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1. Introduction

Climatic normals are defined by the World Meteorological Organization (1983) as “period
averages [of a climatic element such as temperature or precipitation] computed for a uniform and
relatively long period comprising at least three consecutive ten-year periods”. Normals are
computed for 30-year periods beginning with each decade (e.g., 1961-1990). If data are not
available for thirty years, then it is permissible to compute averages for shorter periods of at least
10 years of record if the data reflect both current observation practices and the climate at the
station. In practice, observing sites and instruments are moved, new instrumentation is
used, sensor calibration and/or maintenance procedures change, observing methods and codes
change, and environmental effects such as vegetation are not constant. Data collected over a long
period therefore may not reflect uniform climatic conditions over the period for which normals
are to computed. Prior to computing period averages, or normals, the homogeneity of observed
data with respect to non-climatic influences must therefore be assessed. If the data are found to
be inhomogeneous, then it must be determined if the data can be adjusted so that the adjusted
data set will reflect a uniform observing environment for a 30-year period. Heim and Guttman
(1997) discuss these issues as applied to the recently instituted automated surface observing
system in the U.S.

The broad subjects of data homogeneity, continuity and adjustments have received a lot
of attention in the literature and at conferences for more than a decade. A good summary of
homogeneity analyses of long-term in situ climatic time series and data adjustment methods that
are practiced in various countries around the world is given by Peterson et al. (1998). Another
good summary is by the Hungarian Meteorological Service (1997). Both of these contain
numerous references.

Most of the analysis techniques and adjustment methods have been applied to monthly
or annual time series. The U.S. climatic normals, however, are (at the time of this writing) likely
to be computed from daily data for the period 1971-2000. This paper examines some of the
techniques and methods from a statistical viewpoint for the purpose of assessing the magnitude
of non-climatic inhomogeneities in the 30-year, daily time series that can be detected and adjusted
by the various procedures. It also recommends an alternative, deterministic approach to
calculating daily normals.

2. Basic concepts

The most commonly used information about non-climatic influences comes from records
of station moves, changes in instrumentation, problems with instrumentation, sensor calibration
and maintenance logs, changes in surrounding environmental characteristics and structures,
observing practices, and other similar features. The composite of this information is generally
referred to as station metadata. The advantage of metadata is that it can provide the analyst with
detailed knowledge of when possible non-climatic heterogeneities were introduced into a time
series of observations as well as of the exact cause of the heterogeneities. Unfortunately,
metadata is often incomplete or erroneous, so that information from other sources, such as
statistical analyses, are needed to assess the homogeneity of a time series.



A single time series can be statistically examined for heterogeneities, but it is difficult to
determine if changes or lack of changes result from non-climatic or climatic influences. The
concept of relative climatic homogeneity was introduced by Conrad and Pollak (1950) to isolate
the non-climatic influences. They assume that within a geographical region, climatic patterns will
be identical and that observations from all sites within the region will reflect this identical pattern.
The data collected at all of the sites within the region should be highly correlated, have similar
variability, and differ only by scaling factors and random sampling variability. Data from a site
that indicate more than a random departure from the regional climate are considered to be
inhomogeneous, and the cause of the inhomogeneity is considered to be non-climatic. If the
regional climate is represented by a reference series of data that reflects the characteristics of the
regional climate, and if a heterogeneity in the data for a location within the region is determined to
be non-climatic, then the heterogeneous data can be adjusted to conform to the regional climate.
In hydrologic and water resource circles, these principles are the basis of regional frequency
analysis (Hosking and Wallis, 1997).

Three types of adjustment factors are commonly used. First, for elements such as
temperature that are assumed to change in parallel to the reference series, the adjustment factor is
the average difference between the reference series and the inhomogeneous data. Second, for
elements such as precipitation that are assumed to change in a relative manner to the reference
series, the adjustment factor is the average ratio of the inhomogeneous data to the reference series.
Third, adjustments are based on regression relationships.

There are three basic practical questions that need to be answered before applying one of
the above approaches:

1. Is there a non-climatic inhomogeneity in a data series?

2. What is the magnitude of an inhomogeneity that can be detected?

3. How should a regional climate be described?

The following sections will assess some of the statistical techniques that are commonly used to
answer these questions.

