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Challenges in spatial data analysis

Challenges in spatial data analysis
@ Our ability to collect, manage, and use spatial-temporal data is
rapidly evolving.

@ Interdisciplinary works leads to more complex questions —
complicated statistical models.

@ Data-rich environments provide extraordinary opportunities to
understand the complexity of large datasets.

@ Major challenges:
e Understand the complex inferential questions;

e Construct (perhaps) complex statistical models, but that are
interpretable and identifiable (“valid”).

e Overcome computational bottlenecks in implementation.
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Overview and motivating data set Setting

Point-referenced spatial data often arise as multivariate
measurements at each location.
Examples:
@ environmental monitoring: stations yield measurements on
ozone, NO,, CO, SO, and PM
@ community ecology: assemblage of plant species due to water,
nutrients, temperature, and light requirements
@ forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
@ atmospheric modeling: at a given location we observe surface
temperature, precipitation and wind speed
Dependence between outcomes within a given location and across
proximate locations.
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Overview motivating data set Motivating example

La Selva Biological Station soil data
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Overview and motivating data set Motivating example from community ecology

Predictors include subject’s access to environmental resources e.g.,
water, other nutrients, light.
Our objectives:

@ predict soil nutrients for each tree’s location (i.e., to serve as
competition model covariates)

@ document how nutrients co-vary in these tropical soils
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Overview and motivating data set Motivating example from community ecology

Predictors include subject’s access to environmental resources e.g.,
water, other nutrients, light.
Our objectives:

@ predict soil nutrients for each tree’s location (i.e., to serve as
competition model covariates)

@ document how nutrients co-vary in these tropical soils

Data from La Selva Biological Station in Costa Rica:
@ soil samples n =251
@ three soil nutrients measured at each location
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Complex spatial dependencies
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Complex spatial dependencies

Conditional independence (graphical) models

@ Can be computationally beneficial — introduce sparsity.
@ Cond. indep. models may NOT be process models.
@ Consider a Cond. indep. model for n sites:

Y1,..., Y.

@ Consider the observation from a “new” node, say Y,. Form the
distribution:
[Yo,Y1,...,Ya)2

@ Unfortunately:

/[YO,Yl,...,Yn]Q :/[Yl,...,Yn]z
#[V,..., Y1

@ Not suitable for predictions at all. Inappropriate for continuous
topologies.
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Spatial interpolation

The spatial interpolation problem

@ Unknown signal w(-) observed over . = {s1,...,s,} C R%.
@ We seek an f(+) to agree with w(:) on 7.

f(s) =b1(s)Br + ba(s) B2 + -+ + bn(s)Bn = b(s)'B .
@ Find 8’s such that f(s;) = w(s;) for s; € .

bi(s1) ba(s1) -+ bu(s1)| [A w(s1)
b1(s2) ba(s2) bn(s2)| | B2 B w(sz)
bi(sn) ba(sn) - bu(sn)] |G w(s)

Bg = w

@ When B~ exists: f(s) = b(s)'B™w.
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Spatial interpolation

“Kriging”

@ How about constructing a covariance matrix as B?
bj(si) = cov{w(s:),w(s;)} = Co(si, s5) -
@ Cy(s,t) = Cy(t, s) is a real-valued covariance function: For any
S CRY,
ZZung(si, sj)u; >0 VYV wy, u; € R\ {0} .
i=1 j=1

@ Then B = var{w} is symmetric, positive definite and

f(s) = cov{w(s),w}var{w} 'w .
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Covariance functions

Covariance functions

@ Stationary: Cy(s,t) = Co(t — s). Isotropy: Cy(s,t) = Cy(||t — s||).
@ Bochner: Covariance function < characteristic function.

Matérn correlation:
2
___ o _ P2 el
C@(S,t) - 2¢2*1F(¢2)(Ht S||¢1) F';<152(||t S||7¢1)
¢1 —  controls how fast correlation decays

¢2 —  controls smoothness of the spatial surface
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Multivariate spatial interpolation

The multivariate spatial interpolation problem

@ Now w(s) is an m x 1 vector s € R%.

@ We seek an m x 1 function f(-) to agree with w(-) on .#.

f(s) = B1(s)B; + Ba(s)By + -+ Bn(s)8,, = B(s)'B .

