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Statistical Interpretation of Species Composition
Dean Billheimer, Peter Guttorp, and William F. Fagan

The relative abundance of different species characterizes the structure of a biological community. We analyze an experiment address-
ing the relationship between omnivorous feeding linkages and community stability. Our goal is to determine whether communities with
different predator compositions respond similarly to environmental disturbance. To evaluate these data, we develop a hierarchical statis-
tical model that combines Aitchison’s logistic normal distribution with a conditional multinomial observation distribution. In addition,
we present an algebra for compositions that includes addition, scalar multiplication, and a metric for differences in compositions. The
algebra aids interpretation of treatment effects, treatment interactions, and covariates. Markov chain Monte Carlo (MCMC) is used for
inference in a Bayesian framework. Our experimental results indicate that a high degree of omnivory can help to stabilize community
dynamics and prevent radical shifts in community composition. This result is at odds with classical food-web predictions, but agrees
with recent theoretical formulations.

KEY WORDS: Compositional data; MCMC; Multinomial regression; Random effects; Species assemblage.

1. INTRODUCTION

Species composition, the relative abundance of different
species (or of different functional groups of species), has long
been a key measure for evaluating biological communities
(Fisher, Corbet, and Williams 1943; May 1975; Cairns 1979).
For example, in early research by MacArthur (1955) and oth-
ers, patterns of relative abundance of species were used to
infer the importance of interspeci� c competition. When exten-
sive data are available, species composition can be used to
predict the number of species missing from a community sam-
ple (May 1975; Fagan and Kareiva 1997). Moreover, tempo-
ral shifts in species composition within a community have
been identi� ed as valuable early warning indicators of pollu-
tion (Patrick 1972; Schindler et al. 1985; Marmorek, Bernard
and Ford 1988). Likewise, spatiotemporal patterns of rela-
tive abundance of different taxa can provide insight into the
dynamics of ecological processes by highlighting community
responses to environmental stressors and identifying aspects
of community dissolution and reassembly (e.g., Patrick 1949;
Edmondson and Litt 1982; Davis 1986).

Here, we use relative abundance of different (groups of)
species to evaluate the role of food-web structure on commu-
nity stability in the presence of disturbance. Omnivory–de� ned
as feeding on more than one trophic level–is an important,
often divisive, issue in food-web ecology. Classical food-
web theory (Pimm and Lawton 1978; Pimm 1982) predicts
omnivory to be a destabilizing feature in ecological communi-
ties, and therefore rare in nature. Early analyses of food-web
catalogs support this result (e.g., Cohen 1978; Cohen et al.
1986). More recent theoretical investigations suggests that the
role of omnivory depends on the degree of species interac-
tion (e.g., Yodzis, and Innes, 1992). Further, by constraining
species interactions according to bioenergetic principles, new
theoretical models show that omnivory may exert a stabilizing,
rather than destabilizing, in� uence on multispecies dynamics
(McCann and Hastings 1997).

Field studies add to this debate. Results by Sprules and
Bowerman (1988), Hall and Rafaelli (1991), and Polis (1991)
indicate that omnivory is actually quite common in natural
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systems, provided that adequate efforts are made to accu-
rately characterize food webs. Experimental work by Fagan
(1997) demonstrates that elevated omnivory can prevent major
changes in species densities that would otherwise occur in
response to disturbance. Communities lacking omnivores,
instead dominated by specialist predators, produced the oppo-
site results: large changes in abundance of some taxa in
response to disturbance. This suggests that omnivory can act
as a stabilizing factor rather than a destabilizing one.

Here, we describe an experiment at Mount St. Helens,
Washington, investigating how the degree of omnivory in� u-
ences an arthropod community’s response to experimentally-
imposed disturbance. This approach is similar to work
reported in an earlier study (Fagan 1997), but features two
key differences. First, the ecological disturbance affects the
producer trophic level (rather than the herbivores in the pre-
vious study). Second, the analysis concentrates on stability at
the community level rather than at the population level (i.e.,
shifts in community composition vs. changes in population
densities).

Previous research (Fagan 1996) suggests that removing veg-
etation tends to increase the abundance of both specialist and
generalist feeding herbivorous species. These herbivores may
be attracted to and/or enjoy greater survival in areas with
decreased plant density. In contrast, when large numbers of
omnivorous spiders are present, these effects on community
composition are hypothesized to be reduced or eliminated.
Because omnivorous spiders eat both specialist and general-
ist feeding herbivores, they limit increases in the abundance
of these groups, preventing compositional shifts. Thus, the
goal of the experiment is to evaluate whether the shift associ-
ated with vegetation disturbance is equivalent for all predator
manipulations. In classical linear models, this is described by
the interaction between predator manipulation and vegetative
disturbance.

We use trophic category composition (relative abundance)
to summarize arthropod community structure. We posit that
each predator–vegetation treatment combination supports a
(conceptual) species assemblage (i.e., a vector of proportions).
The data from each plot provide discretely sampled informa-
tion about the corresponding assemblage. Note that we do not
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use total abundance as either a response variable or as a covari-
ate. Whereas total abundance does provide important ecologi-
cal information, it is less relevant to community composition.
Moreover, because vegetation removal increases abundance of
herbivores, we anticipate abundance to be strongly related to
a subset of the treatments. Hence, its inclusion as a covariate
might obscure interpretation of treatment effects.

