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Designing monitoring networks

In this lecture you will learn:
Uncertainty, information & the need for monitoring

That getting more information can increase not
decrease your uncertainty for the phenomenon of
interest
The difference between aleatory uncertainty and
epistemic uncertainty
How to optimally redesign a monitoring network
New challenges facing designers



Example # 1 Capmon network.



NOTES on Capmon network
No sense an “optimal” network for monitoring the
environment.
For administrative simplicity Capmon was a merger of
three networks, each setup to monitor acid precipitation
when that topic was fashionable.
For simplicity, the sites were then adopted for other things,
e.g, air pollution

Lessons learned:
A network’s purposes often diverse & unforeseen.



Example #2. NADP/NTN network

Monitors multivariate responses related to “acid precipitation”–
another network merger with better defined siting rules!



Rules governing siting and types of NDP/NTN monitors:

“The COLLECTOR should be installed over
undisturbed land on its standard 1 meter high
aluminum base. Naturally vegetated, level areas are
preferred, but grassed areas and up or down slopes
up to 15% will be tolerated. Sudden changes in slope
within 30 meters of the collector should also be
avoided. Ground cover should surround the collector
for a distance of approximately 30 meters. In farm
areas a vegetated buffer strip must surround the

collector for at least 30 meters.”
...



Example # 3. NA mercury monitoring sites



Example # 4. Vancouver air quality monitors



Example # 5. Meuse river bank soil sampling sites



The “street view”
Click on yellow tack:



False creek circa 1900 before monitoring

Courtesy of Professor Douw Steyn



False creek circa 1990

Courtesy of Professor Douw Steyn



What do monitoring sites look like?
At Kitsilano High School

Courtesy of Professor Douw Steyn



What do monitoring sites look like?
Near Robson Square

Courtesy of Professor Douw Steyn



Some specific objectives of monitoring

Measure process responses at critical points:
Near a new smelter using arsenic

Enable predictions of unmeasured responses
Enable future forecasts
Estimation of process parameter

physical model parameters
stochastic model parameters eg. covariance parameters

Address societal concerns



Non-compliance detection given regulatory standards
Health risk analysis

& provide good estimates of relative risk
determine how well sensitive sub-populations are protected
can include all life, not just human

Time trend analysis
are things getting worse?
is climate changing?



General purposes

Explore/reduce uncertainty re the environment:

One form of uncertainty (aleatory) is irreducible (e.g.
outcome of fair die toss
The other (epistemic) (e.g. whether the die is fair) can
increase or decrease. Implication: even an optimum
design must be regularly revisited



But what is “uncertainty”?

Laplace: “Probability is the language of uncertainty”
DeFinetti: “In life uncertainty is everything”
Kolmorov & Renyi: “Entropy”
Statisticians: “variance” or “standard error”



Exercises

8.1 Suppose X ∼ N(0,1). Prove that uncertainty
about X , i.e. Var(X | | X |< C) is increasing
function of C.
8.2 Suppose X ∼ N(η, 1). Prove that uncertainty
about X , i.e. Var(X || X |< C) is increasing
function of C. Warning:Very hard! 1

1I posed the problem years ago with a prize of $100 but it was not solved
until Jiahua Chen (UBC)did so Chen et al. [2010].



Possible design criteria

Add monitors to (i.e. “Gauge”) sites:
that maximally reduce uncertainty about their
responses at their space–time points [because then
measuring their responses eliminates their uncertainty]
best minimize uncertainty about ungauged site
responses
give best process parameter estimates
best detect non-compliers



Designer challenges:

Multiplicity of objectives
Unforeseen & changing objectives
Multiple responses at each site: which to monitor?
Including prior knowledge
Good process models
Fit with existing networks
Fit with reality!!!



Exercises

8.3 How might design criteria be arrived at in
practice? Who should be responsible for setting
them?
8.4 Monitor placement should recognize such
things as the geographical distribution of impacted
populations (eg trees or fish). How can an optimal
design be determined in such a context?
Research question!
8.5 Develop a design theory in a non–Gaussian
context. Research question!



Approaches to design

A big field [Zidek and Zimmerman, 2009]
Space-filling designs
Probability based designs

simple random sampling
stratified, multistage designs
e.g. (1) EPA’s survey of lakes; (2) the EMAP project

Model Based
Regression model approach

eg to estimate the slope put 1/2 the data at each end of the
data range

Random fields (prediction, e.g. entropy) approach

Other. In particular Zhengyuan Zhu (UNC) incorporates
both of the latter, prediction and parameter estimation.



Entropy based approach

“Gauges” sites with greatest “uncertainty”
uncertainty = entropy
maximally reduces uncertainty about
“ungauged” sites
best estimates predictive posterior distribution
under entropy utility

By - passes specification of objectives
Long history2, currently popular

2General: Good [1952], Lindley [1956], Shewry and Wynn [1987].
Network design: Caselton and Zidek [1984],Sebastiani and Wynn
[2002],Zidek et al. [2000]



What is entropy?

