Modeling complex spatial dependencies: Low-rank cross-covariance models

Rajarshi Guhaniyogi¹, Andrew O. Finley² and Sudipto Banerjee³

¹ Department of Statistics and Decision Sciences, Duke University, Durham, North Carolina, U.S.A.

² Department of Forestry & Department of Geography, Michigan State University, East Lansing, Michigan, U.S.A

³ Biostatistics, School of Public Health, University of Minnesota, Twin Cities, Minnesota, U.S.A.

June 23, 2014

Challenges in spatial data analysis

- Our ability to collect, manage, and use spatial-temporal data is rapidly evolving.
- Interdisciplinary works leads to more complex questions → complicated statistical models.
- Data-rich environments provide extraordinary opportunities to understand the complexity of large datasets.
- Major challenges:
 - Understand the complex inferential questions;
 - Construct (perhaps) complex statistical models, but that are interpretable and identifiable ("valid").
 - Overcome computational bottlenecks in implementation.

Point-referenced spatial data often arise as multivariate measurements at each location.

Examples:

- environmental monitoring: stations yield measurements on ozone, NO₂, CO, SO₂ and PM
- community ecology: assemblage of plant species due to water, nutrients, temperature, and light requirements
- forestry: measurements of stand characteristics age, total biomass, and average tree diameter.
- atmospheric modeling: at a given location we observe surface temperature, precipitation and wind speed

Dependence between outcomes within a given location and across proximate locations.

3

크

Predictors include subject's access to environmental resources e.g., water, other nutrients, light.

Our objectives:

- predict soil nutrients for each tree's location (i.e., to serve as competition model covariates)
- document how nutrients co-vary in these tropical soils

Predictors include subject's access to environmental resources e.g., water, other nutrients, light.

Our objectives:

- predict soil nutrients for each tree's location (i.e., to serve as competition model covariates)
- document how nutrients co-vary in these tropical soils

Data from La Selva Biological Station in Costa Rica:

- soil samples n =251
- three soil nutrients measured at each location

イロト イヨト イヨト イヨト

2

▲ロト▲御ト▲臣ト▲臣ト 臣 のなぐ

Conditional independence (graphical) models

- Can be computationally beneficial introduce sparsity.
- Cond. indep. models may NOT be process models.
- Consider a Cond. indep. model for n sites:

$$[Y_1,\ldots,Y_n]_1$$

• Consider the observation from a "new" node, say *Y*₀. Form the distribution:

$$[Y_0, Y_1, \ldots, Y_n]_2$$

• Unfortunately:

$$\int [Y_0, Y_1, \dots, Y_n]_2 = \int [Y_1, \dots, Y_n]_2$$
$$\neq [Y_1, \dots, Y_n]_1$$

Not suitable for predictions at all. Inappropriate for continuous topologies.

The spatial interpolation problem

• Unknown signal $w(\cdot)$ observed over $\mathscr{S} = \{s_1, \dots, s_n\} \subset \Re^d$.

• We seek an $f(\cdot)$ to agree with $w(\cdot)$ on \mathscr{S} .

$$f(\boldsymbol{s}) = b_1(\boldsymbol{s})\beta_1 + b_2(\boldsymbol{s})\beta_2 + \cdots + b_n(\boldsymbol{s})\beta_n = \boldsymbol{b}(\boldsymbol{s})'\boldsymbol{\beta}$$
.

• Find β 's such that $f(s_i) = w(s_i)$ for $s_i \in \mathscr{S}$:

$$\begin{bmatrix} b_1(\boldsymbol{s}_1) & b_2(\boldsymbol{s}_1) & \cdots & b_n(\boldsymbol{s}_1) \\ b_1(\boldsymbol{s}_2) & b_2(\boldsymbol{s}_2) & \cdots & b_n(\boldsymbol{s}_2) \\ \vdots & \vdots & \ddots & \vdots \\ b_1(\boldsymbol{s}_n) & b_2(\boldsymbol{s}_n) & \cdots & b_n(\boldsymbol{s}_n) \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} w(\boldsymbol{s}_1) \\ w(\boldsymbol{s}_2) \\ \vdots \\ w(\boldsymbol{s}_n) \end{bmatrix}$$
$$B\beta = w$$

• When B^{-1} exists: $f(s) = b(s)'B^{-1}w$.

