Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Abhirup Datta¹ Sudipto Banerjee¹ Andrew O. Finley² Alan E. Gelfand³

¹University of Minnesota, Minneapolis, MN, USA ²Michigan State University, East Lansing, MI, USA ³Duke University, Durham, NC, USA

PASI, 2014

Outline

- Motivating Example
 - U.S. Forest biomass data
 - Spatial process models
- Nearest neighbor Gaussian process (NNGP)
 - NNGP construction
 - Hierarchical NNGP
- 3 Application to spatial datasets
 - Simulation experiments
 - Forest biomass analysis using NNGP
- Conclusions
 - Summary and future research

Bibliography

U.S. Forest biomass data

Figure: Observed biomass (left) and NDVI (right)

- Forest biomass data collected between 1999 and 2006 at 114,371 plots
- Normalized Difference Vegetation Index (NDVI) calculated in July 2006
- NDVI is a measure of greenness and is used as a covariate in Forest Biomass Regression Models

Non Spatial Model

Model

Biomass = $\beta_0 + \beta_1 NDVI + error$, $\hat{\beta}_0 = 1.043$, $\hat{\beta}_1 = 0.0093$

Figure: Heat map (left) and variogram (right) of residuals reflecting spatial correlation

Datta et al. (Univ. of Minn. and others)

Nearest Neighbor Gaussian Processes

Gaussian process models

Full rank model

- $S = \{s_1, s_2, \dots, s_n\}$ denote locations where data is observed
- $y(s_i)$ denote the response at the i^{th} location

•
$$y = (y(s_1), y(s_2), \dots, y(s_n))'$$

•
$$y = X\beta + w + \epsilon, \epsilon \sim N(0, \tau^2 I)$$

- $w = (w(s_1), w(s_2), \dots, w(s_n))'$ are spatial random effects
- $w \sim GP(0, C(\theta)), C(\theta)$ is a valid spatial covariance matrix

Computation issues

- Needs to store the n^2 pairwise distances to compute $C(\theta)$
- $C(\theta)$ is dense, computing $C(\theta)^{-1}$ uses $O(n^3)$ flops
- Computationally infeasible for such massive datasets

Computation issues

- Needs to store the n^2 pairwise distances to compute $C(\theta)$
- $C(\theta)$ is dense, computing $C(\theta)^{-1}$ uses $O(n^3)$ flops
- Computationally infeasible for such massive datasets

Low rank models

- Regresses *w* on \tilde{w} realized at *r* locations (knots) where $r \ll n$
- $O(nr^2)$ flops but requires large r for massive datasets
- Has known performance issues (Stein 2013 [2])

Composite likelihoods (Vecchia 1988 [3], Stein 2004 [1])

- y_{i_m} denote the realizations of the GP at *m* nearest neighbors of s_i among $s_1, s_2, \ldots, s_{i-1}$
- $p_{CL}(y) = p(y(s_1)) \prod_{i=2}^{n} p(y(s_i) | y_{i_m})$ where *m* is very small (~ 10)
- Computationally efficient parameter estimation
- Various other choices for neighbor sets
- Confidence intervals and model evaluation based on inappropriate asymptotics
- Not model based: estimation and prediction based on different likelihoods
- Not always possible to recover the residual spatial surface i.e. w

Directed acyclic graphs

- $w(s) \sim p(\cdot)$ be any stochastic process over a domain \mathcal{D}
- $\mathcal{S}^* = (s_1^*, s_2^*, \dots, s_k^*)$ is a finite set of locations in \mathcal{D}
- $G_{\mathcal{S}^*}$ denotes a directed graph on \mathcal{S}^*
- $N(s_i^*)$ denotes the set of directed neighbors for s_i^* in the graph
- $p(w_{S^*})$ is the probability density of realizations of w(s) over S^*

Theorem

If G_{S^*} is closed and acyclic, then the composite likelihood given by

$$\tilde{p}(w_{\mathcal{S}^*}) = \prod_{i=1}^k p(w(s_i^*) \,|\, w_{N(s_i^*)}) \tag{1}$$

is a valid multivariate density over \mathcal{S}^*

Extension to process

- For any location s outside S*, N(s) denote a set of directed neighbors of s in S*
- For any $S = (s_1, s_2, \dots, s_n)$ outside S define,

$$\tilde{p}(w_{\mathcal{S}} \mid w_{\mathcal{S}^*}) = \prod_{i=1}^n p(w(s_i) \mid w_{N(s_i)})$$
(2)

Theorem

If S^* is fixed and G_{S^*} is closed and acyclic, then the finite dimensional densities given in equations (1) and (2) define a stochastic process over the entire domain D that satisfies Kolmogorov's consistency criteria.

