 
should include both an in-person 
component to help students develop 
interpersonal communication  
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What is “The Islands”? The Islands is a simulated 
population of human subjects explicitly designed to 
support learning about experimental design, data 
collection, and statistical inference and modeling 
for statistics courses. The Islands was initially 
developed by Michael Bulmer of the University 
of Australia, Queensland, but is now used as a 
teaching tool in courses worldwide. Think of it like 
playing the Sims in your statistics courses: Students 
can design any research study they like, and carry 
it out on “human” subjects without the various 
hurdles to actually collecting data on real  
human subjects.

The background story of the Islands goes like 
this: The Islands comprise a group of three virtual 
island nations—Ironbard, Providence, and 
Bonne Santé—that were settled by a small band 
of shipwreck survivors more than two centuries 
ago. As time has passed, all three Island nations 
have flourished into a rich society with more than 
40,000 residents. When students first “arrive” at 
the Islands, they’ll be greeted with a map of all 
three island nations, with important settlements 
and geographic landmarks identified. From there, 
students can head to any of the 27 towns and 
villages to find their subjects, and  
start experimenting.

Once virtual Islander have “granted consent” to 
participate in a research study, they can be asked 
a series of survey questions or complete any one 
of an extensive list of tasks. Their life histories are 
also available for students to view, including their 
friendships with other Islanders, disease histories, 
academic transcripts, and net wealth. Students 
can gather and record the data from each subject, 
then move onto the next participant.

Students using the Islands in the classroom have a 
wealth of resources to get started. The first stop for 
students should be the visitor center near Arcadia, 
where they can gain a brief orientation to the 
Islands and read some frequently asked questions 
from previous scientific expeditions (statistics 
classes). Students can also choose to study towns 
and villages as a whole by visiting the local 
bureau to peruse employment records, or perhaps 
the town hall to study causes of death. 

In some towns, the local clinic can provide a list 
of recent patients, along with their symptoms, 
diagnoses, and outcomes. Those interested in 
Island history and folklore may choose to visit the 
Museum to read logbooks from the initial settlers, 
and maybe even contact their ghosts. The climate 
stations on each island provide some insight into 
local weather patterns, and experimental field 
stations give students the option to study  
local agriculture. 

Finally, a student in need of some inspiration might 
visit the Academy to browse academic journals 
such as Proceedings of the Islands Academy or 
the Journal of Island Studies (both of which contain 
examples of previously submitted student projects).

There are many advantages to using the Islands 
in courses. Giving students access to a rich 
virtual population encourages them to investigate 
interesting research questions in a more-realistic 
way. Students experience the practical concerns 
of data collection, such as choosing a suitable 
sample, and learn that collecting real data takes 
time and effort. Interested in teaching with the 
Islands? Check out the resources below to 
get started.

WELCOME TO THE ISLANDS

and “conversational statistical  
literacy,” and a written component 
to encourage clear and concise sta-
tistical writing. There should be an 
assessment of the client-consultant 
meetings, to help hold students 
accountable for reaching objectives 
and being actively involved in their 

roles. One suggestion is to have stu-
dents watch recordings of their own 
consulting meetings and reflect on 
their discussions. 

Finally, a good way to get started 
with client-consultant meetings 
is to model a statistical consult-
ing meeting for students. This 

gives students a clear idea of the 
expectations associated with client- 
consultant meetings and a sense of 
the importance of statistical con-
sulting to practice.

In their course evaluations and 
final self-assessments, many stu-
dents reported that peer consulting 
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was an enriching experience. It was 
also a rewarding challenge to take 
on as the instructor. If you’re inter-
ested in designing peer consulting 
projects or activities for your own 
courses, make sure to:

1.	 Consider timing carefully. 
Switching groups after a break 
was ideal, because generally 
students don’t do academic 
work over a break. This avoids 
students doing work on a  
project analysis before switch-
ing groups. 

2.	 Sell it! Explain the purpose 
of the switch and the impor-
tance of consulting to practice. 
Emphasize the importance 
of building communication 
skills—they aren’t expected to 
be perfect consultants immedi-
ately. This is a chance for them 
to build and develop skills in a 
collaborative environment.

3.	 Make expectations clear from 
the beginning. For most, if not 
all, this will be a completely 
new experience. Let them 
know what your expectations 
are, and what their expecta-
tions should be of their clients 
and consultants.
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