@ Find f’s such that f(s;) = w(s;) for s; € .7

Bi(s1) Ba(s1) -+ Byu(s1)| [B

Bi(s2) Ba(s2) -+ Bua(s2)| |B,

Bl(sn) BQ(Sn) Bn(sn) /6n
Bg

@ But when will B! exist? Harder problem as B(s;)’s are matrix

functions.
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Multivariate Kriging

“Multivariate Kriging”

@ The analogue from the univariate case:
Bj(s) = cov{w(s),w(s;)} = Cy(s, s;) = {cov{wg(s),wi(s;)}} -
@ Cy(s,t) = Cy(t,s) is a matrix-valued cross-covariance function.

@ Forany.7 C R4,
ZZUiCQ(Si,Sj)Uj >0 VYV ow,u;€ R\ {0}).
i=1 j=1

@ B = var{w} must be symmetric, positive definite, whereupon

f(s) = cov{w(s),w} var{w} 'w .
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The Gaussian process - stochastic interpolation

So why not become fully stochastic?

@ Assume that w(s) is an m x 1 multivariate spatial process
w(s) ~GP(0,C()); Cols,t) = {cov{wi(s), w;(#)}} .
@ Forany . = {s1,82,...,8,} C R%, let C,,(0) = {Cy(s;, s;)}.
w = (w(s1), w(sa)', ..., w(sn)") ~ N(0,Cy(0));
@ Spatial interpolation:

E[w(s) |w] = cov{w(s),w} var{w} 'w = f(s) .
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Hierarchical spatial process models

Hierarchical Spatial model

p(0,%,8,w|y) xp(@) x IW(‘I’Iaw,Sw) x N(B|pg,%p)

x N(w|0,Cy( 0)) x HN y(si) | X(:)|B + w(s;) , ®

@ regression slopes
© spatial random effects from Gaussian process
O nonspatial variability (nugget)

O spatial process parameters (spatial variance, range,
smoothness).
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Two primary issues

Two primary issues.

@ How do we construct valid matrix-valued cross-covariance
functions?

@ What if n is LARGE? How do we tackle C,,(0)~! (an mn x mn
matrix)?
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primary issues

Latent
processes

Multivariate
Matérn

Constructive

Kernel
Convolution

Latent
Dimension

Characterize
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Constructing cross-covariances

Constructive approach using latent variables

’LUl(S) lll 0 e 0 1)1(8)
U}Q(S) l21 l22 e 0 ’UQ(S)
W (S) lml lm2 lmm Um(s)
controls correlation in w;’s vi() B GP(0,Cy(0y,))
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Constructing cross-covariances

Spatially-varying (nonstationary) cross-covariances

w1 (8) l11(8) 0 e 0 v1(8)
’U.)Q(S) _ 121(8) 122(5) e 0 ’02(8)
Wi (5) Lo(8) Lma(8) o Lom(s)) \om(s)
w(s) Lii() ™ GP0;Cu(561,)) i) * GP(0,C,(564,))
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Constructing cross-covariances

Cuw(s,t) = L(s)Cy(s, t)L(t)/

vi(s) % GP(0, pi(+)) and var{v;(s)} = 1 for all s.

(s t:0) if i—i
o= (3521
Cv(s,t){ (I":g{iff’i(zt:;ii)} if s#t

Cw(s,8) = L(s)L(s)' = L(s) = chol(Cy(s,s)) .
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Dimension reduction

Dimension reduction
What if n is LARGE? How do we tackle C,,(6)~! (an mn x mn
matrix)?
@ Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du
et al. 2009; Kaufman et al., 2009)
@ Spectral domain: (Fuentes 2007; Paciorek, 2007)

@ Approximations using cond. indep. (Vecchia 1988; Stein et al.
2004; Rue et al. (2003))

@ low-rank approaches (Wahba, 1990; Higdon, 2002; Lin et al.,
2000; Paciorek, 2007; Rasmussen & Williams, 2006; Tokdar et
al., 2007, 2011; Stein 2007, 2008; Cressie & Johannesson,
2008; Banerjee et al., 2008)
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Low rank interpolation

Low rank interpolation

@ Cannot handle interpolations over .#.

