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Compositional data

Vector of proportions 

Proportion of taxes in different 
categories
Composition of rock samples
Composition of biological populations
Composition of air pollution

z = (z1,...,zk )T zi > 0 zi = 1
1

k
∑ z ∈∇k−1



The triangle plot
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The spider plot
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An algebra for 
compositions

Perturbation: For define

The composition acts as a 
zero, so     . 

Set so       .

Finally define .
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b=(0.4,0.5,0.1)

a=(0.2,0.3,0.5)

b=(0.4,0.5,0.1)

a=(0.2,0.3,0.5)

a + b=(0.29,0.54,0.17)

b=(0.4,0.5,0.1)

a=(0.2,0.3,0.5)

a + b=(0.29,0.54,0.17)

a - b=(0.08,0.10,0.82)



The logistic normal

If

we say that z is logistic normal, in short 
Z ~ LN(µ,Σ).
 alr has a unique inverse.
Other distributions on the simplex:
Dirichlet — ratios of independent 
gammas
“Danish” — ratios of independent 
inverse Gaussian
Both have very limited correlation 
structure.

alr(z) = log z1
zk
,...,log zk−1
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Scalar multiplication
Let a be a scalar. Define

is a complete inner product 
space, with inner product given, e.g., by 

      
N is the precision matrix N=I+jjT
j is a vector of k-1 ones.

                is a norm on the simplex.

The inner product and norm are invariant to 
permutations of the components of the 
composition.
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b=(0.4,0.5,0.1)

a=(0.2,0.3,0.5)

b=(0.4,0.5,0.1)

a=(0.2,0.3,0.5)

2 x a=(0.10,0.24,0.66)

b / 2=(0.38,0.43,0.19)

|| a || = 0.42

|| b || = 1.52

|| 2x a || = 1.78

|| b/2 || = 0.39

<a,b> = –0.67



Some models

Measurement error:
where εj ~ LN(0,Σ) .

Regression:

Correspondence in Euclidean space:

ξj ξ  γ    uj

zj = ξ⊕ ε j

ξj = ξ⊕ γ ⊗uj

compositions

centered
covariate

µj = β0 + β1 (xj − x )

alr −1(µj ) = alr −1(β0)⊕ alr −1(β1)⊗ (xj − x )



Some regression lines



Time series (AR 1)
zk+1 = φ⊗ zk ⊕ εk



A source receptor model

Observe relative concentration Yi of k 
species at a location over time.
Consider p sources with chemical 
profiles θj. Let αi be the vector of mixing 
proportions of the different sources at 
the receptor on day i.

Θ ~ LN, αi ~ indep LN, εi ~ zero mean LN

EYi = αij
i=1

p
∑ θj = Θαi

Yi = Θα i ⊕ εi



Juneau air quality

50 observations of relative mass of 5 
chemical species. Goal: determine the 
contribution of wood smoke to local 
pollution load.
Prior specification: 

Inference by MCMC.

f(Θ,α i ,εi ,µα ,Γ,Σε ) =
f(α i µα ,Γ) f(εi Σε )f(µα )f(Γ)f(Σε )



Wood smoke contribution
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Wood smoke proportion
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Figure 2: Histogram for median mixing proportions. This histogram show the distribution of MCMC realizations

for the median of the mixing proportion distribution, . The median of this distribution is approximately 0.41,

and a 95% credible interval is (0.27, 0.60).

24



Posterior source profiles
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State-space model

Space-time model of proportions
State-space model:
zj unobservable composition ~ LN(µj,Σj)
yj k-vector of counts ~ Mult(

Inference using MCMC again

€ 

yj[ ]ii=1

k
∑ ,zj )



Stability of arthropod 
 food webs

Omnivory thought to destabilize ecological 
communities
Stability: Capacity to recover from shock 
(relative abundance in trophic classes)
Mount St. Helens experiment: 6 treatments 
in 2-way factorial design; 5 reps.
§ Predator manipulation (more omnivores, 
more specialists, control)
§ Vegetation disturbance (50% reduction, 
control)
Count anthropods, 6 wks after treatment. 
Divide into specialized herbivores, general 
herbivores, predators.



Manipulated species

Omnivore:
Wolf spider

Specialist predator
Big-eyed bug

Vegetation

fireweed pearly-
                                 everlasting



Specification of structure

Σ is generated from independent 
observations at each treatment
mean depends only on treatment 
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Interaction effect

ANOVA interaction effect

alr inverse to get
 zij − zii − zji + zii

 ξ ij − ξii − ξ ji ⊕ ξii
1212 Journal of the American Statistical Association, December 2001
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Figure 5. Point Estimates and 95% Credible Regions for the Effect

of Vegetation Removal. For each omnivory treatment, we show the esti-

mated species composition and credible region for the compositional

difference associated with vegetation removal. Because increased

omnivory and increased specialist regions contain ©2 , we cannot pre-

clude that vegetation removal has no effect.

