Space-Time Modeling
Part |

this presentation borrows from presentations of
Catherine Calder, Peter Guttorp, Johan Lindstrom, and
Paul Sampson



Space-Time Modeling

Important resources to which we will give little attention.
Any one of these could provide the basis for a full
course.
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Environmental Space-Time

Authors: Le, Nhu D., Zidek, James V.

This book provides a broad introduction to the fascinating subject of environmental space-time
processes; addressing the role of uncertainty. Within that context, it covers a spectrum of technical
matters from measurement to environmental epidemiology to risk assessment. It showcases non-
stationary vector-valued processes, while treating stationarity as a special case. The contents
reflect the authors’ cumulative knowledge gained over many years of consulting and research
collaboration. In particular, with members of their research group, they developed within a
hierarchical Bayesian framework, the new statistical approaches presented in the book for
analyzing, modeling, and monitoring environmental spatio-temporal processes. Furthermore they
indicate new directions for development.

This book contains technical and non-technical material and it is written for statistical scientists as
well as consultants, subject area researchers and students in related fields. Novel chapters present
the authors’ hierarchical Bayesian approaches to

e spatially interpolating environmental processes

¢ designing networks to monitor environmental processes
e multivariate extreme value theory

¢ incorporating risk assessment.

In addition, they present a comprehensive and critical survey of other approaches, highlighting
deficiencies that their method seeks to overcome. Special sections marked by an asterisk provide
rigorous development for readers with a strong technical background. Alternatively readers can go
straight to the tutorials supplied in chapter 14 and learn how to apply the free, downloadable
modeling and design software that the authors and their research partners have developed.
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Nocl Cressie + Christopher K. Wikle

2011

Topics of coverage include:

« Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal
function analysis, and LISAs

« Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes

« Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and
nonlinear DSTMs and computational algorithms for their implementation

« Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on
real-world environmental data
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Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological Studies

Spatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the
interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for
collaboration between statisticians and environmental epidemiologists, the book links recent developments in spatio-
temporal methodology with epidemiological applications. Drawing on real-life problems, it provides the necessary
tools to exploit advances in methodology when assessing the health risks associated with environmental hazards.
The book’s clear guidelines enable the implementation of the methodology and estimation of risks in practice.

Designed for graduate students in both epidemiology and statistics, the text covers a wide range of topics, from an
introduction to epidemiological principles and the foundations of spatio-temporal modeling to new research
directions. It describes traditional and Bayesian approaches and presents the theory of spatial, temporal, and spatio-
temporal modeling in the context of its application to environmental epidemiology. The text includes practical
examples together with embedded R code, details of specific R packages, and the use of other software, such as
WinBUGS/OpenBUGS and integrated nested Laplace approximations (INLA). A supplementary website provides
additional code, data, examples, exercises, lab projects, and more.

Representing a major new direction in environmental epidemiology, this book—in full color throughout—underscores

the increasing need to consider dependencies in both space and time when modeling epidemiological data. Students
will learn how to identify and model patterns in spatio-temporal data as well as exploit dependencies over space and

time to reduce bias and inefficiency.

Many resources available at
https://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/
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R package:
spBayes

Hierarchical Modeling and Analysis for Spatial Data,
Second Edition
Sudipto Banerjee, Bradley P. Carlin, Alan E. Gelfand

Hardback eBook eBook Rental
$104.95 $94.46 from $40.00

September 12, 2014 by Chapman and Hall/CRC

Reference - 584 Pages - 177 Color lllustrations

ISBN 9781439819173 - CAT# K11011

Series: Chapman & Hall/CRC Monographs on Statistics & Applied Probability

e Presents a fully model-based approach to all areas of spatial statistics, including
point level, areal, and point pattern data

® Incorporates four new chapters, along with a host of updates and additions

e Offers a practical introduction to point-referenced modeling as well as some
theory for those who would like more insight into the issues that arise in the
geostatistical setting

e Uses up-to-date WinBUGS programs and R packages for exploratory data
analysis and hierarchical modeling

* |ndicates advanced/theoretical material that may be skipped by readers wanting
to focus on more practical aspects

® Provides datasets and code on a supplementary website

Summary

Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis
and Modeling

Since the publication of the first edition, the statistical landscape has substantially
changed for analyzing space and space-time data. More than twice the size of its
predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition
reflects the major growth in spatial statistics as both a research area and an area of
application.
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Analyzing spatio-temporal data with R:
Everything you always wanted to know — but were
afraid to ask