@ Interpolate over a smaller set of n* locations, say
S*={s],85,...,8 .} and n* << n.

f(s) = Bi(s)B] + B5(s)B5 + - + B, (s)B;. = B*(s)'8" .
@ Find @’s such that f(s;) = w(s;) for s, € ./*:

Bi(si) Bj(si) - By.(s)] [ w(si)
Bi(si) Bilsy) - Bud) ||| | w(s)
Bi(sw) Bi(sw) - Bie(si)] Lo w(s;.)

Bp* = w

@ When B* ! exists: f(s) = B*(s)'B* 'w*.
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Low rank kriging

Low rank kriging

@ We set the basis functions as:
B (s) = cov{w(s),w(s})} = Co(s, s]) .
@ Note: B* = var{w*} is symmetric, positive definite and
f(s) = cov{w(s),w*}'var{w*} tw* .

@ Inversion required for B* = var{w*}, which is n* x n*.
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Low rank Gaussian process

Low rank Gaussian process

@ Does low rank interpolation correspond to a “low rank” spatial
process?

@ Callw(s) ~ GP,, (0,Cy(-)) the parent process
@ For 7" ={s},s3,...,s5.}, let Cy,. (6) = {Co(s], si)}:
w” = (w(s]), w(s3)',..., w(s;.)") ~ N(0,Cq(0))
@ The predictive process derived from w(s) is:
w(s) = E[w(s) |w"] = cov{w(s), w"}'var{w"}~'w" = f(s) .

@ w(s) is a degenerate Gaussian process delivering
dimension-reduction.
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Hierarchical predictive process models

‘ Low rank interpolation ‘

Hierarchical predictive process models

x N(w*|0,C% (0 xHN y(s:)| X (s;) B+ w(s;), ®).
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Selection of knots

How do we choose .7*

@ Knot selection: Regular grid? More knots near locations we have
sampled more?

@ Formal spatial design paradigm: maximize information metrics.

@ Geometric considerations: space-filling designs; various
clustering algorithms

@ Adaptive modeling of knots using point processes (Guhaniyogi et
al., 2011).

@ Compared performance of estimation of range and smoothness
by varying knot size.

@ Usually inference is quite robust to .7*.

@ More important to capture loss of variability due to low rank
approximation.

@ Seamlessly adapts to multivariate and spatiotemporal settings.
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Selection of knots

Systemic under-estimation:

Systematic under-estimation

var{w(s)} = var{E[w(s) | w*]} + E{varfw(s) |w*]}
> var{E[w(s) |w*|} = var{w(s)}.

@ Orthogonal decomposition:
var{w(s)} = var{w(s)} + var{w(s) — w(s)}
@ ¢(s) =w(s) —w(s) ~ GP(0,C:(s,t;0)):

C:(s,t;0) = C(s,t;0) — c(s;0)'C*(8) 'c(s;0) .
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Selection of knots

Model-based non-degenerate structures

@ Modified (non-degenerate) predictive process:

é(s;) i N(07(52(si;6)); (52(3;01) = C:(s,s;0) .

Tapered adjustment

€(s) ~ GP(0,Cp(s,t))
Ciap(s,t;0) = Cz(s,t;0)C,(]|s - t|;0),

e Cu(||s — t||; 0) is a compactly supported correlation function on
[0, v].

v = 0= modified predictive process
v = oo = parent spatial process
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Formal theory of oversmoothing

Formal theory for oversmoothing by low-rank processes.

@ Mean square continuity and differentiability at s, of a process
w(-) requires existence of some vector Vw(sg) with,

lim E (w(s) —w(sg))’ =0

, w(sy + hu) — w(sy) 2
’lg%E< 0 - 0 _<Vw(so),u>> =0

With Matérn correlation function for the parent process:
@ Predictive process is infinitely mean square differentiable except at
the set of knot points .*.
@ Modified predictive process is not mean square continuous at any
point.
© Tapered predictive process can have exactly the same degree of
smoothness as the parent process.
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Formal theory of oversmoothing

Low rank cross-covariances

Dim. Reduction Non degenerate

PP: vy pp(s) ———— MPP: 5 (s)

Dim. Reduction Non degenerate

PP: 13; pp(s) ————— MPP: [;5(s)
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32

Formal theory of ovel

Parameter credible intervals, 50 (2.5 97.5) percentiles, for soil nutrient data analysis candidate models.

