The amount of annual precipitation across the state of Colorado (USA) is known to vary considerably due in part to the state’s diverse topology. In particular, western Colorado is highly mountainous (part of the Rocky Mountains) whereas eastern Colorado is fairly flat. See the elevation map below.
The R data file precip.Rdata contains the geodata object precip.geo, which includes seven years of annual precipitation anomalies at 202 locations (given by the longitude and latitude coordinates) across Colorado. (Unfortunately, I don’t know how these anomalies were computed.) Also included are the elevation (in meters) of the meteorological station locations. The meteorological data are available online from the National Center for Atmospheric Research at http://www.image.ucar.edu/GSP/Data/US.monthly.met/CO.html )
The code that follows walks you through the fitting of some spatial models as presented in the recent manuscript by Mark Risser and Catherine Calder, Local Likelihood Estimation for Covariance Functions with Spatially-Varying Parameters: The convoSPAT Package for R. The code is derived from that used by the authors in their application to a precipitation dataset for a large region of the western US. (The number of precipitation sites in Colorado in that dataset is fewer than the 202 sites provided here.)
We start by loading a large number of libraries. (Install them as needed.) All of them might not be needed for the code below.
# install.packages('convoSPAT')
library("convoSPAT")
# Other packages needed for the replication code
library("geoR")
library("ggplot2")
library("ggmap")
library("ellipse")
library("sp")
library("fields")
library("RColorBrewer")
library("colorspace")
library("gridExtra")
In the following code you will see comments and filenames referring to sections and particular figure numbers in the Risser and Calder manuscript. I have retained these numbers so that you can see the corresponding figures in their analyses of the western US precipitation data.
Now attach the Colorado precipitation workspace. Again, we’ll just examine the data for 1991.
# setwd('~/Dropbox/Spatial statistics course/Lab3')
download.file("http://www.stat.washington.edu/peter/591/labs/Lab3/precip.RData",
"precip.RData")
load("precip.RData")
I will also suggest my slightly edited version of the package function for plotting the results of the fitting of a nonstationary spatial model. So, source the fileto define the function.
source("http://www.stat.washington.edu/peter/591/labs/Lab3/myplot.NSconvo.R")
Begin with a plot of the map of annual means.
save.plots <- FALSE # Set to TRUE if you want plots automatically sent to pdf.
# Specify a map
COLmap <- map_data("county", c("colorado"))
# FIGURE 6
COLplot.df <- data.frame(longitude = precip.geo$coords[, 1], latitude = precip.geo$coords[,
2], logprecip91 = precip.geo$data[, 1])
COLprecipPlot <- ggplot(COLplot.df, aes(x = longitude, y = latitude, color = logprecip91)) +
geom_polygon(data = COLmap, aes(x = long, y = lat, group = group), color = "#000000",
fill = "#FFFFFF") + coord_fixed(ratio = 1.25) + geom_point(size = 2.5) +
xlim(-110, -101) + ylim(36.5, 41.5) + scale_color_gradientn(colours = brewer.pal(11,
"RdYlBu"), name = "Annual \nPrecipitation, 1991 \n annomalies \n") + ylab("Latitude \n") +
xlab("\nLongitude") + theme(axis.title = element_text(size = 18), axis.text = element_text(size = 15),
legend.title = element_text(size = 19), legend.text = element_text(size = 15),
legend.key.height = unit(2.5, "cm"))
if (save.plots) {
pdf("Figures/Figure6.pdf", height = 11, width = 11)
}
COLprecipPlot
if (save.plots) {
dev.off()
}
Set aside 15% of the sites for validation
# Holdout locations for cross-validation
N <- dim(precip.geo$coords)[1]
M <- floor(0.15 * N) # Set aside 15% of the observations for validation.
set.seed(62365)
hdt.idx <- sample(1:N, M)
We will now fit models using the tools of the convoSPAT package. The code below will specify a mean model using longitude and latitude. Note that it is desirable to use elevation as a covariate, however because I don’t have elevation on a fine grid for predictions that permit nice maps (in the code for “FIGURE 7” below). I will ask you later to fit a model including elevation in the mean, even though you won’t be able to draw a detailed map of interpolated predictions.