3. Detecting non-climatic inhomogeneities

If accurate and complete metadata is available, the temporal record of non-climatic or
external factors that affect the data is known. Determining if there is an inhomogeneity in the
data then becomes a conceptually trivial matter of examining the metadata. However, if metadata
are or are suspected of being inaccurate and/or incomplete, the detection of inhomogeneities is not
trivial and involves a comparison of the data series to that of the reference series.

It is important to note the different kinds of effects that could be exhibited in a
climatological record from non-climatic inhomogeneities. A step function could result from a
recalibration of an instrument. A linear trend could result from a gradual but constant degradation
of a sensor, and a non-linear trend could result from vegetative growth around the instruments. A
new instrument may respond differently from the old instrument only in some atmospheric
conditions but not in others. These examples show the broad range of effects that non-climatic
inhomogeneities may have on a data record; the problem of detecting all of these effects is
difficult.



Easterling and Peterson (1995) reviewed some of the easily automated detection
techniques that involve a comparison between a reference series and the data series that is being
examined. Most of the techniques that they reviewed are designed for detecting abrupt
discontinuities that are defined as a change in the mean of a time series. These include double
mass analysis (Kohler, 1949), concluding that it is impossible to determine which one of the two
series being compared contains a heterogeneity, and the parallel cumulative sum (CUSUM)
method described by Rhoades and Salinger (1993) that uses comparisons between the data series
and several reference series, concluding that the method is subjective, tedious, and has the
disadvantage of not immediately providing the means for calculating an adjustment factor. Zhang
(1998), in a paper concerning statistical control charts, relates and references studies that show
that the CUSUM method is not appropriate for autocorrelated data such as climate data. He also
describes the application of CUSUM techniques to residuals from time series models,
exponentially weighted moving average (EWMA) charts, and his modifications to the EWMA,
and concludes that no process control chart performs well (identifies an inhomogeneity) when
mean shifts are small in a nonstationary or near nonstationary process, i.e., in cases similar to the
heterogeneities found in climate data. More importantly, he shows that sample sizes from stable
processes should be at least 100 for reliable results; this sample size is usually much greater than
climatic time series allow.

The Standard Normal Homogeneity Test, or SNHT, is described by Tuomenvirta and
Alexandersson (1997). It assumes that a standardized difference or ratio series between the
reference data and the data that are being assessed is fairly constant. It is a parametric procedure
since it assumes that the difference/ratio series is a standard normal distribution. Early versions
of the test looked at sequential segmentation of the series into two parts, and the test statistic
compares the mean for each of the two segments before and after the point of segmentation. This
version is designed to identify a single shift of the mean. Later versions allow for a double shift
of the mean, and a single change in both mean and variance. Although these tests are formulated
for identifying abrupt changes in a series, the SNHT can also be formulated to examine linear
temporal trends.

Easterling and Peterson (1995) use regression techniques to search for inhomogeneities in
temperature data. They fit a simple linear regression to the whole difference series with time as
the predictor and differences as the predictand, and then calculate the residual sum of squares.
They then calculate, for sequentially increasing segmentation points, the residual sum of squares
from a two-phase linear regression. Since they are looking for abrupt changes, the two regression
lines are not constrained to meet at the segmentation point. The time for which the residual sum
of squares from the two-phase regression is a minimum is the time at which a potential
inhomogeneity is thought to occur. The significance of this potential inhomogeneity is
determined from a likelihood ratio test given by Solow (1987). They also test the difference in
the means between the two segments with a Student’s t-test to insure that a series with a trend
will found to be inhomogeneous even if the likelihood ratio is not found to be significant. Once a
potential discontinuity is found, the procedure is iterated on the subsets of data both before and
after the point of initial segmentation. The process is therefore designed to identify multiple
potential discontinuities. The final test of discontinuities involves application of a nonparametric
multiresponse permutation procedure that is described by Mielke and Berry (1994, 1997, 1998).