To investigate the stability of community composition, we
develop a hierarchical statistical model combining Aitchison’s
(1982, 1986) logistic normal (LN) distribution with a con-
ditional multinomial observation model. This combination
accommodates multivariate count data associated with arthro-
pod counts, and allows the rich structure of the LN distri-
bution to describe inter-category covariances. More generally,
our modeling framework may be viewed as a random effects
model for multinomial data. This approach allows extramulti-
nomial variability that is typical of data in many biolog-
ical problems (e.g., Pollard 1975, p. 129). To help inter-
pret our modeling results, we develop an algebra for com-
positions. This algebra formalizes developments of Aitchison
(1986, 1992), and provides intuitive de� nitions for addition,
scalar multiplication, and a metric for differences in com-
positions. Further, it allows us to de� ne “linear” statistical
models directly in terms of the compositional quantities and
operations on them. We make extensive use of the algebra in
evaluating the omnivory–disturbance interaction.

Our hierarchical modeling approach is similar (in spirit)
to Allenby and Lenk (1994, see also Albert and Chib
1993; Dellaportes and Smith 1993). They use logistic normal
regression models in a hierarchical Bayesian setting to relate
covariates to household purchase decisions. They also incor-
porate random effects and serial correlation in modeling pur-
chase behavior. We note that Allenby and Lenk interpret their
results on the logit scale with respect to a � xed category. Fur-
ther, parameter estimates are interpreted qualitatively, and with
respect to the baseline brand.

Section 2 describes the experimental design and data collec-
tion. Section 3 reviews Aitchison’s LN distribution for anal-
ysis of compositional data. We also introduce an algebra for
composition vectors and illustrate how the algebra, along with
graphical analysis tools can be used to interpret and visualize
statistical modeling results. In Section 4, we couple the condi-
tional multinomial observation model with the logistic normal
in a hierarchical Bayesian framework. Section 5 provides anal-
ysis results from the omnivory experiment. Finally, Section 6
discusses issues associated with this modeling approach.

2. EXPERIMENTAL METHODS

Fagan (1996, 1997) conducted a series of experiments to
evaluate the factors affecting the stability of arthropod com-
munities in the presence of environmental disturbance. The
experimental protocol is described in detail by Fagan (1996).
Brie� y, experimental plots were constructed by surrounding
isolated clones of � reweed (Epilobuim) and pearly-everlasting
(Anaphalis) with � uon-treated, plastic garden edging. A total
of 30 plots were constructed, each measuring 1.5 m � 1.5 m.
The plots were isolated from each other by vegetation free
buffer zones, 1 m in width. The � uon-treated edging impeded

Table 1. Treatment Structure for Arthropod Community Stability
Experiment. The Codes OV, SV, and so forth, Denote the

Predator–Vegetation Factor Treatment Combinations

Predator manipulation

Vegetation Increased Increased Control
disturbance omnivores specialists level

50% Removal OV SV CV
Control OC SC CC

ground movements of arthropods in and out of the experimen-
tal plots. This allowed the manipulated predator densities to
be maintained at their speci� ed levels.

Five plots were assigned to each of the six experimental
treatments. The treatments were arranged in a two-way facto-
rial structure with predator manipulation (3 levels) and vege-
tation disturbance (2 levels) as the factors. The levels of the
predator manipulation are increased dominance by omnivores
(Pardosa, wolf spiders), increased dominance by special-
ist predators (Geocoris), and no change (control). Increased
omnivory was accomplished by adding 3 subadult Pardosa
wolf spiders, while removing the resident Geocoris specialist
predators. Conversely, increased specialization means adding
2 specialist predators per plot and removing resident wolf
spiders. All manipulated predator densities are within the natu-
rally occurring density range. The vegetative disturbance con-
sists of removing 50% of the existing � reweed (Epilobium)
and pearly-everlasting (Anaphalis). The treatment structure is
summarized in Table 1.

Arthropods (insects and spiders) were counted on each of
the 30 experimental plots 2, 4, and 6 weeks after treatment
application. Here, we consider only the 6 week data. These
data are available online at http://www.nrcse.washington.edu/
research/reports/reports.asp. Note that experimentally manipu-
lated species (Pardosa and Geocoris) are not included in the
counts. Eleven different species of arthropods were observed
and included in the analysis. These species were partitioned
into three trophic categories: predators, generalist herbivores,
and specialist herbivores. The number of arthropods in each
category (for each plot) comprise the data for analysis.

3. LOGISTIC NORMAL DISTRIBUTION AND
AN ALGEBRA FOR COMPOSITIONS

Compositional data are vectors of proportions describing
the relative contributions of each of k categories to the whole.
Mathematically, z D 4z11 z21 : : : 1 zk5

0
, where zi > 0, for all

i D 1121 : : : 1 k and
Pk

iD1 zi
D 1. Hence, z is an element of

the 4k ƒ 15 dimensional simplex (ï kƒ1). The summation con-
straint and bounded support require special analysis tech-
niques. Aitchison (1982, 1986) introduces the LN distribu-
tion as a framework for analysis of compositional data. These
methods rely on the additive logratio transform (”4¢5) to
take observations from the 4kƒ15-dimensional simplex (ï kƒ1)
to 4k ƒ 15-dimensional Euclidean space (<kƒ1). The additive
logratio transform of z 2 ï kƒ1 to <kƒ1 is de� ned as

”4z5 D log
z1

zk

1 log
z2

zk

1 : : : 1 log
zkƒ1

zk

0
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This transformation is a bijection with inverse transformation
denoted by ”ƒ1. Aitchison (1986) terms the inverse transfor-
mation the additive logistic transform.

Aitchison models the transformed data via the 4k ƒ15 mul-
tivariate normal distribution. Assuming multivariate normality
of the transformed data induces a distribution on ï kƒ1: the LN
distribution. A key bene� t of the multivariate normal assump-
tion is that its rich covariance structure transfers to the logistic
normal. This allows modeling of dependence (positive or neg-
ative) between pairs of the k elements beyond that induced by
the summation constraint. In addition, inference tools devel-
oped for multivariate normal data can be applied to the trans-
formed compositions.