Titre: Donnees spatio-temporelles avec R :
tout ce que vous avez toujours voulu savoir sans jamais avoir osé le demander

RESSTE Network et al.!-2

Abstract: We present an overview of (geo-)statistical models, methods and techniques for the analysis and prediction
of continuous spatio-temporal processes residing in continuous space. Various approaches exist for building statistical
models for such processes, estimating their parameters and performing predictions. We cover the Gaussian process
approach, very common in spatial statistics and geostatistics, and we focus on R-based implementations of numerical
procedures. To illustrate and compare the use of some of the most relevant packages, we treat a real-world application
with high-dimensional data. The target variable is the daily mean PM( concentration predicted thanks to a chemistry-
transport model and observation series collected at monitoring stations across France in 2014. We give R code covering
the full work-flow from importing data sets to the prediction of PM,, concentrations with a fitted parametric model,
including the visualization of data, estimation of the parameters of the spatio-temporal covariance function and model
selection. We conclude with some elements of comparison between the packages that are available today and some
discussion for future developments.



Analyzing spatio-temporal data with R:
Everything you always wanted to know — but were
afraid to ask

Titre: Donnees spatio-temporelles avec R :
tout ce que vous avez toujours voulu savoir sans jamais avoir osé le demander m Introduction

RESSTE Network et al.!2 v u Handling large spatio-temporal datasets with R
m French pollution data

ﬂ Importing the pollution files: how can R efficiently handle large
tables of data?

m Typing spatio-temporal pollution data with spacetime
v ﬂ Visualizing spatio-temporal data and exploring their dependencies
D Plotting spatio-temporal data
m Exploring spatio-temporal dependencies
ﬂ Shiny/Leaflet application for spatio-temporal data
v m Modeling and predicting spatio-temporal processes
m Modeling the deterministic part
> D Modeling the covariance structure
> m Prediction, kriging and cross-validation
> ﬂ Validation tools
> D Kriging the PM_10 concentration data
m Discussion
m Acknowledgments

ﬂ References



Spatio- Temporal Modeling

SPACE-TIME DOMAINS

» Here, we assume the spatial domain is continuous.

1. continuous space and continuous time — RY x R (= RI*1)

— Continuous (or geostatistical) space-time models

2. continuous space and discrete time — RY x Z

— Continuous space with Discrete temporal models, or
— Dynamic Space-Time Models

While there is considerable literature on dynamic models (see
the texts by Le and Zidek, 2006, and Bannerjee et al 2014), we
will not address these here.



Spatio- Temporal Modeling
CONTINUOUS SPACE-TIME MODELS

» Consider a continuous spatio-temporal random process
Y(s,t) = pu(s,t) +€(s, t), (s,t) € R x R

which is indexed by s € R? in space and t € R in time.

— typically, we assume Y(-,-) is Gaussian

RYx R = RI*+1 ...

- by separating a vector into its spatial and temporal
components, we can use standard spatial covariance functions

- results on kriging and Gaussian process modeling in Euclidean
space hold



Spatio-Temporal Modeling

Obviously, all modeling and computation is dependent on how
one specifies yi(s,t) and €(s, t). In general terms, there is a
question of how much structure one attempts to put into the
mean field or trend, p(s,t), which determines the stochastic
structure of €(s, t), characterized by a space-time covariance
model. Perhaps it goes without saying, but fundamental too
are the spatial and temporal scales of scientific interest for
modeling.

The nature of the spatio-temporal design can also influence
modeling and analysis strategies.
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» For data sparse in space but dense in time, as is typically the
case with, for example, air pollution and meteorological
monitoring networks, one may adopt the framework of
multivariate time series analysis, although that seems not to be

too common.

» For data dense in space and sparse in time, thus providing
snapshots of the spatio-temporal field, one may work in a
multivariate geostatistical setting where replications in time are
considered as separate variables. This too does not seem to
common.
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» The above strategies fail when data are dense in space and
time, but perhaps not regular due to missing data and/or a
combination of monitoring networks. Recently we have had to
address data from “mobile monitoring” with sensors on
vehicles or even mobile phones. These problems are
challenging and require carefull consideration of model
assumptions, especially with regard to the spatial and temporal
scales of analysis, and computational strategies

» The space-time mean structure

Considering only linear models, and covariates indexed in space
(e.g., elevation, or distance to nearest road), in time (perhaps
an area-wide seasonal effect or meteorological variable), or in
space x time (including spatially resolved meteorological
factors), the possibilities include (but are not limited to)
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- Separable or Additive models in space and time,
u(s, t) = X(s)5® + X(t)p",

- Non-separable functions of X(s) and X(t), which may be
specified in terms of coefficients 3° of spatial covariates X(s)
varying in time, and/or coefficients ' of temporal covariates
X(t) varying in space (random coefficient models).

