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Perspective: 15t and 2"d order stationarity is almost never a
realistic assumption for any environmental monitoring data,
except at small spatial scales.

Objectives for approaches to nonstationary spatial covariance
modeling.

» Characterizing spatially varying (locally stationary)
anisotropic structure.

» Scientific understanding/representation of covariance
structure—not just a method of providing covariances for
kriging.

Capable of:

¢ reflecting effects of known explanatory environmental
processes such as transport/wind, topography, point sources

*» modeling effects of known explanatory environmental
processes




Objectives (cont.)

» Application to purely spatial problems and/or problems with data
sampled irregularly in space and time

» Application in context of dynamic models for space-time structure

> Application to “large” problems/data sets

“+ Diagnostics for local and large-scale correlation structure:
o is the spatial structure “right”
o is the nature/degree of nonstationarity (smoothness) right?

+ Evaluation of uncertainty in estimation (interpolation) of
spatial covariance structure

“ Incorporation in an approach to spatial estimation accounting
for uncertainty in estimation of (parameters of) spatial covariance
structure



Selected classes of methods:

Spatial deformation models (Sampson & Guttorp, Damian,
Perrin, Meiring, Monestiez, Schmidt & O’'Hagan, Fouedjio, ...)

Process convolution models (Higdon, Swall & Kern, Calder, ...;
Paciorek & Schervish, Risser & Calder)

Kernel/smoothing methods (Fuentes, ...)
Models with covariates (Reich et al., Schmidt et al.)

Basis function methods, including EOF, Karhunen-Loeve, and
wavelets (Nychka, Wikle, Pintore & Holmes, ...)

MDS-related dimension expansion (Bornn et al.)

See “Constructions for Nonstationary Spatial Processes”, Chap 9 in 2010 Handbook
of Spatial Statistics, eds. Gelfand, Diggle, Fuentes, Guttorp.

This week we will review some basics and then present our approaches to spatial
deformation models. Next week we will discuss other models with a focus on
process convolution models and a new R package for these models.

Note: There is also a spectral approach to nonstationary spatial processes that
provides a test for nonstationarity in terms of an assessment of interaction between
location and frequency.



Review: Descriptive characteristics of (stationary) spatial
covariance expressed in a variogram

The spherical correlation
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Geometric anisotropy

It C(x,y)=C(|x—»|) we have an isotropic
covariance (circular isocorrelation curves).

+ If C(x,y)=C(|Ax— Ay|) foralinear
transformation A, we have geometric anisotropy
(elliptical isocorrelation curves).

- General nonstationary correlation structures are
typically locally geometrically anisotropic.



Nonstationary spatial covariance:

Basic idea: the parameters of a local variogram
model---nugget, range, sill, and anisotropy---vary
spatially.

Look at some pictures of applications from
methodology publications.



Swall & Higdon. Process convolution approach,
Soil contamination example --- Piazza Rd site.
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Swall & Higdon. Process convolution approach,
Posterior mean and covariance kernel ellipses.
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Paciorek & Schervish, 2006 —
Colorado 1981 annual precip (log)
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Paciorek & Schervish, 2006 —
kernels (ellipses of constant Gaussian density) representing
estimated correlation structure
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The deformation idea

In the geometric anisotropic case, write

CCe,»)=C(|f )= SO

where f(x) = Ax. This suggests using a general
nonlinear transformation

2 d
f: RM—>R
“G-plane” - “D-space”
Usually d =2 or 3.
We do not want / to fold.
Remark: Originally introduced as a multidimensional scaling

problem: find Euclidean representation with intersite distances
monotone in spatial dispersion, D(x,y)



Space-time Model with Spatial Deformation

Damian et al., 2000 (Environmetrics), 2003 (Journal of Geophysical Research)

Z(x.t) = p(x,0)+v(x)” H, (x)+&(x.1)

u(x,t) spatio-temporal trend
parametric in time; mv spatial process

v(x) temporal variance at x,
log-normal spatial process

g(x,t) msmt error and short-scale variation
N(0,5?), independent of H, (x)

H (x) mean O, var 1, 2" -order cont. spatial process
C(x,y)=Cov(H (x),H,(y)) > 1.

X—y

JVEIv(O)C(x,y) x=y
v(x)+o. xX=y

Cov(Z(x,t),Z(y,t)) = {



Model (cont.)

H (x) mean 0, var 1, 2"-order cont. spatial process
Cov(H, (x),H,(y)—=—1.

Cor(H,(x),H,(»)=p, (| ()= £()])

f:G — D smooth, bijective
(Geographic — Deformed plane)

p,(d) isotropic correlation function

in a specified parametric family
(exponential, power exp, Matern)

i.e. The correlation structure of the spatial process is
an (isotropic) function of Euclidean distances between
site locations after a bijective transformation of the

geographic coordinate system.