Vincent (1998) applies four regression models to identify periods of homogeneity and
inhomogeneity, abrupt changes, trends, and the most probable time of occurrence of an
inhomogeneity. First, a simple linear regression is calculated with a reference series (or multiple
reference series) as the predictor(s) and the series being examined as the predictand. The data
series is considered to be homogeneous if the residuals from the regression line are independent,
normal random variables with zero mean and constant variance. The residual pattern is examined
visually as well as subjected to the Durbin-Watson test for significance of lag one autocorrelation
and the Chatfield assessment of autocorrelation at lags greater than one. If autocorrelation exists,
then a second regression is calculated in which a linear trend is included. If autocorrelation in the
residuals of this second model exist, then the model is discarded and a third model is examined.
This model is the first model with a step function added. The third kind of regression is
calculated for sequential increases in the time at which the step can occur. The minimum residual
sums of squares from these regressions identifies the time of the discontinuity. If
autocorrelations exist in the residuals from regression with the identified step, a fourth model is
considered. The last regression is that of trends before and after a step.

These techniques for detecting inhomogeneities in a climate record are the common
approaches that are used, with some variation, by researchers in many countries. They are
intended to detect three kinds of inhomogeneities: a change in the average value between two
segments of data, a change in the average value and variance between two segments, and a linear
trend. The characteristics of a data series that is being assessed are smooth properties. Non-
climatic influences are assumed to affect all the data for a specified time period in a uniform
manner; they do not consider non-climatic influences that affect the data only during certain
weather patterns. In addition, they do not consider non-linear influences.

The techniques described above are certainly not exhaustive and are only intended to
illustrate the kinds of approaches that are commonly used. The literature is replete with
techniques, but most of them are similar to or variations of the above methodologies.

4. Magnitude of detectable inhomogeneities

A Monte Carlo study by Easterling and Peterson (1995) compared some of the
inhomogeneity detection techniques. A thousand series of 100-year annual mean temperature
data with weak autocorrelation were simulated. A single abrupt change of between a half and two
standard deviations of the data was introduced at time 65. These data sets were subtracted from
corresponding reference series without step functions and the resulting difference series were
tested. Results show that the SNHT, two-phase regression, Student’s t-test and CUSUM
procedures all correctly identified the single step function to within one time interval in over 92
percent of the cases when the magnitude of the step was greater than 1.5 standard deviations.
For a small step of 0.5 standard deviations, the SNHT procedure was best but not good; only
half the abrupt changes were detected. For a step of 1.0 standard deviations, the SNHT detected
about 85 percent of the inhomogeneities, and the two-phase regression detected about 75 percent.

Similar simulations were made for multiple step functions of varying magnitude and time
of change. Easterling and Peterson concluded that the SNHT is the best approach for detecting a
single abrupt change of small magnitude within 2 time intervals, but that the two-phase regression



approach is much more robust at detecting two changes that occur relatively closely in time. The
simulation results show that for multiple step changes of at least one standard deviation, the
Easterling-Peterson approach correctly identifies the time of the step to within 2 time intervals in
more than 85 percent of the cases, but also that the approach either incorrectly identifies the time
or identifies non-existent steps in about 20 to 25 percent of the cases.

Bosshard and Baudenbacher (1997) performed similar simulations of 60-month series of
monthly temperature. Their evaluation of a single abrupt change showed that all tests correctly
identified a change of 0.8°C within 11 time intervals in more than 90 percent of the cases, and
that the SNHT test for an abrupt change was able to detect a change of 0.4°C in more than 85
percent of the cases. The SNHT test for a shift in variance was shown to be effective in more
than 80 percent of the cases when a change in the standard deviation was greater than about 3.5.
Trends indicated by the Easterling-Peterson and the SNHT trend tests were also compared. The
SNHT procedure far outperformed the Easterling-Peterson method for trend detection within 2
time intervals and rates of between .008 for ratios and .040°C/year for differences.

Vincent (1998) also tested her procedure with simulated data corresponding to 100-year
annual temperature series. She found that homogeneous series were incorrectly identified as
being inhomogeneous in 13.6 percent of the cases. Her procedure is able to correctly identify the
position of a step function in about 78 percent of the cases when the magnitude of the step is 1.0
standard deviations and in more than about 88 percent of the cases when the magnitude is greater
than 1.25 standard deviations. She also shows that steps with a magnitude of 0.2°C can be
detected in more than 83 percent of the cases when a segment length before or after the step is at
least 10 time intervals and the step change is at least 0.5 standard deviation.