Let probability of uncertain event E (e.g. heads on bent coin)
be:

p = P(E)

That uncertainty becomes 0 when outcome becomes known.

Let reduction in uncertainty be

ϕ(p) if E occurs
ϕ(1 − p) if E does not occur

Expected reduction in uncertainty:

pϕ(p) + (1 − p)ϕ(1 − p



Simple assumptions imply

:
ϕ(p) = log(p)

Conclusion: knowing E occurred reduces entropy by

p log (p) + (1 − p) log (1 − p)

Thus“uncertainty” about E can be quantified as the entropy of
the two point distribution (p,1 − p):



Relative entropy

But how much is that entropy?

Needs a reference level. Complete uncertainty about E would
be the two point distribution (q,1 − q) with q = 1/2. Thus the
relative entropy would be

I(p,q) = p log
{

p
q

}
+ (1 − p) log

{
(1 − p)
(1 − q)

}

This is f the Kullback-Leibler measure of the deviation of
(p,1 − p) from that reference level (the “state of equilibrium” in
physics (thermodynamics).



Multiple events

I(p,q) =
∑

i

pi log {pi/qi}



Continuous variables

Start with pi ∼ f (xi)dxi & qi ∼ g(xi)dxi as approximations. Then
as dxi → 0, this entropy converges to

I(f ,g) =
∫

f (x) log
{

f (x)
g(x)

}
dx > 0

.
Commonly g ≡ 1(unitsoff ). In any event, f/g is a unitless
quantity. Moreover Jacobean cancels under transformations of
x making entropy an “intrinsic” measure of uncertainty – not
scale dependent.



Entropy framework

Adopt a Bayesian framework.
θ: process parameter vector.
Y : process response vector at future time T+1 including all
sites (gauged & ungauged) conditional on
DT set of all available data at time T
h1 & h2: baseline reference densities against which to
measure uncertainty.



Finally compute the entropies with θ random

H(Y | θ) = E [− log
{

f (Y | θ,D)

h1(Y)

}
| DT ]

H(θ) = E [− log
{

f (θ | DT )

h2(θ)

}
| DT ]

Then we get fundamental entropy identity

(Exercise):
H(Y, θ) = H(Y | θ) + H(θ)



In other words, at time T

TOTAL UNCERTAINTY =
UNCERTAINTY ABOUT RESPONSE GIVEN MODEL

+ MODEL UNCERTAINTY



Design goal: add sites

Add (or subtract) sites at time T + 1. Let’s focus on
adding new sites to an existing network

Y = (Y(1),Y(2)) = all site responses, time T +1
Y(2) for site currently gauged (time T)
Y(1) for sites currently ungauged (time T)

DESIGN GOAL: Partition Y(1) = (Y(rem),Y(add)) at time T so
that

Y(rem): future ungauged sites
Y(add) future new network stations.



Entropy decomposition thm

Let U = Y(rem); G = (Y(add),Y(2));Y = [U,G]

Fundamental identity:

TOT = PRED + MODEL + MEAS

where

PRED = E [− log (f (U | G, θ,DT )/h11(U | DT ],

MODEL = E [− log(f (θ | G,DT ))/h2(θ)) | DT ],



and

MEAS = E [− log f (G | DT )/h12(G) | DT ]

.

Theorem: Maximizing MEAS = Minimizing MODEL + PRED



The environmental process



The multivariate data staircase
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Possible inferential objectives

Forecasting: process values at time T + 1
Spatial prediction: process values in U at time T
Hindcasting: past values of the process at times t < T
both in D sites as well as U sites, e.g. cancer vs air
pollution.



Design objective for expanding the network:

Choose sites from U to “add” to the existing network at time
T + 1.

NOTATION: u: ungauged sites at time T
g: gauged sites at time T p = u + g: total number of sites



The process model

Transform responses as necessary. Remove regular
temporal & trend components. Assume EnviroStat model:
at time t = 1, . . . ,T + 1

Y1×p
t | β,Σ ind∼ N(x1×k

t βk×p,Σp×p)

β | Σ,β0,F ∼ N(β0,F−1 ⊗Σ)

Σ ∼ GIW (Ψ, δ) # Inverted Wishart distribution

where ⊗ denotes Kronecker product, F−1 covariance
between rows; Σ covariance between columns.





The predictors

The xt are assumed to be the same for all sites in the region

Question: what about site specific predictors?