Nearest Neighbor Gaussian Process

Theorem

If $w(s) \sim GP(0, C(\theta))$ be a stationary Gaussian process over \mathcal{D} and every location *s* in \mathcal{D} has at most *m* directed neighbors, then

- $\tilde{p}(w_{S^*})$ is joint density from the model $w_{S^*} \sim N(0, \tilde{C}_{S^*})$ where $\tilde{C}_{S^*}^{-1}$ is sparse with at most km^2 non-zero entries
- $\tilde{p}(w_{\mathcal{S}} | w_{\mathcal{S}^*})$ is the density for $w_{\mathcal{S}} | w_{\mathcal{S}^*} \sim N(B_{\mathcal{S}}w_{\mathcal{S}^*}, F_{\mathcal{S}})$ where $B_{\mathcal{S}}$ is sparse with atmost *nm* non-zero entries. $F_{\mathcal{S}}$ is diagonal
- $\tilde{p}(\cdot)$ defines a new Gaussian Process derived from the parent Gaussian Process

We denote it by Nearest Neighbor Gaussian Process – $NNGP(0, \tilde{C}(\theta))$

Nearest Neighbor Gaussian Process

• Sparse precision matrices

Figure: Sparse precision matrices for NNGP

- Any choice of neighbor sets used by Vecchia and Stein can be used
- Easily embeds into a hierarchical setup

Hierarchical NNGP model

•
$$S = \{s_1, s_2, \dots, s_n\}$$
 denote locations where data is observed
• $S_1 = S \setminus S^* = \{s_1, s_2, \dots, s_r\}$
Model $y(s) = X(s)'\beta + w(s) + \epsilon(s)$ $w(s) \sim NNGP(0, \tilde{C}(\theta))$
 $\epsilon \sim N(0, \tau^2 I)$ $\tau^2 \sim IG(a_\tau. b_\tau)$
 $\beta \sim N(\mu_\beta, V_\beta)$ $\theta \sim \pi(\theta)$

Likelihood

$$N(y | X\beta + w_{\mathcal{S}}, \tau^{2}I) \times N(w_{\mathcal{S}_{1}} | B_{\mathcal{S}_{1}}w_{\mathcal{S}^{*}}, F_{\mathcal{S}_{1}}) \times N(w_{\mathcal{S}^{*}} | 0, \tilde{C}_{\mathcal{S}^{*}}) \\ \times N(\beta | \mu_{\beta}, V_{\beta}) \times IG(\tau^{2} | a_{\tau}, b_{\tau}) \times \pi(\theta)$$

Gibbs' sampler

- Conjugate full conditionals for β , τ^2
- Sequential updates or sparse Cholesky block update for full conditional of $w(s_i^*)$'s
- Block update for full conditionals of $w(s_i)$'s, i = 1, 2, ..., r
- Metropolis Hastings step for updating θ

Gibbs' sampler

- Conjugate full conditionals for β , τ^2
- Sequential updates or sparse Cholesky block update for full conditional of $w(s_i^*)$'s
- Block update for full conditionals of $w(s_i)$'s, i = 1, 2, ..., r
- Metropolis Hastings step for updating θ

Storage and computation

- Never needs to store $n \times n$ distance matrix. Stores n + k small $m \times m$ matrices
- Total flop count per iteration of Gibbs' sampler is linear in n + k

Choice of S, **neighbors**, m

- Fully model based estimation and prediction
- Posterior distribution of the parameters and the residual surface w
- Both storage and computation is linear in n + k. Scalabale to massive datasets.
- *k* can be as large as *n*. Not a low rank process
- S^* is usually a large grid on the domain with *k* close to *n*.
- \mathcal{S}^* can be chosen to be \mathcal{S} if \mathcal{S} is large and uniformly spread over \mathcal{D}
- All competing choices of S^* , N(s) and *m* can be compared using standard model comparison metrics