The magnitude of changes that can be detected by some parametric tests for means and
residuals from regression models can be easily estimated theoretically as a function of the
standard deviation s of the data series being examined. The relationship for tests that are based
on the assumption of normality, such as Student’s t-test and the SNHT (Alexandersson, 1986),
is

f(s) = (Tna)s®

where f is the magnitude of detectable change, and T is based on the critical value of the test
statistic for a sample size n and significance level a. For Student’s t-test, the multiplier of the
common standard deviation of the data from which the means of two groups are computed ranges
from about 1.5 for total sample sizes n of about 10 to 1.0 for n of about 20 to .5 for n of about 60
when a=.05. For the SNHT test of a single step in the mean, the multiplier ranges from about
0.8 for n of about 25 to 0.6 for n of about 50 when a=.05.

5. Reference series
Comparing a data series to a reference series is a standard methodology in the detection of

non-climatic inhomogeneities. The assumption to this approach is that the reference series is
homogeneous with respect to climatic variations and is also representative of real climatic



variations that are uniform over a geographical region that includes the site whose data are being
evaluated. The critical part of the premise is that the reference series be representative of
uniform climatic conditions. Under this assumption, the data collected at sites within the region
can be considered to be random samples of the climatic conditions that affect the entire region
equally. Since the characteristics of a climate are measured at point locations, the definition of a
region becomes a collection of point-source data samples, each of which are representative of the
same climatic environment. In practice, the “equal” constraint is often not met because of
deterministic factors such as the effect of topography on the meteorological variables of interest.
The constraint is therefore relaxed so that climatological homogeneity can be defined as assuming
that frequency distributions at various sites are identical apart from a scaling factor.

In the climatology community, reference sites are commonly selected on the basis of
distance and correlation under the assumption that data from nearby locations should reflect the
regional climate and be highly, positively correlated. “Highly, positively correlated” is generally
defined as being measured by linear correlation coefficients that exceed about .90. When a
composite reference series is constructed from data collected at several sites, distance weighting
functions or other optimization functions that minimize characteristics such as a coefficient of
variation are used to accommaodate climatic gradients.

Peterson and Easterling (1994) report that when considering pairs of possible reference
series, discontinuities in one of or both the series that are being compared can drastically alter the
correlation coefficient. If discontinuities in both series are of comparable magnitude and
direction, then the correlation coefficient is higher than would be expected if one series were
homogeneous. Conversely, they found that if the discontinuities are in opposite direction, the
correlation is lower than would be expected if one series were homogeneous. They attempted to
solve this problem by correlating series of the change of data per unit time rather than the original
data series. With this approach, correlation between homogeneous rate of change series was
about the same as that for the original series. For original data with a few discontinuities, the
correlation between the rate of change series did not mask nor inflate correlations. The use of rate
of change series in correlation analyses is now being adopted by many analysts (Peterson,
personal communication, 1998).

After identifying highly correlated series that could be used to construct a reference series,
Peterson and Easterling (1994) perform an additional test to decide if the high correlations could
have resulted from chance. The exact distribution of the correlation coefficient for normally
distributed data is known, but the authors prefer to use a nonparametric permutation test so that
a priori distribution assumptions are unnecessary.

Rather than examining covariances as in the correlation coefficient approach, a second
method, that has been used for many years in the hydrological community, examines frequency
distributions of the data collected at sites within a region. It is assumed that in a climatologically
homogeneous region, each frequency distribution is a random sample of a common regional
distribution from which the observed data are generated. The region can be described by
frequency distributions which are, after appropriate scaling, the same for all sites within the
region. The measures used to describe the frequency distributions are those of location, scale and
shape (the parameters of the distributions).



Hosking and Wallis (1997) present a complete description of the regional frequency
analysis methodology that is based on L-moments rather than conventional moments for
characterizing frequency distributions. The authors found that for small and moderate samples,
the use of L-moments yields efficient and computationally convenient estimates of parameters
and quantiles. A key part of the methodology is to use site characteristics such as geographical
location, elevation and other physical and deterministic properties associated with each site.
Potentially homogeneous regions are constructed by combining sites with similar vectors of site
characteristics through standard multivariate cluster analysis or other similar techniques. The
homogeneity of the potential region is then tested by using the L-moments at each site. This
concept has the advantage of testing for homogeneity on the basis of characteristics that are not
used in the clustering of sites.