Parameter
Bo, P
Bo,sBC
ﬁoészv
PP

o2
SQBC,P
9SN,P
o2
SBC,SBC
9SN,SBC
9SN,SN
ba
Pw
Eff. rangeq m
Eff. range,, m
T

P
2

TsBC
5p

Stationary
0.71 (0.26, 1.35;
5.38 (5.03, 6.08;
5.42 (4.97, 5.86
0.92 (0.52, 2.29;
0.47 (0.25, 1.23;
0.49 (0.26, 1.25]
0.44 (0.27, 1.08)
0.19 (0.06, 0.51)
0.39 (0.19, 1.08)

)
)
)
)
)
)

0.0499 (0.0165, 0.0873)

60.04 (34.31, 181.08)
0.21 (0.14, 0.30)
0.07 (0.05, 0.11)
0.15(0.11, 0.21)

Non-stationary

Full
0.66 (0.22, 1.05)
5.18 (4.86, 5.49)
5.53 (5.30, 5.78)
0.20 (0.09, 0.53)
0.24 (0.10, 0.63)
0.20 (0.09, 0.50)
0.54 (0.18, 1.64)
0.14 (0.06, 0.36)
1.85 (0.62, 6.11)

0.0135 (0.0125, 0.0173)

0.0371 (0.0180, 0.0737)

222.13 (173.32, 238.97)

80.68 (40.66, 166.33)
0.19 (0.13, 0.28)
0.06 (0.04, 0.09)
0.1 (0.07, 0.16)

Predictive process
26

0.64 (0.33, 1.20)
5.16 (4.83, 5.40)
5.53 (5.31, 5.73)
0.22 (0.08, 0.57)
0.21 (0.10, 0.54)
0.23 (0.11, 0.75)
0.36 (0.13, 1.01)
0.15 (0.07, 0.38)
1.77 (0.41, 10.38)
0.0134 (0.0125, 0.0170)
0.0284 (0.0133, 0.0603)
224.36 (176.57, 239.17)
105.64 (49.65, 225.05)
0.19 (0.13, 0.28)
0.06 (0.04, 0.09)
0.09 (0.06, 0.14)

2011




33

30

Model Assessment

30
|

Mean

-10

0 10

Observed Temp.

Observed Temp.




Formal theory of ov

Non-stationary — full versus predictive process

Fulp(s) p spC Fullp(s) p s N Fulp(s)sN,sBC

150
150

Northing (m)
a

Northing (m)
100

Northing (m)
a

Easting (m) Easting (m) Easting (m)
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a
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100
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34 2011




Formal theory of oversmoothing

Non-stationary — full versus predictive process,
p(s) sig. at 0.05 level (o) positive,

Full p(s) p. s N

35
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Full P(s)P,SBC

50 100 150

Ensting (m

Pred. proc. p(s) p. s BC

50 100 150

Ensting (m

50 100

Ensting (m

Pred. proc. p(s) p s N

50 100

Ensting (m
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(e) negative
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Formal theory of oversmox g

Non-stationary — full versus predictive process,
p(s) range between 0.025-0.975 Cl

Fulp(s)p sBc Full p(s) p,s N Fulp(s)sn,sBC

200

0 50 100 150 0 50 100 150 0 50 100 150

Ensting (m Ensting (m Ensting (m)

Pred. proc. p(s) p. s BC Pred. proc. p(s) p s N Pred. proc. p(s) s N, sBC

200

150
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Formal theory of oversmox

Non-stationary — observed (interpolated) versus predictive process (predicted)

Obs. Phosphorus (P) Sum of base cations (SBC) Sum of nitrogen (SN)

o 4 o 7.5
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0
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g g L4
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Summary
Summary

Challenge — to meet spatial modeling needs:
@ Predictive process models for large datasets and complex
models
e Use some model-based adjustment to compensate for
over-smoothing;

e stochastically model the knots?

o Tapered adjustment delivers same level of smoothness as parent
(Guhaniyogi et al., 2011).
@ Computing: C++ with OpenMP/MKL
o Now available in the R package spBayes.

This work was supported by:
NSF Grant DMS 0706870.
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Thank you!
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