Random predictor at site j W j of Y j :
model [Y j ,W j ] then [Y j | W j ]

Nonrandom predictor w j : fit β j
0 = γwj via empirical Bayes



Matric-normal extension

:
Y(T+1)×p | β,Σ ∼ N(x(T+1)×kβk×p, IT+1 ⊗Σp×p)

NOTE: The IW distribution is the inverse χ2 for matrices. It can
be generalized to the GIW - it had different numbers of degrees
of freedom for different steps in the data staircase for example.



Bartlett decomposition:
Reading Notation: “u” means “ungauged” sites; “g” means
“gauged” sites (with p = u + g:

Σ =

(
Σ[u] Σ[ug]

Σ[gu] Σ[g]

)
Bartlett decomposition:

Σ = T∆T ′

where

T =

(
I Σ[ug](Σ[g])−1

0 I

)
∆ =

(
Σ[u] − Σ[ug](Σ[g])−1Σ[gu] 0

0 Σ[g]

)



Generalized Inverted Wishart Distribution
Reading
Let

Γ[u] = Σ[u|g] = Σ[u] −Σ[ug](Σ[g])−1Σ[gu]

τ [u] = (Σ[g])−1Σ[gu].

Definition: For Σ ∼ GIW (Ψ, δ), interate the following
decomposition starting with Σ[g] to get successive deg’s
freedom δ0, δ1, . . . :

Σ[g] ∼ GIW (Ψ[g], δ[g])

Γ[u] ∼ IW (Λ0 ⊗ Ω, δ0)

τ [u] | Γ[u] ∼ N
(
τ0 u,H0 ⊗ Γ[u]

)



Reminder: the multivariate data staircase
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Additional notation

go
i denotes observed responses at gauged site i sites

gm
i denotes missing data at gauged site i , i = 1, . . . , g.

Then DT = {go
1, . . . ,g

o
g}.



Then [Le and Zidek, 2006]:

[
Y[u] | DT ,H

]
∼

[
Y[u] | Y [gm

1 ,...,gm
k ],DT ,H

]
×

k−1∏
j=1

[
Y[gm

j ] | Y[gm
j+1,...,g

m
k ],DT ,H

]
×

[
Y[gm

k ] | DT ,H
]
.

and Y[u] only appears in first factor:



(
Y[u] | Y[gm

1 ,...,gm
k ],D,H

)
∼

tn×u p

(
µ[u|g],Dispersion, δ0 − u + 1

)
.

Dispersion = (δ0 − u + 1)−1Φ[u|g] ⊗ (Λ0 ⊗ Ω)



Here Λ0 represents spatial covariance that links U to G
Ω represents within site covariance e.g. a four hour block of
ozone concentrations or several different chemical species
δ0 − u + 1 > 0 is required to avoid a degenerate
t-distribution. No such thing as a free lunch. Must keep u
to realistic size. Don’t see this with purely Gaussian
process models.

Dispersion = (δ0 − u + 1)−1Φ[u|g] ⊗ (Λ0 ⊗ Ω)



Entropy calculation

The relevent entropy for Y [u] is from that first factor in the
entropy decomposition:

H
[
Y [u] | Y [gm

1 ,...,gm
k ],D

]
=

p
2

log |Λ0|+ irrelevant terms

Ungauged sites u must be partitioned into ‘add’ and ‘rem’
sites in optimal way.
Applying the Bartlett decomposition tells us we must find
the submatrix of |Λ0[add ,add ]| whose sub–determinant
| Λ0 | corresponds to the ‘add’ sites in the partitioned Y [u].

NOTE: Will simultaneously minimize the entropy left in the ‘rem’
sites.



Finding the ‘add’ sites

NP-Hard: No exact algorithms for big networks
Inexact Methods:

Greedy - add (or subtract) one at a time
Reverse Greedy - subtract one at a time

Exact Methods:
Complete enumeration
Branch and bound



How many sites?

Compute:
Entropy(n)

n
where n is the number of sites for success n’s. The ratio will
initially increase than decrease. Stop at the maximum (bang for
the buck) n.



Application: Redesign Vancouver’s hourly PM10

monitoring field.

Increase 10 monitoring sites to 16–add 6 new stations
from among 20 possible sites 3.
Use entropy approach with Normal–GIW predictive
distribution.

3Resembles actual study Nhu Le & I did [Ainslie et al., 2009]



Method (Will see details in the Practicum:

Transform data
Remove all-site (common) spatio–temporal trends
This means fit the same model to all sites.
Whiten” residuals with common 24 (hour) dimensional
multivariate AR(1) model
same idea - result is approximately unautocorrelated
temporal process
10 different station startup times means monotone
(“staircase”) data pattern – use GIW distribution with
different degrees of freedom (δs ) for each staircase step
Select the 6 new stations that jointly maximize
conditional entropy



Preliminary data analysis:

PM10 levels at the 10 existing stations. Note differing startup
times.
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Jan 1,94

0 50 150 250 350



Vancouver’s ozone field is clearly non-stationary and the
Sampson–Guttorp method was used to estimate the

hypercovariance in the GIW matrix.
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The original 10 PM10 monitoring sites
Also 20 possible new locations – subregions with no existing
monitors & big populations.
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Locations of the old and newly selected ‘add’ sites (square
brackets). The ranks of the 20 sites by estimated variance is in
curved brackets and those selected. Notice 6thselected site.