The hypothesis of homogeneity is that the frequency distributions at each site are the
same except for a site-specific scale factor. The average regional coefficient of L-variation (L-CV)
is compared to the L-CV that would be expected in a homogeneous region in order to assess
homogeneity; the expectation is determined by simulation. The test assumes that the frequency
distributions at all sites represent the same regional climate; discordancy among the sites is
measured in terms of L-moments.

This second method of constructing reference series has intuitive appeal in that
regionalization is performed on the basis of physical rather than strictly statistical properties and
that the functional form of frequency distributions does not have be fixed in advance. There are,
however, two potential problems in its application to the construction of reference series. First,
the discordancy measure is not likely to be useful for less than 7 sites in a region. Second,
according to Hosking and Wallis (1997), sample sizes of at least 20 are needed to calculate
reasonably unbiased estimates of the population L-moments, and Guttman (1994) recommends
even larger sample sizes.

6. Confidence intervals

Decisions regarding inhomogeneities are generally based on test statistics that are expected
to occur with a predetermined and constant degree of confidence. For a given significance level a,
the critical value upon which a decision is based is a function of the sample size. Therefore, the
confidence interval or range of values for which a null hypothesis is accepted or rejected with a
specified a is also a function of the sample size.

Curves showing the relationship between critical values for a=.05 and sample size for
some of the commonly used tests are shown in figure 1. They are intended as examples to show
the effect of sample size on the width of confidence intervals. Flat segments of the curves
indicate ranges of n for which a confidence interval is approximately constant, and sloping
segments indicate the ranges of n for which the intervals vary. The curve for Student’s t-test is
for the hypothesis that the means of two normally distributed groups, each of size n/ 2 and
common standard deviation s, are equal. The bound represents the multiplier of s. The bound
for the two-phase regression is based on an F3 4 distribution of the test statistic (Solow, 1987).
The curve for the ratio was adapted from Alexandersson (1986), and the curve for the rank



correlation was plotted from a table in Snedecor and Cochran (1967). The confidence bounds for
most tests are related to sample size in a manner that is similar to these examples.

The curves define sample sizes for which decisions are spatially comparable when a given
test is applied to data collected at several sites. Sample sizes corresponding to a flat part of a
curve result in confidence intervals that are of equal length for the whole range of n that results in
the flat portion, whereas sample sizes corresponding to the sloping part of a curve result in
differing confidence lengths as n changes. In the former case, decisions made for multiple sites in
a geographical area are based on the same set of conditions, but in the latter case, they are not
since the widths of the confidence intervals vary.

7. Relevance to calculating normals

Plans are currently being made to calculate climatic normals for the period 1971-2000
(see, for example, Heim and Guttman, 1997). The goal is to construct a data set that fulfills the
World Meteorological Organization criteria as well as accommodates some of the
recommendations of the American Association of State Climatologists (Kunkel and Court, 1990).
These recommendations include adopting the median as a measure of central tendency for
variables, such as total precipitation, which in many locations do not follow a Gaussian or
symmetrical distribution; calculating a measure of variability; and describing extremes. Prior
calculations of normals used monthly data as a basic time unit from which summaries of longer
and shorter time intervals were derived. Current plans, however, include using daily data as a
basic time unit since summaries for any desired time interval that is longer than a day can be
calculated, a daily time unit is not constrained by non-climatic time entities such as arbitrarily
defined months or seasons, a comparison between daily normals calculated from a spline fit of
monthly data and those calculated from daily data showed significant differences (Guttman and
Plantico, 1987), and electronic computing capabilities have increased dramatically.

The purposes of climatic normals are to allow comparisons of a value of a climatic
variable to a reference value (normal), and to allow spatial comparisons. Comparisons among
different sets of normals can lead to suggestions of long-term climate change, trends or
stationarity, and changes in spatial patterns. Prediction is not one of the purposes of normals,
but, as noted by Guttman (1989) and Kunkel and Court (1990), it is in fact a use of normals.
These two, along with the international criteria and recommendations by the State Climatologists,
serve to define the steps to be taken for calculating normals:

1. Determine a period of record for which data at a site are homogeneous with respect to
climatic influences.

2. Adjust non-climatically inhomogeneous data to the latest period of homogeneous data
if the causes and effects of the inhomogeneities can be completely described.