# =============================================================================
# Spatial models
# =============================================================================
# Stationary model
# ===========================================================
prt <- proc.time()
COLprecip.S.model <- Aniso_fit(coords = precip.geo$coords[-hdt.idx, ], data = precip.geo$data[-hdt.idx,
1], cov.model = "exponential", mean.model = (precip.geo$data[-hdt.idx, 1] ~
precip.geo$coords[-hdt.idx, 1] + precip.geo$coords[-hdt.idx, 2]))
# + unlist(precip.geo$covariate)[-hdt.idx]))
tot.time <- proc.time() - prt
S.comp.time <- round(unname(tot.time[3])/60, 2)
summary(COLprecip.S.model)
# Cross validation. The evaluate_CV function from the convoSPAT package
# evaluates the RMSE, pRMSD, and CRPS (continuous rank probability score)
pred.S <- predict(COLprecip.S.model, pred.coords = as.matrix(precip.geo$coords[hdt.idx,
]), pred.covariates = cbind(precip.geo$coords[hdt.idx, ])) #,
# unlist(precip.geo$covariate)[hdt.idx]))
evalS <- evaluate_CV(holdout.data = precip.geo$data[hdt.idx, 1], pred.mean = pred.S$pred.means,
pred.SDs = pred.S$pred.SDs)
# Save
Stationary.Results <- as.list(NULL)
Stationary.Results$model.obj <- COLprecip.S.model
Stationary.Results$compTime <- S.comp.time
Stationary.Results$preds <- pred.S
Stationary.Results$evalCrit <- evalS
save(Stationary.Results, file = "StationaryResults.RData")
# =============================================================================
The analyses by Risser and Calder fit a variety of models, including those with spatially varying nugget and/or variance. Here we will fit only their first nonstationary model which specifies a constant nugget and variance.
R & C also fit a variety of models with multiple choices for (a) the mixture component grids for the basis kernels, (b) the values of the radius r, and (c) the values of the tuning parameter “lambda” for the weight function. The code below uses one particular set of values, but you will be asked to try some others.
# Nonstationary model 1: constant nugget, variance
# ===========================
# We may consider 2 mixture component (MC) grids for basis kernels just 2
# radii and 2 values of the tuning parameter. The R code I obtained from
# the authors is set up to store results from all combinations for multiple
# choices of radii, tuning parameters, and the MC grid of basis kernels.
# You will ususally want to consider the resolution of the basis grid in
# deciding reasonable values of the radius.
# Radii may be specific for the MC grids using different values for the
# columns (corresponding to grids) of the following matrix. Here we
# consider the same two choices of radii, 2.5 and 4.5, for both grids.
fit.radii <- matrix(c(2.5, 4.5, 2.5, 4.5), nrow = 2, ncol = 2)
lambdaW <- c(3, 5)
# Create two mixture component grids for the basis kernels, the 1st a 4x4
# grid, the 2nd 5x5. NOTE: We are inappropriately treating longitude and
# latitude as Cartesian coordinates here. (It is convenient for drawing
# maps.) But that fact that we are considering anisotropic models deals
# with this.
COL.mc.grids <- list(length = 2)
longlim <- range(precip.geo$coords[, 1])
latlim <- range(precip.geo$coords[, 2])
grid.x <- seq(from = -108, to = -103, length.out = 4)
grid.y <- seq(from = 37.5, to = 40.5, length.out = 4)
grid.locations <- expand.grid(grid.x, grid.y)
COL.mc.grids[[1]] <- matrix(c(grid.locations[, 1], grid.locations[, 2]), ncol = 2,
byrow = FALSE)
grid.x <- seq(from = -109, to = -102, length.out = 5)
grid.y <- seq(from = 37, to = 41, length.out = 5)
grid.locations <- expand.grid(grid.x, grid.y)
COL.mc.grids[[2]] <- matrix(c(grid.locations[, 1], grid.locations[, 2]), ncol = 2,
byrow = FALSE)
# Storage CRPS <- array(NA, dim = c(6, 2, 4)) MSPE <- array(NA, dim = c(6,
# 2, 4)) comp.time <- array(NA, dim = c(6, 2, 4))
CRPS <- array(NA, dim = c(2, 2, 2))
MSPE <- array(NA, dim = c(2, 2, 2))
comp.time <- array(NA, dim = c(2, 2, 2))
NS.fit.objs <- NULL
# arr.index <- array(c(1:(6*2*4)), dim = c(6, 2, 4))
arr.index <- array(c(1:(2 * 2 * 2)), dim = c(2, 2, 2))