"Kriging"

• How about constructing a *covariance* matrix as B?

$$b_j(\boldsymbol{s}_i) = \operatorname{COV}\{w(\boldsymbol{s}_i), w(\boldsymbol{s}_j)\} = C_{\theta}(\boldsymbol{s}_i, \boldsymbol{s}_j) \ .$$

• $C_{\theta}(s, t) = C_{\theta}(t, s)$ is a real-valued *covariance function*: For any $\mathscr{S} \subseteq \Re^d$,

$$\sum_{i=1}^n \sum_{j=1}^n u_i C_{\theta}(\boldsymbol{s}_i, \boldsymbol{s}_j) u_j > 0 \quad \forall \quad u_i, \, u_j \in \Re \setminus \{0\} \; .$$

• Then $B = var\{w\}$ is symmetric, positive definite and

$$f(\boldsymbol{s}) = \operatorname{COV}\{w(\boldsymbol{s}), \boldsymbol{w}\}' \operatorname{Var}\{\boldsymbol{w}\}^{-1} \boldsymbol{w}$$
 .

Covariance functions

- Stationary: $C_{\theta}(s, t) = C_{\theta}(t s)$. Isotropy: $C_{\theta}(s, t) = C_{\theta}(||t s||)$.
- Bochner: Covariance function ⇔ characteristic function.

Matérn correlation:

$$C_{\theta}(\boldsymbol{s}, \boldsymbol{t}) = \frac{\sigma^2}{2^{\phi_2 - 1} \Gamma(\phi_2)} (\|\boldsymbol{t} - \boldsymbol{s}\| \phi_1)^{\phi_2} \kappa_{\phi_2} (\|\boldsymbol{t} - \boldsymbol{s}\|; \phi_1)$$

 $\phi_1 \rightarrow$ controls how fast correlation decays

 $\phi_2 \rightarrow$ controls smoothness of the spatial surface

The multivariate spatial interpolation problem

- Now w(s) is an $m \times 1$ vector $s \in \Re^d$.
- We seek an $m \times 1$ function $f(\cdot)$ to agree with $w(\cdot)$ on \mathscr{S} .

$$oldsymbol{f}(oldsymbol{s}) = oldsymbol{B}_1(oldsymbol{s})oldsymbol{eta}_1 + oldsymbol{B}_2(oldsymbol{s})oldsymbol{eta}_2 + \cdots + oldsymbol{B}_n(oldsymbol{s})oldsymbol{eta}_n = oldsymbol{B}(oldsymbol{s})'oldsymbol{eta}$$
 .

• Find β 's such that $f(s_i) = w(s_i)$ for $s_i \in \mathscr{S}$:

$$egin{bmatrix} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

• But when will B^{-1} exist? Harder problem as $B(s_i)$'s are matrix functions.

"Multivariate Kriging"

The analogue from the univariate case:

$$\boldsymbol{B}_j(\boldsymbol{s}) = \operatorname{Cov}\{\boldsymbol{w}(\boldsymbol{s}), \boldsymbol{w}(\boldsymbol{s}_j)\} = \boldsymbol{C}_{\boldsymbol{\theta}}(\boldsymbol{s}, \boldsymbol{s}_j) = \{\operatorname{Cov}\{w_k(\boldsymbol{s}), w_l(\boldsymbol{s}_j)\}\} \;.$$

- $C_{\theta}(s,t) = C_{\theta}(t,s)'$ is a matrix-valued cross-covariance function.
- For any $\mathscr{S} \subseteq \Re^d$,

$$\sum_{i=1}^n \sum_{j=1}^n oldsymbol{u}_i oldsymbol{C}_ heta(oldsymbol{s}_i,oldsymbol{s}_j)oldsymbol{u}_j > oldsymbol{0} \quad orall \quad oldsymbol{u}_i,\,oldsymbol{u}_j \in
eal^d \setminus \{0\} \;.$$

• $B = var\{w\}$ must be symmetric, positive definite, whereupon

$$oldsymbol{f}(oldsymbol{s}) = extsf{COV}\{oldsymbol{w}(oldsymbol{s}),oldsymbol{w}\}' extsf{var}\{oldsymbol{w}\}^{-1}oldsymbol{w}$$
 .

So why not become fully stochastic?