3. Describe the frequency distribution (central tendency, variability and extremes) of the
homogeneous data for the period of record (1971-2000) in a manner that allows for consistent
interpretation both spatially and temporally.

Central to the statistical determination of homogeneity, without consideration of
metadata, is the construction of a homogeneous, regional reference series against which a data
series with potential non-climatic heterogeneities can be compared. Most of the techniques



utilize linear correlation among data sets to determine a climatologically coherent region. Highly
correlated data sets, where “highly” is defined as a linear correlation that is greater than a
threshold value, are assumed to be random samples of the same climatic regime. Although
assessment of regional homogeneity with the L-moment frequency analysis approach is more
robust than the correlation statistic assessment (in that the discordancy and homogeneity tests
consider all of the frequency descriptors), application of these tests requires more data than are
generally available for analysis. The discordancy test requires data from at least 7 sites to be
useful, and the homogeneity test becomes better at indicating heterogeneity as the number of sites
increases. Additionally, both tests require the number of observations at each site to be at least
20 in order to obtain good estimates of the population L-moments. Although preferable to the
linear correlation approach, the lack of data necessary to obtain reasonable estimates of the
frequency distribution parameters precludes the use of the approach.

The correlation approach can be used in the construction of a reference series, but it also
has some important drawbacks. The use of a threshold value for making a decision does not take
into account the sampling characteristics and confidence interval of the correlation statistic that is
used for making the decision. As an example, assuming normally distributed data, the sampling
characteristics of the linear correlation coefficient are known (e.g., van der Waerden, 1969), and
the confidence interval varies considerably with sample size n. Figure 2 shows the a=.05 interval
as a function of n for a correlation coefficient of .90, a value commonly used as a threshold. The
figure shows that for small sample sizes, one cannot be confident that a calculated sample value
of .90 is indicative of a high correlation in the population thereby leading to the construction of a
reference series that does not in fact represent a homogeneous regional climate.

Another problem with correlation statistics is that they do not consider either nonlinear
or nonuniform effects. This problem is especially critical when daily data are being analyzed.
Daily observations of a climatic element are much more reflective of the fluctuations of weather
patterns passing over a site than are monthly, seasonal or annual data. The daily data may reflect
more of a mixture of populations, and are more likely to be affected by nonlinear and nonuniform
weather events than data that are averaged over a longer time interval, so that dependence on a
correlation coefficient is likely to be suspect when constructing daily reference series.

The ability to construct realistic daily reference series is therefore highly questionable.
However, even if a reasonable series could be constructed, the determination of relative
homogeneity is problematic. Most of the techniques summarized in the preceding sections
assess relative homogeneity in terms of abrupt shifts in means, departures from a linear
regression model, or a simple combination of shifts in means and linear trends, and they are used
on monthly or annual data. They are capable of detecting, to within a couple of time units, shifts
in the mean of about 10 percent for ratios and 3/4 to 1 standard deviation for differences. Fairly
small trends can also be detected to within a couple of time units. (Unfortunately, the techniques
also falsely detect changes at a high rate that is on the order of 20 percent or more.) Assuming
that the magnitude of the levels of change that can be detected in monthly or annual data also
apply to daily data, the inherently high variability of the daily data leads to rather large ranges of
undetectable inhomogeneities.

For example, in the very simple case where climate is defined only by an average, assume,
for a given calendar day, that 30 values of a well behaved element such as temperature are



independently and identically normally distributed with variance s?, and that a step function is
introduced by a non-climatic effect midway in the period of record. The magnitude of differences
between the means before and after the step that could be detected with a confidence of, for
example, .95, is approximately .7s. Since the standard deviation of daily temperatures at most
locations in the U.S. is of the order of 10 to 12 °F in winter and 4 to 5°F in summer (Heim,
personal communication, 1998), then the magnitude of detectable shifts in a mean are about 7 to 8
°F in winter and 3 to 4 °F in summer. For monthly data, with the same assumptions as for the
daily data, the standard deviations are 5 to 6 °F in winter and 2 to 3 °F in summer so that the
magnitude of detectable shifts are about 4 °F in winter and near 2 °F in summer. In this ideal
example, the confidence intervals are too broad to provide the precision desired for and implied
by climatic normals. In the real world, the test assumptions made for this example will, for most
daily data sets, be violated and the magnitude of detectable effects of non-climatic
inhomogeneities is likely to be even greater.