PD. Sampson et al. / Atmospheric Environment 45 (2011) 6593—6606
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Fig. 1 Monitoring sites and subject home locations in the Los Angeles region.



P.D. Sampson et al. / Atmospheric Environment 45 (2011) 6593—6606
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Fig. 4. Smoothed empirical orthogonal basis functions for log-transformed two-week

average concentrations of PM2.5 in the Los Angeles area. The first smoothed compo-
nent explains 27.5% of the variation in the matrix of log-transformed 2-week average
PM2.5 concentrations while the second component explains only 9.4% of the variation.
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Fig. 7. Spatial structure of the spatio-temporal residuals before (left) and after (right) ransformation using the Sampson—Guttorp method to account for nonstationarity.



An alternative to a gridded map of ellipsoids for local

anisotropy is a “biorthogonal grid” which integrates the
principal axes of the local affine derivative of the deformation.
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Back to the model:

The spatial deformation f encodes the nonstationarity:
spatially varying local anisotropy.

We model this in terms of observation sites x ,x,,...,X, as a pair
of thin-plate splines:

f(x) =C+AX+WTG(X)

C + A X Linear part: global/large scale anisotropy  Cax1> Azxz

Non-linear part, decomposable into

W'o (x) components of varying spatial scale: WNxZ’ O-(X)le
ol [ es() o

o(x)=| o |H]=0
o(x-x,) “

Lots of model parameters! [ :1¢,A,W}, 11,0, (75, V. {,a,é,&z}



More on the equations of the thin-plate spline

@)= (£, /() : R? 5 R?
minimizing "bending energy" subject to interpolation constraints
fj(xl.)zfl.j,ISiSN;j:I,L
is an equation of the form
f(x)=c+Ax+W'o(x)
where the coefficients W satisfy I’ W=0, X' W =0.
l.e. the columns W, and W, of W are vectors in the subspace
spanned by {1,X,,.X,}:V = {v eRY v '1=0,v"X,=0,v"X, = O}.

The system of equations for computation of a thin-plate spline is

[ = | S 1 X || W
o l=l 17 o o ¢’ |, where S is N x N with elements
0] [ x" 0 0 || AT
r

S,=0(x,—x,), and the "bending energy" is J( /)= tr(W'SW)



Theoretical properties of the deformation model

Identifiability
Perrin and Meiring (1999): Let

D(x,y) =y (|[f(x)—f(y)

If (1) f and f 'are differentiable in R”
(2) y(u) is differentiable for u>0

then (f,) is unique, up to a scaling for 7
and a homothetic transformation for F
(rotation, scaling, reflection)

), (x,¥)eR"xR"



Implementation 1. Weighted least squares

aN

Consider observations at sites x,, ...,x,. Let Cl.j

be the empirical covariance between sites x; and x..
Minimize

©.1) S, (€, (|7 - rx):6)) + A7)

where J(f) is a penalty for non-smooth transformations, such as
the bending energy

il (P rY 2r Y (a2f)
/(=] (5’362] +2(5’x3y] +(3ij e

When 1 is computed as a thin-plate spline, the minimization
above can be considered in terms of the deformed
coordinates, E = f(x),0r the parameters of the analytic
representation of the thin-plate spline, {c, A, W}



Implementation 2. Bayesian

Likelihood:
L(S12)=Qx|Z) " " exp {—gtrz_lS}

Nonlinear part: Bending energy Prior:

1 <,
P(W) o< exp(— Z—ZWiSWi]
T =1
Linear part:
—fix two points in the G-D mapping

—put a (proper) prior on the remaining two parameters

Posterior computed using Metropolis-Hastings

Can get idea of reasonable values for t parameter for the
prior by simulating random deformations from the prior.

*** See closely related approach of Alex Schmidt using a
Gaussian process prior.



Computation

Metropolis-Hastings algorithm for sampling from the highly
multidimensional posterior. (Naive implementation not very well
behaved due to correlation among a very large number of
parameters.)

Given estimates of D-plane locations, f(x;), the transformation is
extrapolated to the whole domain using thin-plate splines.
(Visualization and diagnostics.)

Predictive distributions for

(a) temporal variance at unobserved sites,

(b) the spatial covariance for pairs of observed and/or
unobserved sites,

(c) the observation process at unobserved sites.



Problems with the WLS and Bayesian
computational approaches

There are serious practical problems with the approaches to
deformation mapping presented here.

« They are computationally intensive, involving constrained
or regularized optimization of approximately 2 parameters
per spatial monitoring site. Large problems are not
practical.

 Whether parameterized in terms of the coefficients W of the
radial basis functions (d? log d), or the coordinates of the D-
plane representation,

o the WLS or likelihood objective functions are likely to
have multiple local maxima,

o inthe case of Bayesian estimation by MCMC, the
parameters are highly correlated, making convergence of
the Markov Chain problematic



Implementation 3. Reduced rank thin-plate
spline mappings via partial warps

A more efficient and practical approach is to

« reparameterize the spline in terms of coefficients of a set
of orthogonal spatial basis functions

+ reduce the dimension of the problem by selecting/fitting a
subset of the basis functions. We do this using an L1
penalty (instead of the TPS bending energy).

