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Challenges in spatial data analysis

Challenges in spatial data analysis

Our ability to collect, manage, and use spatial-temporal data is
rapidly evolving.

Interdisciplinary works leads to more complex questions −→
complicated statistical models.

Data-rich environments provide extraordinary opportunities to
understand the complexity of large datasets.

Major challenges:
Understand the complex inferential questions;

Construct (perhaps) complex statistical models, but that are
interpretable and identifiable (“valid”).

Overcome computational bottlenecks in implementation.
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Overview and motivating data set Setting

Point-referenced spatial data often arise as multivariate
measurements at each location.
Examples:

environmental monitoring: stations yield measurements on
ozone, NO2, CO, SO2 and PM
community ecology: assemblage of plant species due to water,
nutrients, temperature, and light requirements
forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
atmospheric modeling: at a given location we observe surface
temperature, precipitation and wind speed

Dependence between outcomes within a given location and across
proximate locations.
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Overview and motivating data set Motivating example from community ecology

La Selva Biological Station soil data
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Overview and motivating data set Motivating example from community ecology

Predictors include subject’s access to environmental resources e.g.,
water, other nutrients, light.

Our objectives:
predict soil nutrients for each tree’s location (i.e., to serve as
competition model covariates)
document how nutrients co-vary in these tropical soils

Data from La Selva Biological Station in Costa Rica:
soil samples n =251
three soil nutrients measured at each location
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Complex spatial dependencies
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Complex spatial dependencies

var



w1(s1)
w2(s1)
w1(s2)
w2(s2)
w1(s3)
w2(s3)


=


∗ γ1 α12 δ12 α13 δ13
γ1 ∗ δ21 β12 δ31 β13
α12 δ21 ∗ γ2 α23 δ23
δ12 β12 γ2 ∗ δ32 β23
α13 δ31 α23 δ32 ∗ γ3
δ13 β13 δ23 β23 γ3 ∗
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Complex spatial dependencies

Conditional independence (graphical) models

Can be computationally beneficial – introduce sparsity.
Cond. indep. models may NOT be process models.
Consider a Cond. indep. model for n sites:

[Y1, . . . , Yn]1

Consider the observation from a “new” node, say Y0. Form the
distribution:

[Y0, Y1, . . . , Yn]2

Unfortunately: ∫
[Y0, Y1, . . . , Yn]2 =

∫
[Y1, . . . , Yn]2

6= [Y1, . . . , Yn]1

Not suitable for predictions at all. Inappropriate for continuous
topologies.
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Spatial interpolation

The spatial interpolation problem

Unknown signal w(·) observed over S = {s1, . . . , sn} ⊂ <d.

We seek an f(·) to agree with w(·) on S .

f(s) = b1(s)β1 + b2(s)β2 + · · ·+ bn(s)βn = b(s)′β .

Find β’s such that f(si) = w(si) for si ∈ S :
b1(s1) b2(s1) · · · bn(s1)
b1(s2) b2(s2) · · · bn(s2)

...
...

. . .
...

b1(sn) b2(sn) · · · bn(sn)



β1
β2
...
βn

 =


w(s1)
w(s2)

...
w(sn)


Bβ = w

.

When B−1 exists: f(s) = b(s)′B−1w.
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Spatial interpolation

“Kriging”

How about constructing a covariance matrix as B?

bj(si) = cov{w(si), w(sj)} = Cθ(si, sj) .

Cθ(s, t) = Cθ(t, s) is a real-valued covariance function: For any
S ⊆ <d,

n∑
i=1

n∑
j=1

uiCθ(si, sj)uj > 0 ∀ ui, uj ∈ < \ {0} .

Then B = var{w} is symmetric, positive definite and

f(s) = cov{w(s),w}′var{w}−1w .
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Covariance functions

Covariance functions

Stationary: Cθ(s, t) = Cθ(t− s). Isotropy: Cθ(s, t) = Cθ(‖t− s‖).
Bochner: Covariance function⇔ characteristic function.

Matérn correlation:

Cθ(s, t) =
σ2

2φ2−1Γ(φ2)
(‖t− s‖φ1)φ2κφ2(‖t− s‖;φ1)

φ1 → controls how fast correlation decays

φ2 → controls smoothness of the spatial surface
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Multivariate spatial interpolation

The multivariate spatial interpolation problem

Now w(s) is an m× 1 vector s ∈ <d.

We seek an m× 1 function f(·) to agree with w(·) on S .

f(s) = B1(s)β1 +B2(s)β2 + · · ·+Bn(s)βn = B(s)′β .

Find β’s such that f(si) = w(si) for si ∈ S :
B1(s1) B2(s1) · · · Bn(s1)
B1(s2) B2(s2) · · · Bn(s2)

...
...

. . .
...