5.1 Diagnostics

A “leave-one-out” diagnostic procedure (Besag, Green,
Higdon, and Mengersen 1995) was used to evaluate the ade-
quacy of the statistical model. The (approximate) predictive
distribution for a plot composition is obtained by setting its
group counts equal to zero for all k groups, and collecting
the MCMC realizations for the plot composition. One ran-
domly selected plot from each treatment was withheld from
the data, and the MCMC re-run with these data omitted. The
compositions of the holdout plots were subsequently predicted
from the model. The prediction region for the discrete obser-
vation can be constructed (under the model) by sampling from
a multinomial distribution with parameter vector equal to the
realized values of ztj , and sample size equal to

Pk
iD16ytj 7i .

For all six plots, the leave-one out procedure results in
95% prediction regions containing the omitted (observed) plot
compositions. Although this is not a rigorous procedure for
investigating model misspeciécation, it does suggest that the
statistical model is adequate in capturing the observed variabil-
ity in the data. Diagnostic procedures for hierarchical Bayesian
models remains an area of ongoing research (see e.g., Albert
and Chib 1997).

5.2 Conclusion

These results indicate that increased omnivory helps to
maintain a stable species composition in the presence of 50%
vegetation removal. Further, background predator levels or
increased specialist predators do not facilitate this stability
when vegetation is removed. The ecological conclusion is that
the omnivores’ broad diets allow them to feed on a diver-
sity of species that would otherwise increase in abundance in
response to the vegetation thinning; effectively buffering the
community from compositional shifts induced by disturbance.

6. DISCUSSION

We present statistical analysis of an ecological experiment
evaluating the effects of omnivory on reticulate food webs.
Our approach can provide valuable insight into biological
community structure. Previous analyses of community struc-
ture are typically summarized by either univariate indices
(such as diversity or biotic integrity indices), or by ordina-
tion methods such as principal components analysis. These
measures of community structure can be difécult to interpret,
and may lose considerable information in their reduction of
dimensionality. We believe it is more informative to evaluate
biological communities directly in terms of the relative abun-
dance of the species present.

Our framework allows interpretation of statistical modeling
parameters via their direct effect on compositions. We énd this
approach much more informative than the alternative inter-
pretation on the log-odds scale. Further, we believe that the
compositional algebra is useful more generally, such as, for
interpreting differences between compositions, or parameter
estimates from multinomial logistic regression.

While the logistic normal distribution èexibly accommo-
dates complicated covariance structure in general composi-
tions, it exhibits a number of weaknesses. This distribution
does not have “nice” mathematical properties of closure when
combining elements of a composition (amalgamation), nor
when marginalizing over a component. These do not appear to
be serious limitations in the applications of the model. Alter-
native statistical models for compositional data include the
Dirichlet distribution (Johnson and Kotz 1972), and the Sƒ dis-
tribution (Barndorff-Nielsen and Jørgensen 1991). Although
both models exhibit attractive mathematical properties, nei-
ther allows modeling of the covariances between composi-
tional elements. In both cases, the covariance is determined
by the summation constraint. A novel approach, suggested
by Stephens (1982), treats the square roots of proportions as
directional data and uses the von Mises spherical distribution
to model the compositions. This model appears to be used
infrequently in applications, perhaps because of the relative
complexity of the von Mises distribution. For an alternative
approach to multivariate count data based on the log-normal
Poisson distribution, see Aitchison and Ho (1989).

A serious shortcoming common to these compositional
models is that all elements are required to be nonzero. A zero
proportion actually results in a 4kƒ 15 component assemblage
(in the 4k ƒ 25-dimensional simplex). Further, the ”4¢5 trans-
formation is not deéned when one or more components are
zero. This restriction of no “structural zeros” may be a severe
limitation in applications where one or more components are
known to be absent, or where inference of absence is impor-
tant.

More work is also needed in extending analyses to k > 3
categories. While the algebra and modeling methods apply
to an arbitrary number of groups, graphical methods are not
easily generalized. We are working to extend the ternary dia-
gram (2-dimensional simplex) to higher dimensions using a
dynamic graphics environment. (Xgobi, Swayne, Cook, and
Buja 1991). In addition, Billheimer (2001) demonstrates a
method for static viewing of higher dimensional compositions.
Such methods, coupled with the norm deéned in Section 3,
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Benthic invertebrates  
in estuary

EMAP estuaries monitoring program: 
Delaware Bay 1990. 25 locations, 3 grab 
samples of bottom sediment during 
summer
Invertebrates in samples classified into

– pollution tolerant

– pollution intolerant

– suspension feeders (control group)



Site j, subsample t

θj ~ CAR process
 zjt ∼ LN(θ j + βx j,Ψ)

E(θ j θ− j ) = µ +
λ

nj
(θk

k∈N(j)
∑ − µ)

Var(θ j θ− j ) =
Γ

nj

standardized
covariate





Effect of salinity



Tolerant

Intolerant Suspension

•

95% Credible Region for Salinity Regression Composition

(0.34,0.38,0.28).
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