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Motivating Example U.S. Forest biomass data

U.S. Forest biomass data

Figure: Observed biomass (left) and NDVI (right)

Forest biomass data collected between 1999 and 2006 at 114,371 plots

Normalized Difference Vegetation Index (NDVI) calculated in July 2006

NDVI is a measure of greenness and is used as a covariate in Forest
Biomass Regression Models
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Motivating Example U.S. Forest biomass data

Non Spatial Model

Model

Biomass = β0 + β1NDVI + error, β̂0 = 1.043, β̂1 = 0.0093
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Figure: Heat map (left) and variogram (right) of residuals reflecting spatial
correlation
Datta et al. (Univ. of Minn. and others) Nearest Neighbor Gaussian Processes PASI 2014



Motivating Example Spatial process models

Gaussian process models

Full rank model
S = {s1, s2, . . . , sn} denote locations where data is observed

y(si) denote the response at the ith location

y = (y(s1), y(s2), . . . , y(sn))
′

y = Xβ + w + ε, ε ∼ N(0, τ 2I)

w = (w(s1),w(s2), . . . ,w(sn))
′ are spatial random effects

w ∼ GP(0,C(θ)), C(θ) is a valid spatial covariance matrix
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Motivating Example Spatial process models

Computation issues

Needs to store the n2 pairwise distances to compute C(θ)

C(θ) is dense, computing C(θ)−1 uses O(n3) flops

Computationally infeasible for such massive datasets

Low rank models
Regresses w on w̃ realized at r locations (knots) where r � n

O(nr2) flops but requires large r for massive datasets

Has known performance issues (Stein 2013 [2])
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Motivating Example Spatial process models

Composite likelihoods (Vecchia 1988 [3], Stein 2004 [1])

yim denote the realizations of the GP at m nearest neighbors of si among
s1, s2, . . . , si−1

pCL(y) = p(y(s1))
∏n

i=2 p(y(si) | yim) where m is very small (∼ 10)

Computationally efficient parameter estimation

Various other choices for neighbor sets

Confidence intervals and model evaluation based on inappropriate
asymptotics

Not model based: estimation and prediction based on different
likelihoods

Not always possible to recover the residual spatial surface i.e. w
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Nearest neighbor Gaussian process (NNGP) NNGP construction

Directed acyclic graphs

w(s) ∼ p(·) be any stochastic process over a domain D
S∗ = (s∗1, s

∗
2, . . . , s

∗
k) is a finite set of locations in D

GS∗ denotes a directed graph on S∗

N(s∗i ) denotes the set of directed neighbors for s∗i in the graph

p(wS∗) is the probability density of realizations of w(s) over S∗

Theorem
If GS∗ is closed and acyclic, then the composite likelihood given by

p̃(wS∗) =
k∏

i=1

p(w(s∗i ) |wN(s∗i )
) (1)

is a valid multivariate density over S∗
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Nearest neighbor Gaussian process (NNGP) NNGP construction

Extension to process

For any location s outside S∗, N(s) denote a set of directed neighbors of
s in S∗

For any S = (s1, s2, . . . , sn) outside S define,

p̃(wS |wS∗) =
n∏

i=1

p(w(si) |wN(si)) (2)

Theorem
If S∗ is fixed and GS∗ is closed and acyclic, then the finite dimensional
densities given in equations (1) and (2) define a stochastic process over the
entire domain D that satisfies Kolmogorov’s consistency criteria.

Datta et al. (Univ. of Minn. and others) Nearest Neighbor Gaussian Processes PASI 2014



Nearest neighbor Gaussian process (NNGP) NNGP construction

Nearest Neighbor Gaussian Process

Theorem
If w(s) ∼ GP(0,C(θ)) be a stationary Gaussian process over D and every
location s in D has at most m directed neighbors, then

1 p̃(wS∗) is joint density from the model wS∗ ∼ N(0, C̃S∗) where C̃−1
S∗ is

sparse with at most km2 non-zero entries

2 p̃(wS |wS∗) is the density for wS |wS∗ ∼ N(BSwS∗ ,FS) where BS is
sparse with atmost nm non-zero entries. FS is diagonal

3 p̃(·) defines a new Gaussian Process derived from the parent Gaussian
Process

We denote it by Nearest Neighbor Gaussian Process – NNGP(0, C̃(θ))
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Nearest neighbor Gaussian process (NNGP) NNGP construction

Nearest Neighbor Gaussian Process

Sparse precision matrices
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Figure: Sparse precision matrices for NNGP

Any choice of neighbor sets used by Vecchia and Stein can be used

Easily embeds into a hierarchical setup
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Nearest neighbor Gaussian process (NNGP) Hierarchical NNGP

Hierarchical NNGP model

S = {s1, s2, . . . , sn} denote locations where data is observed

S1 = S \ S∗ = {s1, s2, . . . , sr}

Model y(s) = X(s)′β + w(s) + ε(s) w(s) ∼ NNGP(0, C̃(θ))

