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The MESA Air study
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Multi-Ethnic Study of Atherosclerosis – Air 
Quality Monitoring Sites   (MESA-Air)



Spatio-temporal modeling for MESA Air

o 2005 – 2009 …
o PM2.5, NO2, NOX, BC, O3

o 2-week measurements
n Fixed Sites 

o 3 – 7 in each of 5 cities, 1 collocated with AQS site
n Home Outdoor Sites

o 1 – 3 measurements (each a 2-wk ave) from ~100 
participant residence locations in each city

n Snapshot Sites (NOX and NO2 only)
o Clusters around roadways
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Schematic of data.  Each measurement is a point in space x time.  AQS: temporally 
rich at multiple locations;  MESA Air 2005-2009: 5 fixed sites, 177 “snapshot” sites, 
Home sites (4 monitors moving from one 2-week period to another)



Outline:
1. Background, spatio-temporal monitoring data and 

model structure (EOFs and land use regressions)
2. UW spatio-temporal model and SpatioTemporal

R package
3. Model fitting procedures
4. NOx example application
5. Ozone application with CMAQ spatio-temporal 

covariate
6. Summary and development wish list.
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1.  Background: Methods in recent texts have not 
met our space-time modeling needs.
o Nhu D. Le, and James V. Zidek, Statistical analysis of 

environmental space-time processes, 2010
o Noel Cressie and Chris Wikle,  Statistics for Spatio-temporal 

data. 2011
o Sudipto Banerjee, Brad Carlin and Alan Gelfand, Hierarchical

Modeling and Analysis for Spatial Data, 2nd ed. 2015
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What we needed when we began 17 years ago was:
- Flexible statistical modeling framework accommodating 

irregular space-time monitoring data from multiple networks
- Ability to incorporate effects of spatial and/or spatio-temporal 

covariates explaining heterogeneous spatio-temporal trend at 
fine spatial scales (10s of meters)

- A correspondingly convenient/flexible software system
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Spatio-temporal models

A general spatio-temporal process:

where:
is the spatio-temporal mean field or trend,
denotes a smooth spatio-temporal underlying process,
is a gaussian noise process, that represents the spatio-
temporal measurement error (and small scale spatial 
variability).
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Strategies for spatio-temporal modeling:

n Spatial models varying (or evolving) in time, including 
“dynamic” models

n Temporal models (at monitoring sites and 
arbitrary locations) varying in space. 

n UW Spatio-temporal model
and R package SpatioTemporal adopt this 
second strategy, using a notion of temporal basis 
functions or empirical orthogonal functions.
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Examples of data series for log PM2.5 (left) and log NO2 (right)
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A spatio-temporal model based on 
exploratory EOF

o Cressie & Wikle’s chapter 5 on Exploratory 
Methods for Spatio-Temporal Data includes a 
section on Empirical Orthogonal Function (EOF) 
Analysis.

o Our modeling strategy can be viewed as a 
hierarchical statistical model built on the foundation 
of an EOF analysis, with spatio-temporal variation 
explained by spatial (geographic or land use) and 
spatio-temporal covariates.
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NO2 Time Trends in CA
o Represent time trends as combinations of smooth, temporal 

basis functions derived from the right singular vectors of an 
SVD of the AQS space x time data matrix

o Because these derive from singular vectors, they represent 
temporal structure shared across monitoring sites.

�0(s) +
nX

i=1

�i(s)fi(t) + ⌫(s, t)

2000 2002 2004 2006 2008 2010 2012

−2
−1

0
1

2

CA NO2

Trend 1
Trend 2

13



NO2 Time Trends in CA
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NO2 Time Trends in CA
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060370002:		Azusa,	Los	Angeles	county
061112002:		Simi	Valley,	Ventura	county
060591003:		Costa	Mesa,	Orange	county

𝜷𝟎 𝒔 +	&𝜷𝒊 𝒔 𝒇𝒊 𝒕
𝒏

𝒊+𝟏

+ 𝜈 𝑠, 𝑡



Smooth temporal basis functions

o The fi(t) represent the shared temporal variability in the 
monitoring observations.  These could be specified a priori 
as deterministic (e.g. sinusoids), or as done here, obtained as 
smoothed right singular vectors of the n x T data matrix on 
n sites.  But monitoring data always have missing 
observations.

o Guttorp, Fuentes & Sampson, 2006, introduced an EM-like 
algorithm for imputing missing data and computing the SVD.

o Then use smooth.spline in R to smooth the temporal 
(left) singular vectors

o Cross-validation to determine how many singular 
vectors/temporal basis functions to retain.

