

Modeling compositional data

Background

NAPAP, 1980's

Workshop on biological monitoring, 1986

Dirichlet process: Gary Grunwald, 1987

Current framework: Dean Billheimer, 1995

Other co-workers: Adrian Raftery, Mariabeth Silkey, Eun-Sug Park

Compositional data

Vector of proportions

$$z = (z_1,...,z_k)^T$$
 $z_i > 0$ $\sum_{i=1}^{k} z_i = 1$ $z \in \nabla^{k-1}$

Proportion of taxes in different categories Composition of rock samples Composition of biological populations Composition of air pollution

The spider plot

(0.40,0.20,0.10,0.05,0.25)

An algebra for compositions

Perturbation: For $\xi, \alpha \in \nabla^{k-1}$ define $\xi \oplus \alpha = \begin{pmatrix} \frac{\xi_1 \alpha_1}{k}, ..., \frac{\xi_k \alpha_k}{\sum_{i=1}^{k} \xi_i \alpha_i} \\ \sum_{i=1}^{k} \xi_i \alpha_i & \sum_{i=1}^{k} \xi_i \alpha_i \end{pmatrix} \in \nabla^{k-1}$ The composition $\iota = \begin{pmatrix} \frac{1}{k}, ..., \frac{1}{k} \end{pmatrix}$ acts as a zero, so $\xi \oplus \iota = \xi$. Set $\xi^{-1} = \begin{pmatrix} \frac{1}{\xi_1}, ..., \frac{1}{\xi_k} \end{pmatrix}$ so $\xi \oplus \xi^{-1} = \iota$.

Finally define $\xi - \eta = \xi \oplus \eta^{-1}$.

The logistic normal

If
$$\operatorname{alr}(z) = \left(\log \frac{z_1}{z_k}, ..., \log \frac{z_{k-1}}{z_k}\right)^T \sim MVN(\mu, \Sigma)$$

we say that z is *logistic normal*, in short Z ~ LN(μ , Σ).

alr has a unique inverse.

Other distributions on the simplex:

Dirichlet — ratios of independent gammas

"Danish" — ratios of independent inverse Gaussian

Both have very limited correlation structure.

Scalar multiplication

Let a be a scalar. Define

$$\boldsymbol{\xi} \otimes \mathbf{a} = \left(\frac{\boldsymbol{\xi}_{1}^{a}}{\sum \boldsymbol{\xi}_{i}^{a}}, \dots, \frac{\boldsymbol{\xi}_{k}^{a}}{\sum \boldsymbol{\xi}_{i}^{a}}\right)$$

 $(\nabla^{k-1}, \oplus, \otimes)$ is a complete inner product space, with inner product given, e.g., by $\langle \xi, \eta \rangle = a lr(\xi)^T N^{-1} a lr(\eta)$ N is the precision matrix N=I+jj^T j is a vector of k-1 ones.

$$|\xi|| = \langle \xi, \xi \rangle$$
 is a norm on the simplex.

The inner product and norm are invariant to permutations of the components of the composition.

Some models

Measurement error:

compositions

Correspondence in Euclidean space:

$$\mu_{j} = \beta_{0} + \beta_{1} (\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$alr^{-1}(\mu_{j}) = alr^{-1}(\beta_{0}) \oplus alr^{-1}(\beta_{1}) \otimes (\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$\xi_{j} \qquad \xi \qquad \gamma \qquad \mathbf{u}_{j}$$

Some regression lines

AR parameter = 0.2

AR parameter = 0.6

AR parameter = 0.95

AR parameter = 1

A source receptor model

Observe relative concentration Y_i of k species at a location over time.

Consider p sources with chemical profiles θ_j . Let α_i be the vector of mixing proportions of the different sources at the receptor on day i.

$$\begin{split} & \mathsf{E}\mathsf{Y}_{i} = \sum_{i=1}^{p} \alpha_{ij} \theta_{j} = \Theta \alpha_{i} \\ & \mathsf{Y}_{i} = \Theta \alpha_{i} \oplus \varepsilon_{i} \\ & \Theta \sim \mathsf{LN}, \, \alpha_{i} \sim \mathsf{indep} \, \mathsf{LN}, \, \varepsilon_{i} \sim \mathsf{zero} \, \mathsf{mean} \, \mathsf{LN} \end{split}$$

Juneau air quality

50 observations of relative mass of 5 chemical species. Goal: determine the contribution of wood smoke to local pollution load.

Prior specification:

$$f(\Theta, \alpha_{i}, \varepsilon_{i}, \mu_{\alpha}, \Gamma, \Sigma_{\varepsilon}) = f(\alpha_{i} | \mu_{\alpha}, \Gamma) f(\varepsilon_{i} | \Sigma_{\varepsilon}) f(\mu_{\alpha}) f(\Gamma) f(\Sigma_{\varepsilon})$$

Inference by MCMC.

Wood smoke contribution

Wood smoke proportion

Posterior source profiles

State-space model

Space-time model of proportions State-space model:

 z_j unobservable composition $\sim LN(\mu_j, \Sigma_j)$ y_j k-vector of counts $\sim Mult(\sum_{i=1}^{k} [y_j]_i, z_j)$

Inference using MCMC again

Stability of arthropod food webs

- Omnivory thought to destabilize ecological communities
- Stability: Capacity to recover from shock (relative abundance in trophic classes)
- Mount St. Helens experiment: 6 treatments in 2-way factorial design; 5 reps.
- Predator manipulation (more omnivores, more specialists, control)
- Vegetation disturbance (50% reduction, control)

Count anthropods, 6 wks after treatment. Divide into specialized herbivores, general herbivores, predators.

Manipulated species

Omnivore: Wolf spider

Specialist predator Big-eyed bug

Vegetation

fireweed

pearlyeverlasting

Specification of structure

 Σ is generated from independent observations at each treatment mean depends only on treatment

Interaction effect

ANOVA interaction effect $Z_{ij} - \overline{Z}_{i.} - \overline{Z}_{j.} + \overline{Z}_{..}$ alr inverse to get $\xi_{ij} - \overline{\xi}_{i.} - \overline{\xi}_{j.} \oplus \overline{\xi}_{..}$

Benthic invertebrates in estuary

EMAP estuaries monitoring program: Delaware Bay 1990. 25 locations, 3 grab samples of bottom sediment during summer

Invertebrates in samples classified into

-pollution tolerant

–pollution intolerant

-suspension feeders (control group)

Site j, subsample t $z_{jt} \sim LN(\theta_{j} + \beta x_{j}, \Psi)$ covariate $\theta_{j} \sim CAR \text{ process}$ $E(\theta_{j} | \theta_{-j}) = \mu + \sum_{k \in N(j)} \frac{\lambda}{n_{j}} (\theta_{k} - \mu)$ $Var(\theta_{j} | \theta_{-j}) = \frac{\Gamma}{n_{j}}$

Effect of salinity

95% Credible Region for Salinity Regression Composition

Spatial Dependence Parameter

95% Prediction Regions for Hold-out Sub-Sample Compositions

95% Prediction Region Site 20

95% Prediction Region Site 23