Test assumptions are critical to the application of the parametric tests upon which the
homogeneity decisions are based. Student’s t-test, the likelihood ratio tests in the SNHT
procedure, and other parametric tests all have assumptions which must be valid (or
approximately valid) if the test is to be used properly. Most tests assume that the data are
distributed according to a known function such as the normal distribution and that the data are
independent and identically distributed. Tests that compare means often assume that variances
of subsets of the data are equal. Daily climatological data are generally non-normal and often not
identically distributed so that the assumptions of most parametric tests are not met, and
decisions based on the tests are questionable. The nature of even the monthly and annual data
may be a major contributor to the high false detection and error rate noted earlier in the use of
parametric tests; results for daily data are likely to be worse.

Nonparametric tests such as the permutation tests used described by Mielke (op.cit), the
Mann-Whitney-Wilcoxon test, and Spearman’s rank correlation test, are based solely on the
ordering of the data and not on any definite distribution function. Since they are distribution-
free, they are more attractive than parametric tests in the analysis of climatological data. An
objection to the use of permutation tests, however, is that the tests are strictly data-dependent.
All the information that is available is contained in the sample data so that different random
samples of the same population may lead to different test results. In an assessment of
climatological homogeneity, replication is not an option since only one observed sample of data
is available for analysis, and therefore the effect of the data-dependency on test results cannot be
determined.

Both the parametric and nonparametric tests that are described above and commonly used
in the assessment of regional and site homogeneity look at only one or a few of the characteristics
of a frequency distribution. These characteristics therefore are the defining qualities of
homogeneity. They do not include nonlinear effects nor do they consider non-climatic influences
that affect data in a nonuniform manner, such as only during certain weather events, seasons, etc.
Since the goal of the daily normals is to describe the complete frequency distribution of daily
data, any assessment of homogeneity that is based solely on the parametric and/or nonparametric
tests will be incomplete.



None of the commonly used statistical techniques can adequately identify climatologically
homogeneous periods of record. Since homogeneous periods cannot be established, there is very
little basis upon which to either adjust data or completely describe the central tendencies,
variability and extremes of frequency characteristics, i.e., climatic normals. When only these
statistical techniques are used, confidence that could be placed on calculated normals would be
minimal.

If metadata is available from which a prior determinations can be made of the introduction
of heterogeneities, and if the metadata is suspected of containing errors or of not containing
important information, the problem of identifying periods of homogeneity becomes the more
restrictive problem of the statistical testing for homogeneity of the a priori identification of a
potentially homogeneous period.

Nonparametric tests are more suited for these homogeneity tests than parametric tests
because frequency distributions do not have to specified. One disadvantage is that the
probability of a calculated test statistic depends on the number of possible permutations of the
data and therefore may be a function of sample size. Most tests, however, are equally sensitive
to small and large samples. Another disadvantage, as already noted, is that they test only some
of the characteristics of a frequency distribution and not the collective of characteristics.

If the collective is not tested, then the complete frequency distributions for different
periods of record cannot be compared. The collective of characteristics summarizes the
contribution of each data value to the whole frequency distribution. Unless all of the
characteristics can be compared, the impact of inhomogeneities that affect data nonuniformly
and/or nonlinearly are difficult to determine with any reasonable degree of certainty. Also, it is
difficult to separate with certainty the climatic effects from non-climatic effects unless a
comparative reference series can be constructed, and, as shown above, construction of an
adequate daily or monthly reference series is highly questionable. Therefore, comparisons among
frequency distributions for differing periods of record that are determined from incomplete or
suspect a priori information is not viable, and, according to the recommendations of the World
Meteorological Organization (1989), data for one period of record should not be adjusted to the
data for another period of record.