The LN density function is

f 4z — Ì1è5 D 1

2�

4kƒ15=2
—è—ƒ1=2 1

Qk
iD1 zi

exp ƒ1

2
4”4z5 ƒ Ì5

0
èƒ14”4z5 ƒ Ì5

for z 2 ï kƒ1, where Ì is the location parameter vector in
<kƒ1, and è is a 4k ƒ 15 � 4k ƒ 15 variance-covariance matrix.
We denote the density function by Lkƒ14Ì1 è5. Clearly, the
parameters depend on the ordering of the elements of z. How-
ever, the density is invariant with respect to permutations of
the components. Aitchison (1986) also establishes moments
and other properties of this distribution, including its role as
a limit distribution of successive, independent perturbations
(de� ned later), and as the limiting form of the Dirichlet dis-
tribution as the Dirichlet parameters become large (Aitchison
1986, pp. 125–128).

In the rest of this section, we make use of the follow-
ing notation. Let £4¢5 denote the composition of a positive
k-vector. That is, for u D 4u11 u21 : : : 1 uk5

0
such that ui > 0

for all i,

£4u5 ²
u1Pk
iD1 ui

1
u2Pk
iD1 ui

1 : : : 1
ukPk
iD1 ui

0

0

Also, denote elementwise multiplication of two positive
k-vectors u and v by

u ¢ v ² 4u1v11 u2v21 : : : 1 ukvk5
0
0

Associated with the additive logratio transform is a pertur-
bation operator for compositional data (Aitchison 1982). Per-
turbations allow an error structure on ï kƒ1 analogous to the
usual additive error model used in other areas of statistics. An
observed proportion vector, z, can be modeled as a location
vector (Î) “perturbed” by an error (Á). For Î1Á 2 ï kƒ1,

z D Î Á D £4Î ¢Á5

and z 2 ï kƒ1. The vector Á need not be an element of ï kƒ1

for the perturbation operator to be de� ned. It is suf� cient that
� i > 0 for all i D 1121 : : : 1 k. Aitchison (1986) shows a num-
ber of properties of the perturbation operator including asso-
ciativity, commutativity, an inverse perturbation, an identity
element

©kƒ1 D 1
k

1
1
k

1 : : : 1
1
k

and a power-transformation for compositions (Aitchison 1986,
p. 120).

Unfortunately, as Aitchison (1986) and others (e.g.,
Pawlowski and Burger 1992) describe, interpretation of
parameter estimates on the multivariate log-odds scale is dif-
� cult. Speci� cally, location parameters are Œi

D E4log4zi=zk55

for i D 1121 : : : 1 k ƒ1, and elements of the covariance matrix,
‘ ij

D cov4log4zi=zk51 log4zj=zk55. While location parameters
estimates can be transformed back to ï kƒ1 via ”ƒ1, it is
not clear how one should interpret interaction parameters (or
effects) or regression parameter vectors estimated on the mul-
tivariate log-odds scale. Indeed, it can be challenging to under-
stand these parameters (or their estimates) in terms of the
motivating scienti� c problem.

A related dif� culty is a suitable de� nition for a distance
metric on ï kƒ1. Watson and Phillip (1989) and Aitchison
(1992) debate metrics for distances between compositions.
Watson and Phillip (1989) propose an angular measure of dis-
tance by considering transformed compositions as points on
the 4k ƒ 15-dimensional sphere. Aitchison outlines desirable
properties of a compositional metric, and proposes several
forms meeting those properties. Speci� cally, he recommends
the sum of squares of all logratio differences as a simple and
tractable form.

3.1 Algebra for Compositions

Following Aitchison’s (1986, 1992) suggestion, we use the
perturbation operator to de� ne an addition operator for compo-
sitions. Further, the power transformation allows us to de� ne
scalar multiplication of a composition z by a scalar a as,

za ² £ 4za
11 za

21 : : : 1 za
k5

We show that ï kƒ1 equipped with the perturbation operator
and scalar multiplication constitutes a complete inner product
space. (See Appendix I for details.) This additional mathe-
matical abstraction allows the de� nition of a norm on ï kƒ1.
Moreover, it provides a framework for algebraic operations
on compositions. Once these operations are established, we
see that dif� culties with interpretation of regression parame-
ters, interaction effects, and distances between compositions
are alleviated. First, we show the inner product and norm, and
then describe interpretation of parameters.

De� ne, ® D 6Ikƒ1
C jkƒ1j

0

kƒ17, where Ikƒ1 is a 4k ƒ 15-
dimensional identity matrix, and jkƒ1 is a 4k ƒ15 column vec-
tor of ones. Note that

® ƒ1 D Ikƒ1 ƒ 1
k

jkƒ1j
0

kƒ10

De� nition 3.1. For u1 z 2 ï kƒ1, let È D ”4u5, and Ç D
”4z5. De� ne by

“u1 z” D È
0
® ƒ1Ç1

the inner product of u and z.

De� nition 3.2. De� ne the norm for u 2 ï kƒ1, ˜u˜, by
“u1u” 1=2.

Inclusion of the matrix ® ƒ1 ensures that the inner product
and norm are invariant to permutations of components of u.
Also note that the norm de� ned above is a sum of squares of
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Figure 1. Graphical Display of 3 Three-Part Compositions in a
Ternary Diagram. The points shown correspond to compositions of
z1 D ( 1=3, 1=3, 1=3) , z2 D ( .80, .1, .1) , and z3 D ( .98, .01, .01) . The
numbers on the ’ gure denote the distances between the points.

log-ratios. This is in the class of functions meeting Aitchison’s
(1992) criteria for a compositional metric.