ε ∼ N(0, τ 2I) τ 2 ∼ IG(aτ .bτ )

β ∼ N(µβ,Vβ) θ ∼ π(θ)

Likelihood
N(y |Xβ+wS , τ 2I)× N(wS1 |BS1wS∗ ,FS1)× N(wS∗ | 0, C̃S∗)

× N(β |µβ,Vβ)× IG(τ 2 | aτ , bτ )× π(θ)
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Nearest neighbor Gaussian process (NNGP) Hierarchical NNGP

Gibbs’ sampler

Conjugate full conditionals for β, τ 2

Sequential updates or sparse Cholesky block update for full conditional
of w(s∗i )’s

Block update for full conditionals of w(si)’s, i = 1, 2, . . . , r

Metropolis Hastings step for updating θ

Storage and computation
Never needs to store n× n distance matrix. Stores n + k small m× m
matrices

Total flop count per iteration of Gibbs’ sampler is linear in n + k
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Nearest neighbor Gaussian process (NNGP) Hierarchical NNGP

Choice of S, neighbors, m

Fully model based estimation and prediction

Posterior distribution of the parameters and the residual surface w

Both storage and computation is linear in n + k. Scalabale to massive
datasets.

k can be as large as n. Not a low rank process

S∗ is usually a large grid on the domain with k close to n.

S∗ can be chosen to be S if S is large and uniformly spread over D

All competing choices of S∗, N(s) and m can be compared using
standard model comparison metrics
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Application to spatial datasets Simulation experiments

Simulation experiments

2500 locations on a unit square

y(si) = β0 + β1X(si) + w(si) + ε(si)

Single covariate generated from N(0, 1)

R(ν, φ) denotes Matern correlation function with smoothness ν and
decay φ

Spatial effects generated from GP(0, σ2R(ν, φ))

Candidate models: Full GP, Low rank GP (PPGP) with 64 knots, NNGP
{S∗ = S} and NNGP {S∗ 6= S}
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Application to spatial datasets Simulation experiments

(a) True w (b) Full GP (c) PPGP 64 knots

(d) NNGP m = 10 S = S∗ (e) NNGP m = 10 S 6= S∗

Figure: Univariate synthetic data analysisDatta et al. (Univ. of Minn. and others) Nearest Neighbor Gaussian Processes PASI 2014



Application to spatial datasets Simulation experiments

Table: Univariate synthetic data analysis

NNGP (S∗ 6= S) NNGP (S∗ = S) Predictive Process Full
True m = 10, k = 2000 m = 10 64 knots Gaussian Process

β0 1 0.99 (0.71, 1.48) 1.00 (0.62, 1.31) 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
β1 5 5.00 (4.98, 5.03) 5.01 (4.99, 5.03) 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)
σ2 1 1.09 (0.89, 1.49) 0.96 (0.78, 1.23) 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)
τ2 0.1 0.07 (0.04, 0.10) 0.10 (0.08, 0.13) 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
φ 12 11.81 (8.18, 15.02) 12.93 (9.70, 16.77) 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)
pD – 1491.08 1243.32 1258.27 1260.68

DIC – 1856.85 2390.65 13677.97 2364.80
G – 33.67 77.84 1075.63 74.80
P – 253.03 340.40 200.39 333.27
D – 286.70 418.24 1276.03 408.08

RMSPE – 1.22 1.2 1.68 1.2
Run time (Minutes) – 20.29 14.40 43.36 560.31

Parameter estimates for all models are similar

NNGP performs at par with Full GP, PPGP performs worse

NNGP yields huge computational gains

Datta et al. (Univ. of Minn. and others) Nearest Neighbor Gaussian Processes PASI 2014



Application to spatial datasets Forest biomass analysis using NNGP

Back to the Forest biomass dataset

n = 114, 371

Full GP and PPGP storage requirements� 38 gibabytes available

We use a hierarchical spatially varying coefficients NNGP model

Model
Biomass(s) = β0(s) + β1(s)NDVI(s) + ε(s)

w(s) = (β0(s), β1(s))′ ∼ Bi-variate NNGP(0, C̃(θ))

S∗ = S, m = 5

Computation time 46 hrs
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Application to spatial datasets Forest biomass analysis using NNGP

(a) Observed biomass (b) Fitted biomass

(c) β0(s) (d) βNDVI(s)
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Conclusions Summary and future research

Conclusions

Model based framework for a large class of neighbor based composite
likelihood techniques

Unified platform for estimation, prediction and model comparison

Easily extends to multivariate spatial processes

Seamlessly adapts into a hierarchical setup

Posterior predictions, recovery of spatial surface

Superior performance, massive computation and storage gains over
existing models

Possible extension to spatio-temporal models, spatial GLMs
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