- and non-separable mean structure in terms of spatiotemporal
covariates, X(s, t), perhaps

u(s, t) = X(s)B° + X(t)5" + X(s, t)5*".



Spatio- Temporal Modeling

Properties of space-time covariance functions

For all (s1,t;) and (s,, 1) € RY x R,
1. Separable Covariance Function

{Y(Sl, tl), Y(SQ, tg)} = Cs(Sl,Sg) . CT(tl, tg)

2. Fully Symmetric Covariance Function

{Y(h tl)v Y(Q: t2)} — {Y(h t2)> Y(Qv tl)}

3. Stationary Covariance Function

{Z(1> tl)’ Z(Q’ t2)} - (1_2’ [1— t2)
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Recall...

1. The class of stationary covariance functions is identical to the
class of symmetric positive definite functions.

2. Products, sums, and convex combinations of positive definite
functions are positive definite.
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» Typically, parametric classes of stationary space-time covariance
functions are constructed as sums or products of

1. Continuous space-time covariance functions
— see the following slides

2. Space-time nugget effect
C(h, u) = 35(,,,“):(0,0) + bdp—o + cdy—o, (h, U) c RY x R

where a, b, and ¢ are nonnegative constants
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» Separable (continuous) covariance functions

C(h,u) = Cs(h) - Cr(u), (h,u) e R xR

For example, take
Cs(h) = cs({[hl[)

and
Cr(u) = cr(|u]),

where cs(-) and cr(-) are (possibly distinct) parametric classes
of isotropic covariance function such as

— Matérn

— Powered exponential
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» Non-separable (continuous) covariance functions

Bochner's Theorem
Suppose that C is a continuous and symmetric function on R9 x R. Then
C is a covariance function if and only if it is of the form

C(h,u) = / / e MW+ gr . 1), (h,u) € RY x R,

where F is a finite, non-negative, and symmetric measure on RY x R.

If C is integrable, the spectral density f corresponding to F
exists and Bochner's Theorem reduces to

C(h, u) = / / e (NW+u) £ TVdwdr, (h,u) € RY x R
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1. Cressie and Huang (1999)

Theorem
Suppose that C is a continuous, bounded, integreble, and symmetric
function on R? x R. Then C is a stationary covariance if and only if

plw,u) = /e_ih,wC(h, u)dh, u e R,

is positive definite for almost all w € RY

C(h,u) = /e”’""p(w, u)dw, (h,u) € R xR

where p(w, u), u € R, is a continuous positive definite function
for all w € RY.
— requires closed-form Fourier inversion in RY.
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2. Gneiting (2002)

C(h,u) = ¢(Ui)d/2g0 (JAZ’JLQ C(h,u) eRYx R

where ©(r), r > 0, is a completely monotone function and
W(r), r > 0, is a positive function with a completely monotone
derivative
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Example:

If o(r) = o?exp(—cr?) and ¥(r) = (1 + ar®)?, then

1

o cl[h[*”
C(h,u) = (1 + a|ul2)Bd/2 eXP (—(1 4+ 3|u|2a)ﬁv)

a and ¢ are nonnegative scale parameters of time and space,
respectively

a and v € (0,1] are smoothness parameters
B € (0,1] is a space-time interaction parameter

o2 is the variance of the space-time process
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)

//

Figure 1. Contour Plots of the Space-Time Covariance Function (13) Versus the Modulus of the Spatial Lag, |hl|, and the Temporal Lag, lul.
The functions attain their maximum, C(0.0) = 1, at the origin, and the contour lines are equidistantat 95..9,. .., .05 Upperleft a=1/2, y=1/2
Upperright: « =1/2.y=1. Lower left: a =1,y=171/2. Lowernght a=1.y=1.