We summarize a number of properties relating addition and
scalar multiplication in ï kƒ1 to images under the additive
logratio transform. For u1 z 2 ï kƒ1, and a 2 <,

”4u z5 D ”4u5 C ”4z51

”4za5 D a”4z51

”4©kƒ15 D 0kƒ11

where 0kƒ1 is a k ƒ 1 vector of zeros.

3.1.1 Differences Between Compositions. The de� nition
of an (inverse) addition operation and a norm allow us to mea-
sure the difference between compositions. For demonstration,
consider three compositions in ï 2, z1

D ©2 = (1/3, 1/3, 1/3),
z2 D 40801 0101 0105, and z3 D 40981 0011 0015. For reference, we
show these compositions in the ternary diagram of Figure 1.
The ternary diagram has long been used in the geological sci-
ences as a plotting region for 3-part compositions (e.g., pro-
portions of sand, silt, and clay in soils). It may be viewed as
the plane in the positive orthant of <3 satisfying the summa-
tion constraint of a 3-part composition. For more details see
Aitchison (1986, p. 5).

First, we note the norms of these compositions are

˜z1˜ D 01 ˜z2˜ D 106981 and ˜z3˜ D 30744

Thus, the de� ned norm measures the distance of a composition
from ©kƒ1, the “center” of ï kƒ1.

Next, using the inverse of the perturbation operator, we � nd
the difference between pairs z1 and z2, and z2 and z3. To � nd

the difference between two compositions, we perturb the sec-
ond by the elementwise inverse of the � rst. That is,

z2
… z1 ² z2 zƒ1

1
D z21

because z1 is the identity element. Similarly,

z3 … z2 D £ 6z371 6z27
ƒ1
1 1 6z372 6z27

ƒ1
2 1 6z373 6z27

ƒ1
3 1

D 408601 00701 007051

where 6zi7j is the jth element of the composition zi . Thus,
40861 0071 0075 is the composition by which we need to perturb
z2 to obtain z3. By taking the norm of the difference compo-
sition, we measure the distance between z2 and z3.

˜z3
… z2

˜ D ˜40861 0071 0075˜ D 20046

Note that the distance from z1 to z2 is 1.698, whereas the
distance from z2 to z3 is larger at 2.046. This demonstrates
two points,

1. Interpretation of distances between compositions is dif-
� cult without a careful de� nition of a norm.

2. Graphical interpretation in the simplex (e.g., ternary dia-
gram) is complicated by the (visual) compression of dis-
tances near the boundaries of the simplex.

An (invertible) addition operation and norm allow interpre-
tation of differences in compositions. Speci� cally, if OÎ1 and
OÎ2 are estimated location parameter vectors for treatments 1

and 2, respectively, we may easily obtain information about
the direction and distance between them.

3.2 Interpretation and Visualization of Parameters

3.2.1 Interpretation of Ì as a Composition. The location
parameter of the LN distribution, Ì, can be expressed as a
composition via the additive logistic transformation. That is,

”ƒ14Ì5 D Î1 where Î 2 ï kƒ10

Interpretation of Î in the simplex is much simpler than inter-
preting Ì on the multivariate logit scale. However, some of
the statistical properties of Ì are lost with the transformation
to the simplex. Speci� cally, Ì is the mean and mode of the
multivariate normal logit (i.e., for ”4z5). The ”ƒ14¢5 trans-
form does not preserve these properties, although as ”ƒ1(¢) is
monotone in each of the 4kƒ 15 components of Ì (Billheimer
and Guttorp 1995), ordering of values is preserved under this
transformation. Hence, Î D ”ƒ14Ì5 can be interpreted as a
componentwise multivariate median for the LN distribution in
ï kƒ1. This interpretation is a useful characterization for point
estimates of parameters, and as a “center” for the asymmetric
LN distribution.

3.2.2 Covariates and Interactions. To incorporate the
effect of covariates, the location parameter, Ì, may depend on
explanatory variables (see Aitchison 1986; sec. 7.6, p. 158).
For a scalar covariate xj , indexed by j D 1121 : : : 1 n obser-
vations, Ìj can be replaced in the density expression by
Â0

CÂ14xj
ƒ Nx5. Here, Â0 and Â1 are vectors in <kƒ1, and Nx is
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Billheimer, Guttorp, and Fagan: Statistical Interpretation of Species Composition 1209

the mean of the observed covariate values. This parameteriza-
tion allows interpretation of Â0 as the location when xj

D Nx,
and Â1 as the change in location for a unit change in x.

Equivalently, the regression expression Ìj
D Â0 C Â14xj

ƒ
Nx5 can be written as a perturbation of compositions. This is
accomplished by taking the additive logistic transformation of
both sides,

”ƒ14Ìj5 D ”ƒ14Â05 ”ƒ14Â15
4xj ƒ Nx50

We write this more compactly as

Îj
D Î Ãuj 1

where Îj
D ”ƒ14Ìj5, Î D ”ƒ14Â05, and Ã D ”ƒ14Â15. The

scalar uj is the centered covariate. In this parameterization,
Î is the overall location on the simplex. Further, the role of
the regression composition parameter, Ã, is clear: the loca-
tion parameter is the overall location (Î) perturbed by Ã (for
uj

D 1). Thus, Ã is directly interpretable as a composition. It
is the amount by which a location is shifted, via a perturba-
tion, by a unit change in the covariate. Finally, deviations in
Ã from the identity composition, ©kƒ1, indicate the direction
and magnitude of the change. Note that Ã D ©kƒ1 implies the
covariate has no effect on the composition location. We � nd
this much more informative than the alternative interpretation
of linear regression on the log-odds scale. Also note that this
formulation is directly applicable to parameter estimates from
multinomial logistic regression.