Alternative design strategies: #1

Non-Compliance detection design: Select sites with max
prob of finding sites out of compliance with regulatory
standards.

Probability & best design is day–dependent!
which day?
a simulated future day? Average day? Bad
day?

How to implement?
monitor sites most likely to noncomply?
do not monitor sites least likely?
what about existing sites?



Example: What if the 6 sites had been selected to catch
noncompliance rather than to maximize entropy?

Say we use 10 station hourly data for PM10,
February 28, 1999 & hierarchical Bayes predictive
distribution

DETECTION CRITERION:

argmax PR{daily max PM10 Y6added ≥ 50 (µg m−3)}

RESULT: Same as for entropy based design!!!



NOTES:
...1 Entropy does not work for detecting noncompliance nearly

as well on August 1, 1998!
...2 The selected new sites are now determined pretty much by

their posterior estimated variances. That is because the
spatial correlation is now quite small – strength hard to
borrow.

...3 Designing for noncompliance seems largely unexplored
issue



Alternative design strategy #2

Site selection for fields of extremes: Very difficult since
spatial dependence declines when looking say at monthly
maxima rather than daily maxima.

Yet regulatory criteria metrics (risk) usually base on extremes!

Example: EPA’S PM10 criterion:
For particles of diameters of 10 micrometers or less:

Annual Arithmetic Mean: 50 µg m−3

24 - hour Average: 150FN µg m−3

The three year average of 98-th annual percentiles of 24 hour
averages must be ≤ 150 (µg m−3) at all sites in an urban area.
Complex metric ⇒ need predictive distribute to simulate its
distribution!



The bad news for fields of extremes

...1 Insufficient data, spatial and temporal.

...2 Extremes have small inter - site dependence
between some site pairs, not others

...3 Conventional approaches fail

...4 Multivariate extreme value distributions - not tractable
conditional computation (e.g. entropy) difficult
simulating extreme fields hard

...5 Elusive design objective



The good news

Joint distribution of extremes approximately a log
multivariate t distribution. Hence can:

...1 have convenient conditional, marginal distributions

...2 accommodate existing sites and historical data

...3 permit simulation of complex metric distributions

...4 have explicitly computable entropy’s, regression
models, etc

...5 can enable “elusive objectives issue” to be bypassed



Some detail: Inter-site correlations
Inter–site dependence declines with time span of extremes
for many but not all site pairs
Example: The figure shows Vancouver’s PM10 intersite
correlation between maxima computed for various time spans.

raw data, daily, weekly, monthly (30 days) (please look at points 1, 2, 3, and 4 only)
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Simulation study4: multinormal responses; maxima with
varying ranges at 10 sites. Multivariate t results show smaller
loss of dependence. Inter-site correlations for maxima for
simulated fields of extremes. Big n = light tails.
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4Chang et al. [2007]



Exercises

23.6 Try the simulation experiment yourself and
confirm that for heavier tails lead to increased
intersite correlations



An approach to monitoring extremes
Empirical results 7→ log multivariate - t distribution as
approximation to joint distribution of extremes field. QQplots for
weekly maxima of hourly log PM10 London 1997 data →
marginal normality of extremes:
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T approx approach cont’d

Empirical results → well-calibrated 95% (etc) prediction
intervals. Supports use of multivariate approximation.

Credibility Level Mean Median
30% 35 35
95% 96 97

99.9% 99.9 1

Table : Summary of coverage probabilities at different credibility
levels for the simulated precipitation data over 319 grid cells,
Canadian Climate Model



Room for optimism?

Use of log multivariate t distribution for extreme fields
promising. But:

How far can approximation go? Need new theory

Must test approximation on case–by–case basis

need to compare regular - and extreme-entropy designs.



Summary

In this lecture we have seen:
Why environmental monitoring networks are needed and
what they look like
Why spatio–temporal theory is needed in their design
A class of models with associated software that provide a
platform for designing them.
The entropy and other criteria for design.



Regulation and control

We saw that networks are needed for control and mitigation.
Also saw some issues arising:

Current designs need to be revisited - fitness for use.
Simpler control metrics than the current ones would be
preferable for transparency and analysis.
The current design criteria have not been well spelled out.



Some conclusions

Current urban networks may be inadequate for surveillance
of extremes. Much more attention needs to be paid
But the MaxEnt strategy may be a way out of this problem.
The EnviroStat approach needs an upgrade that takes
account of recent theoretical developments .
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