B1(sn) B2(sn) · · · Bn(sn)



β1

β2
...
βn

 =


w(s1)
w(s2)

...
w(sn)


Bβ = w

.

But when will B−1 exist? Harder problem as B(si)’s are matrix
functions.
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Multivariate Kriging

“Multivariate Kriging”

The analogue from the univariate case:

Bj(s) = cov{w(s),w(sj)} = Cθ(s, sj) = {cov{wk(s), wl(sj)}} .

Cθ(s, t) = Cθ(t, s)
′ is a matrix-valued cross-covariance function.

For any S ⊆ <d,

n∑
i=1

n∑
j=1

uiCθ(si, sj)uj > 0 ∀ ui, uj ∈ <d \ {0} .

B = var{w} must be symmetric, positive definite, whereupon

f(s) = cov{w(s),w}′var{w}−1w .
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The Gaussian process - stochastic interpolation

So why not become fully stochastic?

Assume that w(s) is an m× 1 multivariate spatial process

w(s) ∼ GP (0,Cθ(·)) ; Cθ(s, t) = {cov{wi(s), wj(t)}} .

For any S = {s1, s2, . . . , sn} ⊂ <d, let Cw(θ) = {Cθ(si, sj)}.

w = (w(s1)′,w(s2)′, . . . ,w(sn)′)′ ∼ N(0,Cw(θ));

Spatial interpolation:

E[w(s) |w] = cov{w(s),w}′var{w}−1w = f(s) .
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Hierarchical spatial process models

Hierarchical Spatial model

p(θ,Ψ,β,w |y) ∝ p(θ)× IW (Ψ | aψ,Sψ)×N(β |µβ ,Σβ)

×N(w |0,Cw( θ ))×
n∏
i=1

Nm(y(si) |X(si)
′ β + w(si) , Ψ )

regression slopes

spatial random effects from Gaussian process
nonspatial variability (nugget)

spatial process parameters (spatial variance, range,
smoothness).
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Two primary issues

Two primary issues.

How do we construct valid matrix-valued cross-covariance
functions?

What if n is LARGE? How do we tackle Cw(θ)−1 (an mn×mn
matrix)?
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Two primary issues

w(s)

Constructive

Latent
processes

Multivariate
Matérn

Kernel
Convolution

Latent
DimensionCharacterize
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Constructing cross-covariances

Constructive approach using latent variables


w1(s)
w2(s)

...
wm(s)

 =


l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...
lm1 lm2 . . . lmm



v1(s)
v2(s)

...
vm(s)



w(s) controls correlation in wi’s vi(·)
ind∼ GP (0, Cv(θvi))
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Constructing cross-covariances

Spatially-varying (nonstationary) cross-covariances
w1(s)
w2(s)

...
wm(s)

 =


l11(s) 0 . . . 0
l21(s) l22(s) . . . 0

...
...

. . .
...

lm1(s) lm2(s) . . . lmm(s)



v1(s)
v2(s)

...
vm(s)



w(s) lij(·)
ind∼ GP (0;Cw(·;θlij )) vi(·)

ind∼ GP (0, Cv(·;θvi))
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Constructing cross-covariances

w(s) = L(s)v(s)

Cw(s, t) = L(s)Cv(s, t)L(t)′

vi(s)
ind∼ GP (0, ρi(·)) and var{vi(s)} = 1 for all s.

cov(vi(s), vj(t)) =

{
ρi(s, t;θi) if i = j
0 if i 6= j ,

Cv(s, t) =

{
diag{ρi(s, t;θi)} if s 6= t
Im if s = t

Cw(s, s) = L(s)L(s)′ =⇒ L(s) = chol(Cw(s, s)) .
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Dimension reduction

Dimension reduction

What if n is LARGE? How do we tackle Cw(θ)−1 (an mn×mn
matrix)?

Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du
et al. 2009; Kaufman et al., 2009)

Spectral domain: (Fuentes 2007; Paciorek, 2007)

Approximations using cond. indep. (Vecchia 1988; Stein et al.
2004; Rue et al. (2003))

low-rank approaches (Wahba, 1990; Higdon, 2002; Lin et al.,
2000; Paciorek, 2007; Rasmussen & Williams, 2006; Tokdar et
al., 2007, 2011; Stein 2007, 2008; Cressie & Johannesson,
2008; Banerjee et al., 2008)
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Low rank interpolation

Low rank interpolation

Cannot handle interpolations over S .

Interpolate over a smaller set of n∗ locations, say
S ∗ = {s∗1, s∗2, . . . , s∗n∗} and n∗ << n.

f̃(s) = B∗1(s)β∗1 +B∗2(s)β∗2 + · · ·+B∗n∗(s)β∗n∗ = B∗(s)′β∗ .