Figure 2 shows the curves of Îj
D Î Ãuj for different val-

ues of the regression composition, Ã. The ‘effect’ of a regres-
sion parameter is invariant to the starting composition (via
the compositional algebra). However, the graphical display (in
the ternary diagram) of the change in composition to a unit
change in the covariate does depend on the starting location.
This is analogous to the case of logistic regression where a
unit change in an explanatory variable produces small changes
in predicted probability near zero and one, but large changes
when the probability is near .5.

Billheimer et al. (1997) demonstrate the use of covariate
information in estimating species composition in an estuarine
system. In this analysis, they show that relative abundance of
pollution sensitive and pollution tolerant taxa are associated
with a salinity gradient, but are (apparently) not related to
depth or dissolved oxygen measurements in the Delaware Bay.

The compositional algebra easily extends to experimental
factors (main effects and interactions). For example, the usual
two-factor interaction in the standard linear model

Œij
ƒ Œi0

ƒ Œ0j
C Œ00

can be expressed in terms of compositional location parame-
ters

Îij
… Îi0

… Î0j Î00

via the additive logistic transform.

·

1

2 3

a b

c

d

e

Regression Vector
a - (.2, .4, .4)
b - (.1, .3, .6)
c - (.6, .3, .1)
d - (.2, .6, .2)
e - (.3, .6, .1)

Figure 2. Regression Curves for Different Parameter Vectors. The
curves shown are of the form Î(u) D Î Ãu for selected values of Ã,
and - ˆ < u < ˆ. The arrows indicate direction as u increases. For all
curves Î D ( .5, .3, .2) , and the curves intersect at Î for uj D 0. For curve
“a”, Ã D ( .2, .4, .4) , the covariate u has equal in‘ uence on elements
2 and 3. Similarly, in curve “d”, Ã D ( .2, .6, .2) , the covariate affects
elements 1 and 3 equally.

4. STATE-SPACE MODEL FOR
ARTHROPOD ASSEMBLAGE

To model the arthropod counts, we combine the logistic
normal model for continuous compositions with a conditional
multinomial observation distribution. We assume the arthro-
pod count vector from treatment t, plot j, ytj , is conditionally
multinomial given the latent composition vector ztj (ztj

2 ï kƒ1

for t in 811 21 : : : 1 T 9 treatments, and j in 811 21 : : : 1 nt9 plots
in treatment t). The compositions are modeled as independent
draws from Lkƒ14Ìtj1è5.

For the rest of this section, we assume that Ìtj
D Ìt1 4Îtj

D
Ît5 for all j D 1121 : : : 1 nt plots with treatment t. Thus, for
each treatment, plot location parameters are (unobservable)
realizations from a common LN distribution. The LN distribu-
tion “mean” is allowed to differ for each omnivory-disturbance
combination. This framework produces a “random effects”
approach to accommodate extramultinomial variability typical
of ecological systems.

The model formulation is completed by specifying prior
distributions for Ìt and è. Let Ìt have a 4k ƒ 15-dimensional
multivariate normal distribution with mean vector Ç, and
variance-covariance matrix ì. Typical choices for Ç and ì
are

Ç D 0kƒ1

and
ì D a®

where
® D Ikƒ1

C jkƒ1 j
0

kƒ11

0kƒ1 is a 4k ƒ15-vector of 0s, Ikƒ1 is a 4k ƒ15 identity matrix,
and jkƒ1 is a 4kƒ15-vector of ones. This is equivalent to spec-
ifying a LN prior distribution for Ît

D ”ƒ14Ìt5, centered at
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©kƒ1 (for k D 3, 41=31 1=31 1=35). Setting the hyperparameter
a D 05 allows the 95% prior probability contour for Ît to reach
at least .05 for each component.

For the variance-covariance matrix, we take the prior dis-
tribution for èƒ1 Wishart4ë ƒ11�5, where ë is a 4k ƒ 15 �
4k ƒ 15 positive de� nite matrix, and � denotes the degrees of
freedom. A typical choice for ë is

ë D c®

with c D 01. The value of � is set to k ƒ 1; the smallest
value allowable (least informative) that still maintains a proper
Wishart distribution. By setting weak prior information on the
variance-covariance structure, we allow dependence between
species groups in the data to be re� ected in the posterior
distribution.

By combining the likelihood with the prior distributions,
the posterior distribution can be written as follows (up to a
constant of proportionality).

� 4z1Î1è — y5 /
TY

tD1

ntY

jD1

kY

iD1

46ztj7i5
46ytj 7iƒ15 — è —ƒ1=2

� exp ƒ1
2

4”4ztj5 ƒ Ìt5
0èƒ14”4ztj5 ƒ Ìt5

� — ì —ƒ1=2 exp ƒ1

2
4Ìt

ƒ Ç50ìƒ14Ìt
ƒ Ç5

� — ë —�=2 — è —ƒ4�ƒk5=2 exp ƒ1
2

tr4ë èƒ15

The full conditional distributions for ztj1Ìt
D ”4Ît51 and èƒ1

follow immediately from this expression (see, e.g., Besag et al.
1995).

Implementation of MCMC is straightforward using a com-
bination of Gibbs sampling and Metropolis–Hastings steps.
The conditional distribution for ztj (given current values of
Ìt and è) is sampled via Hastings’ algorithm (Hastings
1970). For this we use a LN proposal distribution, cen-
tered at the current value of ztj . The Gibbs sampler is
used to update Ìt and è because their conditional dis-
tributions are avaiable in closed form (see, e.g., Gelfand
et al. 1990). The conditional distribution of Ìt is multi-
variate normal with mean ìƒ1 C nt èƒ1 ƒ1

nt èƒ1 ”4zt¢5 C
ìƒ1 Ç (where ”4zt¢5 D 1=nt

Pnt

jD1 ”4ztj5), and variance-

covariance matrix ìƒ1 C nt èƒ1 ƒ1
. In addition, è has an

inverse Wishart distribtion with parameter matrix 4V C ë 5,
where V D PT

tD1

Pnt

jD1 ”4ztj5 ƒ Ìt

PT
tD1

Pnt

jD1 ”4ztj5 ƒ Ìt

0
,

and
PT

tD1 nt
C �ƒ k degrees of freedom.