- Assume that w(s) is an $m \times 1$ multivariate spatial process $w(s) \sim GP(\mathbf{0}, C_{\theta}(\cdot)); \quad C_{\theta}(s, t) = \{ \operatorname{cov}\{w_i(s), w_j(t)\} \}.$ • For any $\mathscr{S} = \{s_1, s_2, \dots, s_n\} \subset \Re^d$, let $C_w(\theta) = \{C_{\theta}(s_i, s_j)\}.$ $w = (w(s_1)', w(s_2)', \dots, w(s_n)')' \sim N(\mathbf{0}, C_w(\theta));$
- Spatial interpolation:

$$\mathsf{E}[oldsymbol{w}(oldsymbol{s})\,|\,oldsymbol{w}] = \mathsf{COV}\{oldsymbol{w}(oldsymbol{s}),oldsymbol{w}\}'\mathsf{Var}\{oldsymbol{w}\}^{-1}oldsymbol{w} = oldsymbol{f}(oldsymbol{s})\;.$$

Hierarchical Spatial model

$$p(\boldsymbol{\theta}, \boldsymbol{\Psi}, \boldsymbol{\beta}, \boldsymbol{w} | \boldsymbol{y}) \propto p(\boldsymbol{\theta}) \times IW(\boldsymbol{\Psi} | a_{\psi}, \boldsymbol{S}_{\psi}) \times N(\boldsymbol{\beta} | \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta})$$
$$\times N(\boldsymbol{w} | \boldsymbol{0}, \boldsymbol{C}_{w}(\boldsymbol{\theta})) \times \prod_{i=1}^{n} N_{m}(\boldsymbol{y}(\boldsymbol{s}_{i}) | \boldsymbol{X}(\boldsymbol{s}_{i})' \boldsymbol{\beta} + \boldsymbol{w}(\boldsymbol{s}_{i}), \boldsymbol{\Psi})$$

regression slopes

spatial random effects from Gaussian process

nonspatial variability (nugget)

 spatial process parameters (spatial variance, range, smoothness). Two primary issues.

- How do we construct valid matrix-valued cross-covariance functions?
- What if n is LARGE? How do we tackle C_w(θ)⁻¹ (an mn × mn matrix)?

Constructive approach using latent variables

Spatially-varying (nonstationary) cross-covariances

크

э

 \boldsymbol{w}

$$w(s) = L(s)v(s)$$

$$oldsymbol{C}_{oldsymbol{w}}(oldsymbol{s},oldsymbol{t}) = oldsymbol{L}(oldsymbol{s}) C_{oldsymbol{v}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{v}}(oldsymbol{s},oldsymbol{t}) = oldsymbol{L}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{v}}(oldsymbol{s},oldsymbol{t}) = oldsymbol{L}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{v}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{t}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s},oldsymbol{s}) D_{oldsymbol{s}}(oldsymbol{s}$$

$$egin{aligned} \mathsf{cov}(v_i(s),v_j(t)) &= \left\{ egin{aligned} &
ho_i(s,t;m{ heta}_i) & ext{if} & i=j\ 0 & ext{if} & i
eq j \ , \end{aligned}
ight. \ & egin{aligned} & \mathbf{C}_{m{v}}(s,t) &= \left\{ egin{aligned} & \mathsf{diag}\{
ho_i(s,t;m{ heta}_i)\} & ext{if} & s
eq t\ & egin{aligned} & \mathsf{I}_m & ext{if} & s=t \end{array}
ight.
ight.
ight. \end{aligned}$$

$$\boldsymbol{C}_{\boldsymbol{w}}(\boldsymbol{s},\boldsymbol{s}) = \boldsymbol{L}(\boldsymbol{s})\boldsymbol{L}(\boldsymbol{s})' \Longrightarrow \boldsymbol{L}(\boldsymbol{s}) = \operatorname{chol}(\boldsymbol{C}_{\boldsymbol{w}}(\boldsymbol{s},\boldsymbol{s})) \; .$$

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

Dimension reduction

What if *n* is LARGE? How do we tackle $C_w(\theta)^{-1}$ (an $mn \times mn$ matrix)?

- Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du et al. 2009; Kaufman et al., 2009)
- Spectral domain: (Fuentes 2007; Paciorek, 2007)
- Approximations using cond. indep. (Vecchia 1988; Stein et al. 2004; Rue et al. (2003))
- low-rank approaches (Wahba, 1990; Higdon, 2002; Lin et al., 2000; Paciorek, 2007; Rasmussen & Williams, 2006; Tokdar et al., 2007, 2011; Stein 2007, 2008; Cressie & Johannesson, 2008; Banerjee et al., 2008)