Fortunately, for the U.S., there is reasonably complete and accurate metadata for U.S.
weather stations that contains information about station moves, instrument changes and other
non-climatic factors that can be used to identify climatically homogeneous periods of record.
Metadata is simply a collection of information about the data; interpretation of the information is
necessary in making the homogeneity decisions. Assessments must be made as to what the
impacts are of a specific change in siting environment, instrumentation, observing practices, etc.
As examples, it should be determined how much of a horizontal or vertical change in station
location is needed to put the station into a different climate, what the response of a new sensor
to various weather events is compared to the response of the old sensor, and what the effect of
coding changes is on the data representation of the climate. These assessments are deterministic
in the sense that they are made from the viewpoint of analyses of the physical processes that
control climate and its measurement. Once the assessments are made, decision trees can be
constructed that relate the metadata to the physically-based, deterministic impacts of an
observing change on the measurement of the climate.



8. Conclusions

In summary, climatic normals are intended to serve as a baseline for both spatial and
temporal comparison. They are values derived from the frequencies of identically distributed
observations over a 30-year period of record. At most locations, however, non-climatic
influences such as station relocations, siting changes, instrument changes and recalibrations, etc.
preclude obtaining a climatically homogeneous record of daily observations for 30 years. The
statistical problem of detecting the full range of these inhomogeneities from the observational
record is currently intractable. However, in the U.S., official, reasonably complete, and accurate
metadata can be used to identify the dates of non-climatic changes to the observational record,
and physically based decisions can be made to determine the impacts of these changes on climatic
homogeneity. It is therefore recommended that periods of climatic homogeneity be determined
solely by the use of metadata and not by statistical models that have yet to adequately describe
observed processes, and that normals for a station should be computed for an observational
record corresponding to the homogeneous period ending in the year 2000. In accordance with
international guidelines, it is further recommended that normals be computed only if 10 or more
observations are available in the homogeneous period of record, and that the set of normals
include the mean and median as measures of central tendency; the standard deviation, mean
deviation from the median, and quartiles or quintiles as measures of variability; and the highest
and lowest 5 percent of the of the observations as indicators of extremes.

The deterministic rather than statistical approach to assessing homogeneity involves
analyses of the processes that control climate at each individual site. Universal decision rules
cannot be constructed because of the localized climatic effects of, for example, topography,
proximity to water sources, and/or site environment (land use, instrument exposure, etc.).
Network density is also a factor in that several sites in a local area provide more comparative
information than only a couple of sites. The approach also allows for the possibility of data
adjustments to lengthen a period of record if the effects of a non-climatic change can be
analytically described with certainty.

It is recognized that these recommendations do not fulfill the goal of providing a set of
summary statistics that are designed for temporal and spatial comparisons. The lengths of record
will vary among sites so that comparisons cannot be made for a period of record that is uniform
at all locations. However, normals that are calculated as recommended do provide a set of
summary statistics that are based on unadulterated, official observational records, metadata, and
deterministic physically-based reasoning. They are therefore uncontaminated by any potentially
inaccurate assumptions about the climate that the data reflect or by any manipulations of the data
that potentially result in an inaccurate description of the climate; all of the current, strictly
statistical procedures that have been developed for homogeneity testing and data adjustment can
lead to contamination since they are based on assumptions that cannot be validated.

The basic question is whether summary statistics of uncontaminated observations for
varying periods of record are better than summary statistics of contaminated observations for a
constant period of record. The answer depends on the use of the statistics. For the original
purpose of the normals, i.e. comparisons of climatically homogeneous data for a uniform period
record, neither set of statistics is palatable--one set describes climatically homogeneous data for



varying time periods and the other set describes data for a uniform time period but for which
climatic homogeneity cannot be reasonably ascertained. The above recommendations are
therefore not based on the comparison use, but, instead, on the prediction use of the normals.
Although it could easily be argued that normals should not be used for prediction, as Guttman
(1989) and Kunkel and Court (1989) relate, they are in fact used for this purpose in, among
others, the energy, agribusiness, construction, and insurance sectors of the economy. These
authors also reference several studies showing that the latest period of between 10 and 20 years
is optimal for predicting the climate of the next few years. These considerations tipped the
balance in favor of the summary statistics of uncontaminated data with varying record lengths of
at least 10 years.
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Figure 1. Relationship between confidence interval bounds (a = .95) and sample size.



Figure 2. Confidence bounds (a = .95) as a function of sample size for a sample correlation
coefficient of .90