(Tools for these computations are provided in the SpatioTemporal package.)
16



2. UW Spatio-temporal Statistical Model

n C(s, t)  – (log) conc. at location s at time t
n – spatial random fields

o ,  i = 0,…,m
o Xi (s) – geographic (“land use”) covariates
o – spatial covariance function
o – long-term means at location s

n fi(t) – temporal trend basis functions
n – residual space-time field

C(s,t) = β0(s)+ βi
i=1

m

∑ (s) fi (t)+ν(s,t)

βi (s)
 βi (s) ∼ N Xi (s)α i ,Σ(τ i ,σ i ,ϕi )( )

Σ(τ i ,σ i ,ϕi )
β0(s)

ν(s,t)
17
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2. UW Spatio-temporal Statistical Model
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2. UW Spatio-temporal Statistical Model



Remark:

o We “assume” that the residual space-time field is 
correlated in space but independent in time.  We have 
generally not tried to fit effects of meteorological 
parameters, which drive correlated temporal 
patterns (over metropolitan spatial domains).  A 
model fit that leaves temporally uncorrelated 
residuals has implicitly accounted for effects of 
meteorological factors either in the shared 
temporal structure of the trend basis functions (if 
they are not too smooth) or the spatially correlated 
residuals.
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The “land use” regressions in the space-time model

where Xi(s) is a vector of covariates measured at 
location s.  At the U.W. we have coded as many as 
300 geographic, GIS-based covariates, including:

21

 βi (s) ∼ N Xi (s)α i ,Σ(τ i ,σ i ,ϕi )( )



Covariate Selection

o Variable selection or dimension reduction for the land 
use regressions of βi(s) on Xi(s).
n with a large number of highly correlated covariates (e.g. 

lengths of roads in buffers of 50m, 100m, 150m, … ), we 
usually choose dimension reduction 

o Partial Least Squares (PLS)
n Conceptually similar to PCA, but components computed as 

linear combinations of original covariates to maximize
covariance between Y and X.

n Typically retain small number of combinations, 1, 2, 3.
n PLS scores pre-computed from empirical estimates of βi(s).

�0(s) +
nX

i=1

�i(s)fi(t) + ⌫(s, t)
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The SpatioTemporal R package

1. Extends the model above to include spatio-
temporal covariates (we’ll see this below)

2. Evaluates predictions of long term averages using a 
cross-validation strategy accounting for the 
complex monitoring design and for temporal effects

3. Uses “smart” methods (taking advantage of block 
structure of covariance residual covariance 
matrices) to make MLE computationally feasible. 23

Lindström et al, 2014. A flexible spatio-temporal model 
for air pollution with spatial and spatio-temporal 
covariates. Environmental and Ecological Statistics.
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The SpatioTemporal R package:  Computation
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The SpatioTemporal R package:  Computation



The SpatioTemporal R package:  Computation
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The SpatioTemporal R package:  
Computation
The SpatioTemporal R package:  
Computation



SpatioTemporal R package summary:

o Maximum likelihood estimation with unbalanced spatio-
temporal response data

o Incorporates spatio-temporal covariates M(s,t), such 
as meteorology, AQ model predictions (CTM or 
CMAQ), or satellite predictions

C(s,t) = β0(t) + Σ βi(s)fi(t) + γM(s,t) + ν(s,t)

o Predictions (w/ se’s) from ML-based “universal kriging”

where           derive from ML-based kriging of these 
spatial fields and           similarly.

27

Ĉ(s0, t) = β̂0(s0 )+ β̂i
i=1

m

∑ (s0 ) fi(t)+ γM (s0, t)+ ν̂ (s0, t)

β̂i (s0 )
ν̂(s0,t)



o The current program permits only the 
coefficients βi(s), multiplying the temporal 
basis functions, to vary spatially.  There is an 
ad hoc approach to allowing the coefficient γl
to vary spatially by introducing interactions of 
Ml(s,t) with a set of basis functions for spatial 
splines, but more is possible.

28



3. Model fitting procedures:  Model Selection

o Vary model parameters
n Spatial covariance structure for the 𝛽2 𝑠

o Exponential variogram (smoothing) or Independent 
(No Smoothing)

n Number of Time Trends: 1 or 2
n Number of PLS components: 2 or 3

o Best model for each city and pollutant chosen 
by cross-validation

29



Evaluation of model predictions

o Standard cross-validation: repeatedly
1. Split data into training and test sets
2. Estimate parameters using training data
3. Predict at space-time locations of test data
Compute MSE and R2 of predicted vs. observed data

o

o measures fit to 1-1 line, not simply correlation

30

Rcv
2 = max 0, 1−MSEpred MSEobs( )



For the case of the monitoring data in MESA Air

o AQS and Fixed sites
n Leave-one-out CV

o Home sites
n 10-fold CV

o Snapshot Sites
n 10-fold CV by cluster

31



Temporally adjusted R2

u Challenging to separate the spatial and temporal 
contributions to for cross-validation of 
temporally sparse datasets like MESA Air home 
sites.  

u Lindström et al. (2013) introduced three 
temporally-adjusted adaptations of using data 
from neighboring AQS and fixed sites for the 
reference MSE instead of MSEobs in order to focus 
on spatial prediction accuracy. 