# NOTE: The author's code fitted 6x2x4 = 48 different models below, and this
# is extremely time-consuming. The models and results corresponding to
# these three factors are specified according to a 3-way array We'll just
# visit individual models, although we could try the 2x2x2 = 8 models
# defined by the choices of radii, tuning parameter, and basis grids
# specified above.
# Fit the model for for (k in 1:length(lambdaW)) { # different tuning
# parameters Start with just one tuning parameter value for (i in
# 1:length(COL.mc.grids)) { # different mc locations just do the 4x4 grid of
# basis locations
for (k in 1) {
for (i in 1) {
mc.locs <- COL.mc.grids[[i]]
# for (j in 1:dim(fit.radii)[1]) { # different fit radii Similarly, just one
# radius
for (j in 1) {
# ========================== Nonstationary model. As noted above,
# commenting out inclusion of elevation as a covariate.
prt <- proc.time()
COLprecip.NS.model <- NSconvo_fit(coords = precip.geo$coords[-hdt.idx,
], data = precip.geo$data[-hdt.idx, 1], cov.model = "exponential",
lambda.w = lambdaW[k], fit.radius = fit.radii[j, i], mc.locations = mc.locs,
mean.model = (precip.geo$data[-hdt.idx, 1] ~ precip.geo$coords[-hdt.idx,
1] + precip.geo$coords[-hdt.idx, 2]))
# + unlist(precip.geo$covariate)[-hdt.idx]))
tot.time <- proc.time() - prt
comp.time[j, i, k] <- round(unname(tot.time[3])/60, 2)
NS.fit.objs[[arr.index[j, i, k]]] <- COLprecip.NS.model
# ============================ CV Holdout locs
pred.NS <- predict(COLprecip.NS.model, pred.coords = as.matrix(precip.geo$coords[hdt.idx,
]), pred.covariates = cbind(precip.geo$coords[hdt.idx, ])) #,
# unlist(precip.geo$covariate)[hdt.idx]))
evalNS <- evaluate_CV(holdout.data = precip.geo$data[hdt.idx, 1],
pred.mean = pred.NS$pred.means, pred.SDs = pred.NS$pred.SDs)
CRPS[j, i, k] <- evalNS$CRPS
MSPE[j, i, k] <- evalNS$MSPE
}
}
cat(k, " ")
}
NS1results <- NULL
NS1results$comp.time <- comp.time
NS1results$CRPS <- CRPS
NS1results$MSPE <- MSPE
NS1results$results <- NS.fit.objs
save(NS1results, file = "NS1results.RData")
# =============================================================================
Other models that R&C fit are:
Nonstationary model 2: constant nugget, NS variance
Nonstationary model 3: NS nugget, constant variance
Nonstationary model 4: full NS
Now assemble a couple of small tables to summarize the results. Larger versions of these tables for all five models appear in the R&C paper.