Low rank interpolation

- Cannot handle interpolations over \mathscr{S} .
- Interpolate over a smaller set of n^* locations, say $\mathscr{S}^* = \{s_1^*, s_2^*, \dots, s_{n^*}^*\}$ and $n^* << n$. $\tilde{f}(s) = B_1^*(s)\beta_1^* + B_2^*(s)\beta_2^* + \dots + B_{n^*}^*(s)\beta_{n^*}^* = B^*(s)'\beta^*$.
- Find β 's such that $f(s_i) = w(s_i)$ for $s_i \in \mathscr{S}^*$:

$$egin{array}{rcccccccc} B_1^*(s_1^*) & B_2^*(s_1^*) & \cdots & B_{n^*}^*(s_1^*) \ B_1^*(s_2^*) & B_2^*(s_2^*) & \cdots & B_{n^*}^*(s_2^*) \ dots & d$$

• When ${m B}^{*-1}$ exists: $\widetilde{{m f}}({m s})={m B}^*({m s})'{m B}^{*-1}{m w}^*.$

Low rank kriging

We set the basis functions as:

$$oldsymbol{B}_j^*(oldsymbol{s}) = \operatorname{Cov} \{oldsymbol{w}(oldsymbol{s}), oldsymbol{w}(oldsymbol{s}_j^*)\} = oldsymbol{C}_ heta(oldsymbol{s}, oldsymbol{s}_j^*) \;.$$

• Note: $B^* = var\{w^*\}$ is symmetric, positive definite and $ilde{f}(s) = cov\{w(s), w^*\}' var\{w^*\}^{-1} w^*$.

• Inversion required for $B^* = var\{w^*\}$, which is $n^* \times n^*$.

Low rank Gaussian process

- Does low rank interpolation correspond to a "low rank" spatial process?
- Call $\boldsymbol{w}(\boldsymbol{s}) \sim GP_m\left(\boldsymbol{0}, \boldsymbol{C}_{\theta}(\cdot)\right)$ the parent process

• For
$$\mathscr{S}^* = \{s_1^*, s_2^*, \dots, s_{n^*}^*\}$$
, let $C_{w^*}^*(\theta) = \{C_{\theta}(s_i^*, s_j^*)\}$:

$$w^* = (w(s_1^*)', w(s_2^*)', \dots, w(s_{n^*}^*)')' \sim N(\mathbf{0}, C^*_w(\theta))$$

• The *predictive process* derived from w(s) is:

$$ilde{oldsymbol{w}}(oldsymbol{s}) = \mathsf{E}[oldsymbol{w}(oldsymbol{s}) \,|\, oldsymbol{w}^*] = \mathsf{Cov}\{oldsymbol{w}(oldsymbol{s}), oldsymbol{w}^*\}' \mathsf{var}\{oldsymbol{w}^*\}^{-1} oldsymbol{w}^* = ilde{oldsymbol{f}}(oldsymbol{s}) \;.$$

w(s) is a degenerate Gaussian process delivering dimension-reduction.

Hierarchical predictive process models

$$p(\boldsymbol{\theta}, \boldsymbol{\Psi}, \boldsymbol{\beta}, \boldsymbol{w}^* | \boldsymbol{y}) \propto p(\boldsymbol{\theta}) \times IW(\boldsymbol{\Psi} | a_{\psi}, \boldsymbol{S}_{\psi}) \times N(\boldsymbol{\beta} | \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta})$$
$$\times N(\boldsymbol{w}^* | \boldsymbol{0}, \boldsymbol{C}_w^*(\boldsymbol{\theta})) \times \prod_{i=1}^n N_m(\boldsymbol{y}(\boldsymbol{s}_i) | \boldsymbol{X}(\boldsymbol{s}_i)' \boldsymbol{\beta} + \tilde{\boldsymbol{w}}(\boldsymbol{s}_i), \boldsymbol{\Psi}).$$

How do we choose \mathscr{S}^*

- Knot selection: Regular grid? More knots near locations we have sampled more?
- Formal spatial design paradigm: maximize information metrics.
- Geometric considerations: space-filling designs; various clustering algorithms
- Adaptive modeling of knots using point processes (Guhaniyogi et al., 2011).
- Compared performance of estimation of range and smoothness by varying knot size.
- Usually inference is quite robust to \mathscr{S}^* .
- More important to capture loss of variability due to low rank approximation.
- Seamlessly adapts to multivariate and spatiotemporal settings.