32

Rcv
2

Rcv
2



4.  NOx example
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NOX Predictions: 2000 Average
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NOX Predictions: 2000 Average
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• CMAQ chemical transport model: gridded air quality model 
predictions as a spatio-temporal covariate:
o Must map CMAQ grid predictions to point observations and 

get clever to permit coefficient γ of CMAQ predictions 
M(s,t) to vary spatially, representing sub-grid scale spatial 
variability: incorporate a LUR model for the coefficient γ.

• Satellite based aerosol optical depth (AOD) as a spatio-
temporal covariate.  Irregular gridded data full of missing data 
due to satellite path and meteorology (clouds, snow).
• Practical strategies to fill in missing data and calibrate the 

coefficient of AOD to vary spatially due to influences of 
meteorology and other factors

• Models for daily time scale, with or without incorporating 
meteorology.

5.  Gridded spatio-temporal covariates



Combining Land Use Regression and Chemical 
Transport Modeling in a Spatio-temporal Geostatistical
Model for Ozone and PM2.5 in Los Angeles, California
Meng Wang1, Paul D. Sampson2, Michael Kleeman3, Joshua P. 
Keller4, Casey Olives1, Adam A. Szpiro4, Sverre Vedal1, Joel  D. 
Kaufman1

o CTM uses deterministic equations with data on emissions, 
meteorological conditions and topographical data to 
dynamically simulate the physico-chemical processes of 
transport and atmospheric chemistry to simulate air 
pollution concentrations.

o Relatively coarse spatial resolution of a CTM (≥ 4 km) 
cannot represent concentrations at very local scales (i.e. 
meters) for exposure assessment. 
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Details

o UC-Davis-California Institute of Technology (UCD-CIT) air 
quality model to simulate O3 (8-hour averaged) and daily 
PM2.5 concentrations over the South Coast Air Basin 
(SoCAB) from 2000 to 2008 (Figure below). 

o Inverse distance weighing (IDW) mapping of grid cell O3 and 
PM2.5 predictions to the monitoring sites. 

o Two-stage calibration of daily CTM predictions to MESA Air 
2-week average observations:
1. Regress daily average monitoring observations on CTM predictions 

at each of the AQS and fixed sites, allowing slope and intercept to 
vary from site to site. 

2. Spatial variation in these calibration slopes and intercepts explained 
by land use regressions using Partial Least Squares (PLS). 

39
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Figure 1. Long-term average of (a) O3 (daily 8 h maximum) and (b) PM2.5 (daily 24 h 
average) concentrations estimated by CTM with 4x4 km resolution and distribution 
of monitoring sites.
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Long-term average O3 predictions from the 
composite LUR-CTM Spatio-temporal model
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Differences between composite LUR-CTM ST model and LUR ST 
model alone.

Levels of O3 estimates 
were substantially higher in 
the rural areas and lower in 
urban areas by hybrid model 
than those by LUR model 
alone.
Levels of PM2.5 estimates 
were slightly higher in a 
large region across the Los 
Angeles area, except the 
mountain area.



6. Summary and wish list:

o Spatiotemporal model summary
n Incorporates cohort-specific monitoring data
n Allows for unbalanced monitoring design
n Provides predictions at flexible time scales and with fine-

scale spatial resolution
n Can use both spatial and spatio-temporal covariates, 

including deterministic CTM model or remote sensing 
(satellite) predictions.
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6. Summary and wish list:

o Topics for future development
n Spatially varying coefficients of spatio-temporal 

covariates, notably for satellite and CTM predictions as 
covariates

n Investigating strategies where there are too few sites 
(and perhaps too few temporal observations) for 
confidence in the SVD approach to temporal basis 
functions.

n Examining contribution of spatiotemporal meteorological 
data in addition to temporal basis functions (which can 
pick up most of the temporal variation attributable to 
meteorology).
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6. Summary and wish list (cont.):
n New, more flexible strategies for covariate data, including

o imputation of missing covariate data (critical for satellite data); 
using CMAQ for imputation of missing satellite data

o more flexible strategies for covariate selection, such as penalized 
methods (alternative to PLS which requires multiple fixed sites)

n Incorporate nonstationary spatial covariance

48
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