Examination of MCMC realizations indicates that the algo-
rithm converges to the limiting distribution in 50–100 Monte
Carlo iterations. The convergence is not affected by changes
in the (hyper)prior distribution scale parameters. Trial runs on
simulated data were used to select Hastings proposal standard
deviations for ztj and Ît . These result in proposal acceptance
probabilities of 50–60%. For inference, a sequence of 500
Monte Carlo iterations was used for “burn-in”, and the subse-
quent 10,000 Monte Carlo realizations were collected for each
of the updated components. Visual inspection of time series of

realized values, autocorrelations, and marginal posterior dis-
tributions based on multiple starting locations were used to
evaluate MCMC sampling properties (see, e.g., Cowles and
Carlin 1996, for a review). In addition, “gibbsit” (Raftery and
Lewis 1992, 1995) was used to provide an objective evalua-
tion of Markov chain convergence. All diagnostic procedures
indicate that MCMC run length is adequate.

Point estimates were constructed for each treatment location
parameter vector by computing sample means of the MCMC
realizations. Similarly, credible regions for location parame-
ter vectors were constructed from a convex hull of retained
MCMC realizations. For each treatment, the location parame-
ter realizations were ordered according to their LN likelihood
(using the above point estimates as the parameters). The con-
vex hull was constructed to contain the 95% of realizations
with highest likelihood.

To evaluate the omnivory–vegetative disturbance interac-
tion, we consider the effect of vegetation removal separately
for each of the predator manipulations. This is easily accom-
plished by taking differences, Ît

… Ît0 , from realizations of the
posterior distribution.

5. STABILITY IN ARTHROPOD FOOD WEBS

The total number of observed arthropods ranged from 7 (on
plots 1 and 2 of the SC treatment) to 34 (on plot 5 of the
SV treatment). Consequently, plots with the most arthropods
provide more information about the treatment location (i.e.,
species composition) than do plots with the fewest arthropods.
Because none of the plots yield a large total number of arthro-
pods, estimates of the latent species assemblage are subject to
substantial sampling variability. Moreover, it is notable that no
predators (other than those of the manipulated species) were
observed in four of the experimental plots.

Table 2 shows point estimates of species composition (i.e.,
location parameter vectors) for the six omnivory–vegetation
treatments. Each composition vector is presented in the order
(predators, generalist herbivores, specialist herbivores). In
addition, the compositional difference from “control–control”
and the magnitude of the difference (the norm in Section 3)
are computed for each treatment. Difference compositions near
41=311=31 1=35 (with norm near zero) indicate that treatments
with increased omnivory exhibit species assemblages similar

Table 2. Point Estimates of the Location Parameter Vectors
for Each of the Six Treatments

Estimated species Change from Magnitude
Treatment composition CC of change

OV (.27, .44, .28) (.39, .36, .26) .31
SV (.06, .28, .67) (.09, .25, .67) 1.43
CV (.08, .37, .56) (.12, .33, .55) 1.12
OC (.19, .38, .43) (.27, .32, .40) .28
SC (.07, .41, .52) (.11, .37, .52) 1.15
CC (.23, .41, .36) (.33, .33, .33) 0

NOTE: In addition, we show the difference composition of each treatment from the control
treatment, and the magnitude of the difference. The trophic category order for all the com-
positions is (predator, generalist herbivore, specialist herbivore). The table shows that treat-
ments with increased omnivory exhibit species assemblages similar to control. Conversely,
background and reduced omnivory show decreases in predators and increases in specialist
herbivores.
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Billheimer, Guttorp, and Fagan: Statistical Interpretation of Species Composition 1211

to that of the control treatment. Conversely, vegetation dis-
turbance (without omnivory) and increased specialist preda-
tors (reduced omnivory) exhibit shifted species compositions.
The shifts show decreases in unmanipulated predators and
increases in specialist herbivores.

The observed plot compositions and location point estimates
are shown in Figure 3. The � gure shows the location of com-
positional parameter estimates in relation to the data, as well
as the direction and magnitude of composition shifts due to
treatments.

To better evaluate the variability in species composition
estimates and differences, approximate 95% credible regions
were constructed for all omnivory-vegetation location param-
eter vectors. Two of these, the CC and CV treatments, were
selected for display in Figure 4. The other treatment credible
regions were omitted to reduce clutter on the graph. All cred-
ible regions exhibited similar variability.

The credible regions show a separation of the CC and CV
treatments. The CC region shows substantial overlap with
those from OV and OC treatments. ( Indeed, it contains both
OV and OC composition point estimates.) This suggests that
these treatments have a similar effect in maintaining arthropod
group compositions. Similarly, the 95% credible region for
CV contains the location point estimates for the SC and SV
treatments. This suggests that the increasing specialist preda-
tors does not mitigate the species composition shift caused
by reduced vegetation. Indeed, increasing specialist predators
appears to shift species assemblage even without vegetation
removal.

Finally, we consider the omnivory–vegetation interaction
effect. Formally, this interaction can be written as

Îij
… Îi¢ … Î¢j Î¢¢

for selected omnivory–vegetation treatment combinations
(comprising two degrees of freedom). We choose to inter-
pret this interaction as the “vegetation removal effect” across

·�·�

·�

·�

·� 

Pred.