Simulation experiments

- 2500 locations on a unit square
- $y(s_i) = \beta_0 + \beta_1 X(s_i) + w(s_i) + \epsilon(s_i)$
- Single covariate generated from N(0, 1)
- $R(\nu, \phi)$ denotes Matern correlation function with smoothness ν and decay ϕ
- Spatial effects generated from $GP(0, \sigma^2 R(\nu, \phi))$
- Candidate models: Full GP, Low rank GP (PPGP) with 64 knots, NNGP $\{S^* = S\}$ and NNGP $\{S^* \neq S\}$

(a) True w

(b) Full GP

(c) PPGP 64 knots

(d) NNGP $m = 10 S = S^*$

(e) NNGP
$$m = 10 \mathcal{S} \neq \mathcal{S}^*$$

		NNGP ($S^* \neq S$)	$NNGP(\mathcal{S}^* = \mathcal{S})$	Predictive Process	Full
	True	m = 10, k = 2000	m = 10	64 knots	Gaussian Process
β_0	1	0.99 (0.71, 1.48)	1.00 (0.62, 1.31)	1.30 (0.54, 2.03)	1.03 (0.69, 1.34)
β_1	5	5.00 (4.98, 5.03)	5.01 (4.99, 5.03)	5.03 (4.99, 5.06)	5.01 (4.99, 5.03)
σ^2	1	1.09 (0.89, 1.49)	0.96 (0.78, 1.23)	1.29 (0.96, 2.00)	0.94 (0.76, 1.23)
τ^2	0.1	0.07 (0.04, 0.10)	0.10 (0.08, 0.13)	0.08 (0.04, 0.13)	0.10 (0.08, 0.12)
ϕ	12	11.81 (8.18, 15.02)	12.93 (9.70, 16.77)	5.61 (3.48, 8.09)	13.52 (9.92, 17.50)
PD	-	1491.08	1243.32	1258.27	1260.68
DIC	-	1856.85	2390.65	13677.97	2364.80
G	-	33.67	77.84	1075.63	74.80
Р	-	253.03	340.40	200.39	333.27
D	-	286.70	418.24	1276.03	408.08
RMSPE	-	1.22	1.2	1.68	1.2
Run time (Minutes)	-	20.29	14.40	43.36	560.31

Table: Univariate synthetic data analysis

- Parameter estimates for all models are similar
- NNGP performs at par with Full GP, PPGP performs worse
- NNGP yields huge computational gains

Back to the Forest biomass dataset

- *n* = 114, 371
- Full GP and PPGP storage requirements $\gg 38$ gibabytes available
- We use a hierarchical spatially varying coefficients NNGP model

Model

- $Biomass(s) = \beta_0(s) + \beta_1(s)NDVI(s) + \epsilon(s)$
- $w(s) = (\beta_0(s), \beta_1(s))' \sim \text{Bi-variate } NNGP(0, \tilde{C}(\theta))$
- $\mathcal{S}^* = \mathcal{S}, m = 5$
- Computation time 46 hrs

(a) Observed biomass

(c) $\beta_0(s)$

Datta et al. (Univ. of Minn. and others)

Nearest Neighbor Gaussian Processes

Conclusions

- Model based framework for a large class of neighbor based composite likelihood techniques
- Unified platform for estimation, prediction and model comparison
- Easily extends to multivariate spatial processes
- Seamlessly adapts into a hierarchical setup
- Posterior predictions, recovery of spatial surface
- Superior performance, massive computation and storage gains over existing models
- Possible extension to spatio-temporal models, spatial GLMs

References

- Stein, M. L., Chi, Z., and Welty, L. J. (2004), *Approximating Likelihoods for Large Spatial Data Sets*, Journal of the Royal Statistical Society. Series B (Methodological), 66, 275-296.
- [2] Stein M.L. (2013), *Limitations on Low Rank Approximations for Covariance Matrices of Spatial Data*, Spatial Statistics.
- [3] Vecchia, A. V. (1988), *Estimation and Model Identification for Continuous Spatial Processes*, Journal of the Royal Statistical Society. Series B (Methodological), 50, 297-312.