#==============================================================================
# RESULTS
#==============================================================================
# TABLE 3 =====================================================================
# Evaluation criteria, computational time, MC grid, lambda, fit radius
Table3 <- data.frame(
model = c("S", "NS1"), #, "NS2", "NS3", "NS4"),
mcGridSz = c(NA, dim(mc.locs)[1]), #, 15, 15, 15),
lambda = round(c(NA, lambdaW[1]),2), # lambdaW[4], lambdaW[4], lambdaW[4]), 2),
fitRadius = c(NA, fit.radii[1,1]), # rep(fit.radii[3, 1], 4)),
MSPE = round(c(as.numeric(Stationary.Results$evalCrit[2]),
NS1results$MSPE[1, 1, 1]), 4),
CRPS = round(c(as.numeric(Stationary.Results$evalCrit[1]),
NS1results$CRPS[1, 1, 1]), 4),
compTime = c(Stationary.Results$compTime,
NS1results$comp.time[1, 1, 1])
)
Table3
write.csv(Table3, file = "Table3.csv")
# TABLE 4 =====================================================================
# Parameter estimates
Table4 <- data.frame(
model = c("S", "NS1"), #, "NS2", "NS3", "NS4"),
beta0 = c(Stationary.Results$model.obj$beta.GLS[1, 1],
NS1results$results[[1]]$beta.GLS[1, 1]), #,
beta1 = c(Stationary.Results$model.obj$beta.GLS[2, 1],
NS1results$results[[1]]$beta.GLS[2, 1]), #,
beta2 = c(Stationary.Results$model.obj$beta.GLS[3, 1],
NS1results$results[[1]]$beta.GLS[3, 1]), #,
lam1 = c(as.numeric(Stationary.Results$model.obj$MLEs.save[1]), rep(NA, 1)),
lam2 = c(as.numeric(Stationary.Results$model.obj$MLEs.save[2]), rep(NA, 1)),
eta = c(as.numeric(Stationary.Results$model.obj$MLEs.save[3]), rep(NA, 1)),
tausq = c(as.numeric(Stationary.Results$model.obj$MLEs.save[4]),
NS1results$results[[1]]$tausq.est), #),
sigmasq = c(as.numeric(Stationary.Results$model.obj$MLEs.save[5]),
NS1results$results[[1]]$sigmasq.est) #,
)
Table4
write.csv(Table4, file = "Table4.csv")
# ==============================================================================
# SECTION 7 PLOTS
# ==============================================================================
# FIGURE 7 Predictions/pred std errors ====================================
# Note again: Cannot currently make predictions at a fine grid like that
# specified here for models including elevation. Below, the covariates are
# just the coordinates.
grid.x <- seq(from = -110, to = -101, by = 0.1)
grid.y <- seq(from = 36.5, to = 41.5, by = 0.1)
grid.locations <- expand.grid(grid.x, grid.y)
COL.pred.locs <- matrix(c(grid.locations[, 1], grid.locations[, 2]), ncol = 2,
byrow = FALSE)
preds <- predict(NS1results$results[[1]], COL.pred.locs, COL.pred.locs) # Best NS1 model
Spreds <- predict(Stationary.Results$model.obj, COL.pred.locs, COL.pred.locs)
preds.df <- data.frame(longitude = COL.pred.locs[, 1], latitude = COL.pred.locs[,
2], sMeans = Spreds$pred.means, sSDs = Spreds$pred.SDs, nsMeans = preds$pred.means,
nsSDs = preds$pred.SDs)
sMeans <- ggplot(preds.df, aes(x = longitude, y = latitude, color = sMeans)) +
coord_fixed(ratio = 1.25) + geom_point(size = 2.5) + scale_color_gradientn(colours = brewer.pal(11,
"RdYlBu"), name = " ", limits = c(min(c(preds.df$sMeans, preds.df$nsMeans)),
max(c(preds.df$sMeans, preds.df$nsMeans)))) + geom_polygon(data = COLmap,
aes(x = long, y = lat, group = group), color = "#000000", fill = "#FFFFFF",
alpha = 0) + ylab("") + xlab("") + xlim(-110, -101) + ylim(36.5, 41.5) +
theme(legend.text = element_text(size = 16), title = element_text(size = 16),
legend.key.height = unit(2.2, "cm")) + ggtitle("(a)")
sSDs <- ggplot(preds.df, aes(x = longitude, y = latitude, color = sSDs)) + coord_fixed(ratio = 1.25) +
geom_point(size = 2.5) + scale_color_gradientn(colours = brewer.pal(11,
"RdYlBu"), name = " ", limits = c(min(c(preds.df$sSDs, preds.df$nsSDs)),
max(c(preds.df$sSDs, preds.df$nsSDs)))) + geom_polygon(data = COLmap, aes(x = long,
y = lat, group = group), color = "#000000", fill = "#FFFFFF", alpha = 0) +
ylab("") + xlab("") + xlim(-110, -101) + ylim(36.5, 41.5) + theme(legend.text = element_text(size = 16),
title = element_text(size = 16), legend.key.height = unit(2.2, "cm")) +
ggtitle("(b)")
nsMeans <- ggplot(preds.df, aes(x = longitude, y = latitude, color = nsMeans)) +