Find β’s such that f(si) = w(si) for si ∈ S ∗:
B∗1(s∗1) B∗2(s∗1) · · · B∗n∗(s∗1)
B∗1(s∗2) B∗2(s∗2) · · · B∗n∗(s∗2)

...
...

. . .
...

B∗1(sn∗) B∗2(sn∗) · · · B∗n∗(s∗n∗)



β∗1
β∗2
...
β∗n∗

 =


w(s∗1)
w(s∗2)

...
w(s∗n∗)


B∗β∗ = w∗

.

When B∗−1 exists: f̃(s) = B∗(s)′B∗−1w∗.
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Low rank kriging

Low rank kriging

We set the basis functions as:

B∗j (s) = cov{w(s),w(s∗j )} = Cθ(s, s
∗
j ) .

Note: B∗ = var{w∗} is symmetric, positive definite and

f̃(s) = cov{w(s),w∗}′var{w∗}−1w∗ .

Inversion required for B∗ = var{w∗}, which is n∗ × n∗.

23 UNC 2011



Low rank Gaussian process

Low rank Gaussian process

Does low rank interpolation correspond to a “low rank” spatial
process?

Call w(s) ∼ GPm (0,Cθ(·)) the parent process

For S ∗ = {s∗1, s∗2, . . . , s∗n∗}, let C∗w∗(θ) =
{
Cθ(s

∗
i , s
∗
j )
}

:

w∗ = (w(s∗1)′,w(s∗2)′, . . . ,w(s∗n∗)′)′ ∼ N(0,C∗w(θ))

The predictive process derived from w(s) is:

w̃(s) = E[w(s) |w∗] = cov{w(s),w∗}′var{w∗}−1w∗ = f̃(s) .

w̃(s) is a degenerate Gaussian process delivering
dimension-reduction.
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Hierarchical predictive process models

w(s)

w̃(s) = E[w(s) |w∗]

Low rank interpolation

w ∗
=

(w
(s ∗
1 ) ′, . . . ,w

(s ∗
n ∗ ) ′) ′

Hierarchical predictive process models

p(θ,Ψ,β,w∗ |y) ∝ p(θ)× IW (Ψ | aψ,Sψ)×N(β |µβ ,Σβ)

×N(w∗ |0,C∗w(θ))×
n∏
i=1

Nm(y(si) |X(si)
′β + w̃(si),Ψ).
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Selection of knots

How do we choose S ∗

Knot selection: Regular grid? More knots near locations we have
sampled more?

Formal spatial design paradigm: maximize information metrics.

Geometric considerations: space-filling designs; various
clustering algorithms

Adaptive modeling of knots using point processes (Guhaniyogi et
al., 2011).

Compared performance of estimation of range and smoothness
by varying knot size.

Usually inference is quite robust to S ∗.

More important to capture loss of variability due to low rank
approximation.

Seamlessly adapts to multivariate and spatiotemporal settings.
26 UNC 2011



Selection of knots

0 50 100 150 200

0
5

10
15

20
25

knots

ta
uˆ

2

0 50 100 150 200

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

−6

−4

−2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

−6

−5

−4

−3

−2

−1

0

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

 −6 

 −5.5 

 −5.5 

 −5 

 −5 

 −4.5 

 −4.5 

 −4 

 −4 

 −3.5 

 −3.5 

 −3.5 

 −3.5 

 −3.5 

 −3 

 −3 

 −3 

 −3 

 −2.5 

 −2.5 

 −2.5 

 −2.5 

 −2.5 

 −2.5 

 −2 
 −2 

 −2 

 −2 

 −2 

 −2 

 −1.5 

 −1.5 

 −1.5 

 −1.5 

 −1 

 −0.5 

 0 

 0.5 

Parent process surface Predictive process surface

27 UNC 2011



Selection of knots

Systemic under-estimation:

Systematic under-estimation

var{w(s)} = var{E[w(s) |w∗]}+ E{var[w(s) |w∗]}
≥ var{E[w(s) |w∗]} = var{w̃(s)}.

Orthogonal decomposition:

var{w(s)} = var{w̃(s)}+ var{w(s)− w̃(s)}

ε̃(s) = w(s)− w̃(s) ∼ GP (0, Cε̃(s, t;θ)):

Cε̃(s, t;θ) = C(s, t;θ)− c(s;θ)′C∗(θ)−1c(s;θ) .
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Selection of knots

Model-based non-degenerate structures

Modified (non-degenerate) predictive process:

ε̃(si)
iid∼ N(0, δ2(si;θ)) ; δ2(s;θ1) = Cε̃(s, s;θ) .

Tapered adjustment

ε̃(s) ∼ GP (0, Ctap(s, t))

Ctap(s, t;θ) = Cε̃(s, t;θ)Cν(‖s− t‖;θ) ,

Cν(‖s− t‖;θ) is a compactly supported correlation function on
[0, ν].