(Gneiting, 2002)
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3. Mixtures of separable covariance functions

Theorem

Let 1u be a finite, nonnegative measure on a non-empty set ©. Suppose
that for each 6 € ©, Cg and C? are stationary covariances on RY and R,
respectively, and suppose that C2(0)C%(0) has finite integral over ©.
Then

Clh,u) = [ CEMCHu)du(6), (hu) € RY x B
is a stationary covariance function on RY x R

Examples:
- De laco et al. (2001)

C(h,u) = aC2(h)CY(u)+a1Ci(h)+a,C%(u), (h,u) € RYxR

where ag, a;, and a, are nonnegative coefficients
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- De laco et al. (2002)

—  is a gamma distribution on © = [0, o)
— both C& and C% are of powered exponential type

(81

+

h

d

u

b
where a € (0,2], € (0,2], y>0,a>0,b>0,and 0 >0

B\ —7
:>C(h,u):02(1—|— ) , (hyu) eRIx R
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» Non-fully symmetric (continuous) covariance functions

- Lagrangian reference frame approach
[Cox and Isham, 1988; Ma, 2003; Gneiting et al., 2007]

C(h,u) = E[Cs(h— Vu)], (h,u) e R xR

where V € RY is a random velocity vector describing the
time-forward movement of the spatial field

— Special Case: V = v, where v is constant (frozen field model)

- Diffusion equations, SPDE approaches
[Jun and Stein, 2004; Stein, 2005; and others]



Lecture 8a: Spatio- Temporal Processes

IRISH WIND DATA EXAMPLE
[Haslett and Raftery, 1989]

» Daily average wind speed at
11 meteorological stations

» Training period: 1961-1970
Test period: 1971-1978

» Data transformations:

1. take square root

2. fit and remove a common
seasonal component

3. remove station-specific
means

= velocity measures

.
505.
A

(Haslett and Raftery, 1989)
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» Exploratory data analysis [Gneiting et al., 2007]
- Purely spatial and purely temporal empirical correlations

Purely Spatial Correlation Function

§ o
: .
8 ©
; 1(;0 2;0 3(;0 4(1)0
Distance in km
(Gneiting et al., 2007)
Cs(h) = (1—v)exp(—c||h||)+vép_g Cr(u) = (1+a|u**)71, for |u| < 3

v = 0.0415 and ¢ = 0.00128 a=0.973 and & = 0.834
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- Directional empirical correlations

Westerly Station Easterly Station WE EW
Valentia Roche’s Point A8 35
Belmullet Clones 02 .39
Claremorris Mullingar a1l 41
Claremorris Dublin 00 36
Shannon Kilkenny b1 .39
Mullingar Dublin 49 45

(Gneiting et al., 2007)
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- Differences in the west-to-east and east-to-west empirical
correlations  Evidence of asymmetry

0.05 0.10 0.15 0.20

Difference in Correlation

-0.05

T T T T T T I
0 50 100 150 200 250 300

West-East Separation (in km)

(Gneiting et al., 2007)

Temporal lag: one day (red), two day (green), three day (blue)
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emporal Processes

» Stationary space-time models for the Irish wind data

[Gneiting et al., 2007]
1. Separable

where, as before,

Csep(h, u) = Cs(h) - Cr(u)

Cs(h) = (1 —v)exp(—c||h||) +vip_g

WLS Estimates: 7 = 0.0415 and ¢ = 0.00128

Cr(u) = (1 + a|u[*®)™, for |u| < 3
WLS Estimates: 3 = 0.973 and & = 0.834
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0.6 0.8
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(Gneiting et al., 2007)

Temporal lags: zero day (black), one day (red),
two day (green), three day (blue)
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2. Fully symmetric, non-separable

 1-v c||hl| v
Crsth,v) = 1 (e"p <_(1+a|u|2a)5/2 T 1 5%h=0

where 3 € [0, 1] is the space-time interaction parameter.

WLS estimate: 3 = 0.681
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0.6 08

Fitted Correlation
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! 1 T 1
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Empirical Correlation

(Gneiting et al., 2007)

Temporal lags: zero day (black), one day (red),
two day (green), three day (blue)
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3. General (not fully symmetric, non-separable)
CSTAT(h’ U) — (1 o )‘)CFS(ha U) + )‘CLGR(ha U)
where h = (hy, hy)" and

1

Cigr(h,u) = (1 — 5|h1 — VU|)+

(The parameter v € R can be interpreted as the longitudinal
velocity.)

WLS estimate: v = 234km/d =2.71m/s



Lecture 8a: Spatio- Temporal Processes

04 0.6 0.8
1
+

Fitted Correlation

0.2

0.2 0.4 0.6 0.8

Empirical Correlation
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Temporal lags: zero day (black), one day (red),
two day (green), three day (blue)