Thin-plate spline deformations were introduced in
morphometrics (shape analysis) by Bookstein (1986), where
he also proposed the decomposition of deformations
(warps) according to “principal warps” derived from
eigenvectors of the bending energy matrix.



Partial warps

 Recall: thin-plate spline decomposes shape
difference mnto global and local components:
— Uniform, affine component 1s a tilted plane viewed
1N perspective.
— Non-uniform, non-affine component characterizes
regional deformations (warping of the thin plate).
* Characterized by bending-energy matrix.

— Total deformation 1s sum of the two components.

Reference form Total transformation Affine component Non-affine component

EWREEREE
E;T\ [
\\ \\‘1 T
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» Non-uniform portion of deformation:

— Describes changes that vary in nature and extent
across the organism.

— Can be further decomposed mnto set of orthogonal
components: partial warps.
» Eigenvectors of bending-energy matrix.

— Characterize changes at progressively smaller,
more localized spatial scales:

» 1t partial warp describes change at largest scale
(lowest bending energy).

« 27 partial warp describes change at smaller scale.
* Etc.

— For k landmarks, can calculate £-3 partial warps.
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Recall the algebra of thin-plate splines, driven by the the
matrix § containing the terms & (x, —x,) = (x, —x;)" log(x, — x,)

Partial warps can be computed as follows:

1. Compute the upper n x n component of the inverse of the
“1"“ matrix of the system of linear equations of the thin-

plate spline. This is the bending energy matrix B.

1. Compute the eigenvectors of B, the principal warps,

g-Jj=L....n

1. Partial warps are linear combinations of of these (spatial)
eigenvectors, Z B.g; , where B ; is a 2-vector of
coefficients for the elements of the 2D mapping.

2. The image coordinates for the thin-plate spline in terms of
partial warpsis Y =c+Ax+()f3 i8,)0(x)
where ¢ (x)=(0(x—x,),...,0(x—x,))’




The s replace the coefficients W in the previously introduced
equations of the thin-plate spline: (these egns were shown above)

@)= (£, /() : R? 5 R?
minimizing "bending energy" subject to interpolation constraints
fi(x)=6,,1<i<N; j=12,
is an equation of the form
f(x)=c+Ax+W'o(x)
where the coefficients W satisfy I’ W=0, X' W =0.
l.e. the columns W, and W, of W are vectors in the subspace
spanned by {1,X,,.X,}:V = {v eRY v 1=0,v"X, =0,V X, = O}.

The system of equations for computation of a thin-plate spline is

[ = | S 1 X || W
o l=l 1 o o I |, where S is N x N with elements
O] [ X" 0 0 || AT
r

S,=0(x,—x,), and the "bending energy" is J( /) = tr(W'SW)



Implementation 3. Reduced rank thin-plate
spline mappings via partial warps

L(S,2) = 2r|Z))~"T-D/2exp {— ; tr(Z‘ls)}

where X is a function of the parameters c, A, and g in
the equation for the TPS:

Y=c+Ax+ (Zﬁjgj)d(x)

We optimize L(S,X)+ A||Bll1-

We effectively reduce the dimensionality of the
solution by removing partial warps corresponding to
eigenvectors g; with coefficients shrunk to zero.



Following are a series of plots to illustrate

+ the definition of the eigenvectors of the bending energy
matrix for a configuration of 7 points

- Affine and partial warps corresponding to the above
eigenvectors, with each warp illustrated

- for deformations in the ‘x’ and ‘y’ directions separately,
and

» for two different coefficient multipliers (‘scale’)



Principal Warps: Bending energy matrix eigenvectors
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Return to the application to PM2.5 data at 24 sites in the region of
southern CA around Los Angeles and Riverside. Analysis based
on time series of about 150 2-week average concentrations from
2000 through 2006.

We illustrate below the fitted deformation and spatial correlation
function based on maximum likelihood with an L1 constraint
chosen ‘by eye’. First, the fit in the published paper computed
(with great effort!) by the Bayesian algorithm
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Covariance (top) and
Correlation (bottom)
VS.

G-plane dist (left) and
D-plane dist (right)
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Examine the decomposition of the fitted deformation in terms
of partial warps and the effect of the L1 penalty in zeroing out
any contributions from all the higher bending energy (smaller

spatial scale) warps.
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Among work to be considered:

1. Work to be done to facilitate choice of parameter for the L1
penalty, possibly in a Bayesian framework.

2. Incorporate this deformation model in a full spatio-temporal
model with mean structure.

3. Further investigate and demonstrate the application to
spatial only problems.

4. Incorporate covariate in the partial warp modeling.
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