coord_fixed(ratio = 1.25) + geom_point(size = 2.5) + scale_color_gradientn(colours = brewer.pal(11,
"RdYlBu"), name = " ", limits = c(min(c(preds.df$sMeans, preds.df$nsMeans)),
max(c(preds.df$sMeans, preds.df$nsMeans)))) + geom_polygon(data = COLmap,
aes(x = long, y = lat, group = group), color = "#000000", fill = "#FFFFFF",
alpha = 0) + ylab("") + xlab("") + xlim(-110, -101) + ylim(36.5, 41.5) +
theme(legend.text = element_text(size = 16), title = element_text(size = 16),
legend.key.height = unit(2.2, "cm")) + ggtitle("(c)")
nsSDs <- ggplot(preds.df, aes(x = longitude, y = latitude, color = nsSDs)) +
coord_fixed(ratio = 1.25) + geom_point(size = 2.5) + scale_color_gradientn(colours = brewer.pal(11,
"RdYlBu"), name = " ", limits = c(min(c(preds.df$sSDs, preds.df$nsSDs)),
max(c(preds.df$sSDs, preds.df$nsSDs)))) + geom_polygon(data = COLmap, aes(x = long,
y = lat, group = group), color = "#000000", fill = "#FFFFFF", alpha = 0) +
ylab("") + xlab("") + xlim(-110, -101) + ylim(36.5, 41.5) + theme(legend.text = element_text(size = 16),
title = element_text(size = 16), legend.key.height = unit(2.2, "cm")) +
ggtitle("(d)")
if (save.plots) {
pdf("Figures/Figure7.pdf", height = 12, width = 12)
}
grid.arrange(sMeans, sSDs, nsMeans, nsSDs, ncol = 2)
if (save.plots) {
dev.off()
}
# FIGURE 8 Ellipses, estimation region ====================================
par(mfrow = c(1, 1))
if (save.plots) {
pdf("Figures/Figure8.pdf", height = 6, width = 5)
}
myplot.NSconvo(NS1results$results[[1]], fit.radius = fit.radii[1, 1], aniso.mat = Stationary.Results$model.obj$aniso.mat,
asp = 1.29, aniso.col = 4, ns.col = 2, xlim = c(-110, -101), ylim = c(36.5,
41.5), xlab = "", ylab = "")
US(add = TRUE, col = "darkgreen")
if (save.plots) {
dev.off()
}
# FIGURE 10 Correlation plots ==============================================
if (save.plots) {
pdf("Figures/Figure10.pdf", height = 7, width = 9)
}
par(mfrow = c(2, 3), mar = c(5, 5, 5, 5))
plot(Stationary.Results$model.obj, asp = 1.29, ref.loc = c(-107, 38), all.pred.locs = COL.pred.locs,
col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
plot(Stationary.Results$model.obj, asp = 1.29, ref.loc = c(-105.5, 40), all.pred.locs = COL.pred.locs,
col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
plot(Stationary.Results$model.obj, asp = 1.29, ref.loc = c(-103, 39), all.pred.locs = COL.pred.locs,
col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
plot(NS1results$results[[1]], plot.ellipses = FALSE, asp = 1.29, ref.loc = c(-107,
38), all.pred.locs = COL.pred.locs, col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
plot(NS1results$results[[1]], plot.ellipses = FALSE, asp = 1.29, ref.loc = c(-105.5,
40), all.pred.locs = COL.pred.locs, col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
plot(NS1results$results[[1]], plot.ellipses = FALSE, asp = 1.29, ref.loc = c(-103,
39), all.pred.locs = COL.pred.locs, col = diverge_hsv(100), grid = TRUE)
US(add = TRUE, col = "white")
if (save.plots) {
dev.off()
}
## We have not fit models with spatially varying nuggets and variances, so we
## will not provide code for analogs of the authors' 'FIGURE 9'.
Describe the differences in the fitted stationary and nonstationary models with reference to summary statistics and figures generated above. Feel free to generate other plots to compare the two models. How do the mountains seem to influence the spatial correlation structure?
Try at least one other nonstationary model by varying the definition of the mixture component grid (by fitting a bigger or smaller grid), and/or changing the radius r, and/or changing the tuning parameter lambda. Were you results very sensitive to this variation?
Edit the code above to insert elevation into the mean model. (Feel free to diagnose whether it should enter the model in a linear manner.) Is the model better according the evaluation criteria? How does the spatial correlation structure change? In particular, what are the effects of the mountains now, after accounting perhaps more appropriately for their effect in the mean structure. Explain with reference to summary statistics and figures.