ν = 0⇒ modified predictive process
ν = ∞⇒ parent spatial process
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Formal theory of oversmoothing

Formal theory for oversmoothing by low-rank processes.

Mean square continuity and differentiability at s0 of a process
w(·) requires existence of some vector ∇w(s0) with,

lim
s→s0

E (w(s)− w(s0))
2

= 0

lim
h→0

E

(
w(s0 + hu)− w(s0)

h
− 〈∇w(s0),u〉

)2

= 0

With Matérn correlation function for the parent process:
1 Predictive process is infinitely mean square differentiable except at

the set of knot points S ∗.
2 Modified predictive process is not mean square continuous at any

point.
3 Tapered predictive process can have exactly the same degree of

smoothness as the parent process.
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Formal theory of oversmoothing

Low rank cross-covariances

GP: lij(s) PP: lij,pp(s) MPP: l̃ij(s)

GP: vk(s) PP: vk,pp(s) MPP: ṽk(s)

Dim. Reduction Non degenerate

Dim. Reduction Non degenerate

ind. ind. ind.

w̃(s) = L̃(s)ṽ(s)

wmpp(s) = Lpp(s)vpp(s) + ε̃(s)
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Formal theory of oversmoothing

Parameter credible intervals, 50 (2.5 97.5) percentiles, for soil nutrient data analysis candidate models.
Non-stationary

Predictive process
Parameter Stationary Full 26
β0,P 0.71 (0.26, 1.35) 0.66 (0.22, 1.05) 0.64 (0.33, 1.20)

β0,SBC 5.38 (5.03, 6.08) 5.18 (4.86, 5.49) 5.16 (4.83, 5.40)
β0,SN 5.42 (4.97, 5.86) 5.53 (5.30, 5.78) 5.53 (5.31, 5.73)

σ2P,P 0.92 (0.52, 2.29) 0.20 (0.09, 0.53) 0.22 (0.08, 0.57)

σ2SBC,P 0.47 (0.25, 1.23) 0.24 (0.10, 0.63) 0.21 (0.10, 0.54)

σ2SN,P 0.49 (0.26, 1.25) 0.20 (0.09, 0.50) 0.23 (0.11, 0.75)

σ2SBC,SBC 0.44 (0.27, 1.08) 0.54 (0.18, 1.64) 0.36 (0.13, 1.01)

σ2SN,SBC 0.19 (0.06, 0.51) 0.14 (0.06, 0.36) 0.15 (0.07, 0.38)

σ2SN,SN 0.39 (0.19, 1.08) 1.85 (0.62, 6.11) 1.77 (0.41, 10.38)
φa – 0.0135 (0.0125, 0.0173) 0.0134 (0.0125, 0.0170)
φw 0.0499 (0.0165, 0.0873) 0.0371 (0.0180, 0.0737) 0.0284 (0.0133, 0.0603)

Eff. rangea m – 222.13 (173.32, 238.97) 224.36 (176.57, 239.17)
Eff. rangew m 60.04 (34.31, 181.08) 80.68 (40.66, 166.33) 105.64 (49.65, 225.05)

τ2P 0.21 (0.14, 0.30) 0.19 (0.13, 0.28) 0.19 (0.13, 0.28)
τ2SBC 0.07 (0.05, 0.11) 0.06 (0.04, 0.09) 0.06 (0.04, 0.09)
τ2SN 0.15 (0.11, 0.21) 0.11 (0.07, 0.16) 0.09 (0.06, 0.14)
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Formal theory of oversmoothing

Model Assessment
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Formal theory of oversmoothing

Non-stationary – full versus predictive process
Full ρ(s)P,SBC Full ρ(s)P,SN Full ρ(s)SN,SBC

Pred. proc. ρ(s)P,SBC Pred. proc. ρ(s)P,SN Pred. proc. ρ(s)SN,SBC
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Formal theory of oversmoothing

Non-stationary – full versus predictive process,
ρ(s) sig. at 0.05 level (•) positive, (•) negative
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Formal theory of oversmoothing

Non-stationary – full versus predictive process,
ρ(s) range between 0.025-0.975 CI
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Formal theory of oversmoothing

Non-stationary – observed (interpolated) versus predictive process (predicted)
Obs. Phosphorus (P) Sum of base cations (SBC) Sum of nitrogen (SN)

Pred. proc. P Pred. proc. SBC Pred. proc. SN
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Summary

Summary

Challenge – to meet spatial modeling needs:
Predictive process models for large datasets and complex
models

Use some model-based adjustment to compensate for
over-smoothing;

stochastically model the knots?

Tapered adjustment delivers same level of smoothness as parent
(Guhaniyogi et al., 2011).

Computing: C++ with OpenMP/MKL
Now available in the R package spBayes.

This work was supported by:

NSF Grant DMS 0706870.
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Thank you!
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