Gen. Herb. Spec. Herb.

· OV  Omnivore - 50% Veg
SV  Specialist - 50% Veg
CV  None - 50% Veg
OC  Omnivore - Control
SC  Specialist - Control
CC  None - Control

OV

SVCV

OC

SC

CC

Figure 3. Observed Compositions and Species Composition
Parameter Estimates for the Six Experimental Treatments. The treatment
label (e.g., “OV”) is plotted at its respective composition. Note that four
of the experimental plots had no observed predators.

� 

Pred.

Gen. Herb. Spec. Herb.

OV

SVCV

OC

SC

CC

OV  Omnivore - 50% Veg
SV  Specialist - 50% Veg
CV  None - 50% Veg
OC  Omnivore - Control
SC  Specialist - Control
CC  None - Control

Figure 4. Ninty-Five Percent Credible Regions for Selected Species
Compositions. Credible regions are plotted for CC and CV omnivory–
vegetation disturbance compositions. Regions for other treatments
exhibit similar variability. The small overlap between CC and CV regions
suggests a shift in composition associated with vegetation removal.

omnivory manipulations. That is,

ÎiV
… ÎiC

where i denotes increased omnivory, increased specialist
predators, or control levels. This evaluation of “difference of
differences” is equivalent to the interaction expression above.
Although single degree of freedom contrasts can be evaluated
in this manner, construction of a joint (two degrees of free-
dom) posterior distribution for interaction is a topic of future
research.

Figure 5 shows the effect of changing from background veg-
etation to 50% vegetation removal for each of the three preda-
tor manipulations. Approximate 95% credible regions for each
difference are shown. Note that the credible regions are con-
structed by computing the compositional difference between
random samples from the marginal posterior distributions for
each omnivory manipulation. If there was no effect attributable
to vegetation removal, then the differences would be centered
at ©2. Further, absence of an interaction effect would result
in a substantial area covered simultaneously by all credible
regions.

Figure 5 shows that the increased omnivory treatments
respond differently to vegetation removal than do the control
or increased specialist predator treatments. Speci� cally, plots
with increased omnivorous predators show increased propor-
tion predators and decreased proportion specialist herbivores
when vegetation is removed. Conversely, the increased spe-
cialist and control predator treatments show a decrease in the
proportion of predators and an increase in specialist herbi-
vores with vegetation removal. The volume of compositions
covered by the 95% credible regions indicates that the mag-
nitude of these changes is dif� cult to pin down. This is likely
attributable to the small number of plots per treatment (5) and
the small number of arthropods observed per plot.
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 ·

Pred.

Gen. Herb. Spec. Herb.

O

S

C

O - Increased Omnivory
S - Increased Specialists
C - Control

Figure 5. Point Estimates and 95% Credible Regions for the Effect
of Vegetation Removal. For each omnivory treatment, we show the esti-
mated species composition and credible region for the compositional
difference associated with vegetation removal. Because increased
omnivory and increased specialist regions contain ©2 , we cannot pre-
clude that vegetation removal has no effect.

5.1 Diagnostics

A “leave-one-out” diagnostic procedure (Besag, Green,
Higdon, and Mengersen 1995) was used to evaluate the ade-
quacy of the statistical model. The (approximate) predictive
distribution for a plot composition is obtained by setting its
group counts equal to zero for all k groups, and collecting
the MCMC realizations for the plot composition. One ran-
domly selected plot from each treatment was withheld from
the data, and the MCMC re-run with these data omitted. The
compositions of the holdout plots were subsequently predicted
from the model. The prediction region for the discrete obser-
vation can be constructed (under the model) by sampling from
a multinomial distribution with parameter vector equal to the
realized values of ztj , and sample size equal to

Pk
iD16ytj7i .

For all six plots, the leave-one out procedure results in
95% prediction regions containing the omitted (observed) plot
compositions. Although this is not a rigorous procedure for
investigating model misspeci� cation, it does suggest that the
statistical model is adequate in capturing the observed variabil-
ity in the data. Diagnostic procedures for hierarchical Bayesian
models remains an area of ongoing research (see e.g., Albert
and Chib 1997).

5.2 Conclusion

These results indicate that increased omnivory helps to
maintain a stable species composition in the presence of 50%
vegetation removal. Further, background predator levels or
increased specialist predators do not facilitate this stability
when vegetation is removed. The ecological conclusion is that
the omnivores’ broad diets allow them to feed on a diver-
sity of species that would otherwise increase in abundance in
response to the vegetation thinning; effectively buffering the
community from compositional shifts induced by disturbance.

6. DISCUSSION

We present statistical analysis of an ecological experiment
evaluating the effects of omnivory on reticulate food webs.
Our approach can provide valuable insight into biological
community structure. Previous analyses of community struc-
ture are typically summarized by either univariate indices
(such as diversity or biotic integrity indices), or by ordina-
tion methods such as principal components analysis. These
measures of community structure can be dif� cult to interpret,
and may lose considerable information in their reduction of
dimensionality. We believe it is more informative to evaluate
biological communities directly in terms of the relative abun-
dance of the species present.

Our framework allows interpretation of statistical modeling
parameters via their direct effect on compositions. We � nd this
approach much more informative than the alternative inter-
pretation on the log-odds scale. Further, we believe that the
compositional algebra is useful more generally, such as, for
interpreting differences between compositions, or parameter
estimates from multinomial logistic regression.

While the logistic normal distribution � exibly accommo-
dates complicated covariance structure in general composi-
tions, it exhibits a number of weaknesses. This distribution
does not have “nice” mathematical properties of closure when
combining elements of a composition (amalgamation), nor
when marginalizing over a component. These do not appear to
be serious limitations in the applications of the model. Alter-
native statistical models for compositional data include the
Dirichlet distribution (Johnson and Kotz 1972), and the Sƒ dis-
tribution (Barndorff-Nielsen and Jørgensen 1991). Although
both models exhibit attractive mathematical properties, nei-
ther allows modeling of the covariances between composi-
tional elements. In both cases, the covariance is determined
by the summation constraint. A novel approach, suggested
by Stephens (1982), treats the square roots of proportions as
directional data and uses the von Mises spherical distribution
to model the compositions. This model appears to be used
infrequently in applications, perhaps because of the relative
complexity of the von Mises distribution. For an alternative
approach to multivariate count data based on the log-normal
Poisson distribution, see Aitchison and Ho (1989).

A serious shortcoming common to these compositional
models is that all elements are required to be nonzero. A zero
proportion actually results in a 4kƒ 15 component assemblage
(in the 4k ƒ 25-dimensional simplex). Further, the ”4¢5 trans-
formation is not de� ned when one or more components are
zero. This restriction of no “structural zeros” may be a severe
limitation in applications where one or more components are
known to be absent, or where inference of absence is impor-
tant.

More work is also needed in extending analyses to k > 3
categories. While the algebra and modeling methods apply
to an arbitrary number of groups, graphical methods are not
easily generalized. We are working to extend the ternary dia-
gram (2-dimensional simplex) to higher dimensions using a
dynamic graphics environment. (Xgobi, Swayne, Cook, and
Buja 1991). In addition, Billheimer (2001) demonstrates a
method for static viewing of higher dimensional compositions.
Such methods, coupled with the norm de� ned in Section 3,
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Billheimer, Guttorp, and Fagan: Statistical Interpretation of Species Composition 1213

can provide effective inference methods with four or more
categories.

APPENDIX A: MATHEMATICAL PROPERTIES OF THE
COMPOSITIONAL ALGEBRA

Theorem A.1. ïkƒ1 is a vector space with addition de� ned by
the perturbation operator and scalar multiplication de� ned as ua D
£4ua

1 1 ua
21 : : : 1 ua

k1 5 for the scalar a.

Proof. To show ïkƒ1 is a vector space, the following four prop-
erties must hold.

1. There is an identity scalar multiplier.
Clearly, a D 1 is the identity scalar multiplier.

2. Scalar multiplication is associative,

4ua5b D uab

4ua5b D £ ua
11 ua

2 1 : : : 1 ua
k

b

D £

³
ua

1Pk
iD1 ua

i

b

1
ua

2Pk
iD1 ua

i

b

1 : : : 1
ua

kPk
iD1 ua

i

b
´

D £ uab
1 1 uab

2 1 : : : 1 uab
k

D uab 0

3. 4u z5a D ua za

4u z5a D 6£4u ¢ z57a

D 4u1z15
a

Pk
iD14uizi5

a
1

4u2z25a

Pk
iD14uizi5

a
1 : : : 1

4ukzk5a

Pk
iD14uizi5

a

D £4ua ¢ za5

D ua za0

4. uaCb D ua ub .

uaCb D uaCb
1Pk

iD1 uaCb
i

1
uaCb

2Pk
iD1 uaCb

i

1 : : : 1
uaCb

kPk
iD1 uaCb

i

D £4ua ¢ub5

D ua ub0

Theorem A.2. Let u and z be elements of ïkƒ1, and È D ”4u5

and Ô D ”4z5. Then “u1 z” D È0® ƒ1Ô is an inner product.

where ® D Ikƒ1 C jkƒ1j
0
kƒ1 . Note, ® ƒ1 D 4Ikƒ1 ƒ 1

k
jkƒ1j0

kƒ15 (Rao
1973, p. 33).

Proof. It is straightforward to show that this de� nition meets the
conditions of an inner product.

Theorem A.3. ïkƒ1 is a Hilbert space (a complete, inner product
space).

Proof. It remains to show completeness of the space. That is, we
require that every Cauchy sequence, 8zn9 2 ï kƒ1 , converges in ïkƒ1.

Suppose 8un9 2 ï kƒ1 is a Cauchy sequence. Then, for every … > 0,
there is an integer, N , such that m1 n > N imply ˜um

… un
˜ < ….

Let Èn D ”4un5. Then Èn 2 <kƒ1 for all n. Note that for the norm
de� ned above

˜um … un˜2 D 4Èn ƒÈm5
0
® ƒ14Èn ƒ Èm5

D 4Èn ƒÈm5
0

Ikƒ1 ƒ 1
k

jkƒ1j
0

kƒ1 4Èn ƒ Èm5

µ 4Èn
ƒÈm5

0
4Èn

ƒ Èm5

with equality holding only when Èn
ƒÈm is equal to the zero vector.

Note that this � nal expression, 4Èn ƒ Èm5
0
4Èn ƒ Èm5 D Pkƒ1

iD1 4ˆni ƒ
ˆmi5

2 is the square of the usual L2 norm for vectors in <kƒ1. By the
completeness of <kƒ1 (under L2 norm), the limit of 8Èn

ƒÈm9 2 <kƒ1.
By the above inequality, limit points under the L2 norm are also
limits under the norm de� ned above. Furthermore, because the ”4¢5
transform is bijective, all limit points in <kƒ1 can be transformed to
points in ï kƒ1 . Hence, any Cauchy sequence in ïkƒ1 (as measured by
the norm de� ned on ïkƒ1) has a limit in ïkƒ1, and ï kƒ1 is complete.
So, ïkƒ1, with the perturbation operator and scalar multiplication is
a Hilbert space.

[Received 23 July 1999. Revised 6 August 2001]
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