Selection of knots

Parent process surface

Predictive process surface

Systemic under-estimation:

Systematic under-estimation

$$\mathsf{var}\{w(s)\} = \mathsf{var}\{\mathsf{E}[w(s) \mid w^*]\} + \mathsf{E}\{\mathsf{var}[w(s) \mid w^*]\}$$
$$\geq \mathsf{var}\{\mathsf{E}[w(s) \mid w^*]\} = \mathsf{var}\{\tilde{w}(s)\}.$$

Orthogonal decomposition:

$$\operatorname{var}\{w(\boldsymbol{s})\} = \operatorname{var}\{\tilde{w}(\boldsymbol{s})\} + \operatorname{var}\{w(\boldsymbol{s}) - \tilde{w}(\boldsymbol{s})\}$$

• $\tilde{\epsilon}(\boldsymbol{s}) = w(\boldsymbol{s}) - \tilde{w}(\boldsymbol{s}) \sim GP(0, C_{\tilde{\epsilon}}(\boldsymbol{s}, \boldsymbol{t}; \boldsymbol{\theta}))$:

$$C_{\tilde{\epsilon}}(\boldsymbol{s},\boldsymbol{t};\boldsymbol{ heta}) = C(\boldsymbol{s},\boldsymbol{t};\boldsymbol{ heta}) - \boldsymbol{c}(\boldsymbol{s};\boldsymbol{ heta})' \boldsymbol{C}^*(\boldsymbol{ heta})^{-1} \boldsymbol{c}(\boldsymbol{s};\boldsymbol{ heta}) \;.$$

< □ > < 同

Model-based non-degenerate structures

Modified (non-degenerate) predictive process:

$$\tilde{\epsilon}(\boldsymbol{s}_i) \stackrel{iid}{\sim} N(0, \delta^2(\boldsymbol{s}_i; \boldsymbol{\theta})); \quad \delta^2(\boldsymbol{s}; \boldsymbol{\theta}_1) = C_{\tilde{\epsilon}}(\boldsymbol{s}, \boldsymbol{s}; \boldsymbol{\theta}) \;.$$

Tapered adjustment

$$\begin{split} \tilde{\epsilon}(\boldsymbol{s}) &\sim \quad GP(\boldsymbol{0}, C_{tap}(\boldsymbol{s}, \boldsymbol{t})) \\ C_{tap}(\boldsymbol{s}, \boldsymbol{t}; \boldsymbol{\theta}) &= \quad C_{\tilde{\epsilon}}(\boldsymbol{s}, \boldsymbol{t}; \boldsymbol{\theta}) C_{\nu}(\|\boldsymbol{s} - \boldsymbol{t}\|; \boldsymbol{\theta}) \;, \end{split}$$

- $C_{\nu}(\|s-t\|; \theta)$ is a compactly supported correlation function on $[0, \nu]$.
 - $\nu = 0 \Rightarrow$ modified predictive process
 - $u = \infty \Rightarrow \text{parent spatial process}$

Formal theory for oversmoothing by low-rank processes.

• Mean square continuity and differentiability at s_0 of a process $w(\cdot)$ requires existence of some vector $\nabla w(s_0)$ with,

$$\lim_{\boldsymbol{s}\to\boldsymbol{s}_0} E\left(w(\boldsymbol{s}) - w(\boldsymbol{s}_0)\right)^2 = 0$$
$$\lim_{\boldsymbol{h}\to\boldsymbol{0}} E\left(\frac{w(\boldsymbol{s}_0 + \boldsymbol{h}\boldsymbol{u}) - w(\boldsymbol{s}_0)}{\boldsymbol{h}} - \langle \nabla w(\boldsymbol{s}_0), \boldsymbol{u} \rangle \right)^2 = 0$$

With Matérn correlation function for the parent process:

- Predictive process is infinitely mean square differentiable except at the set of knot points S*.
- Modified predictive process is not mean square continuous at any point.
- Tapered predictive process can have exactly the same degree of smoothness as the parent process.

Low rank cross-covariances

			,
		Non-stationary	
			Predictive process
Parameter	Stationary	Full	26
$\beta_{0,P}$	0.71 (0.26, 1.35)	0.66 (0.22, 1.05)	0.64 (0.33, 1.20)
$\beta_{0,SBC}$	5.38 (5.03, 6.08)	5.18 (4.86, 5.49)	5.16 (4.83, 5.40)
$\beta_{0,SN}$	5.42 (4.97, 5.86)	5.53 (5.30, 5.78)	5.53 (5.31, 5.73)
$\sigma_{P,P}^2$	0.92 (0.52, 2.29)	0.20 (0.09, 0.53)	0.22 (0.08, 0.57)
$\sigma^2_{SBC,P}$	0.47 (0.25, 1.23)	0.24 (0.10, 0.63)	0.21 (0.10, 0.54)
$\sigma^2_{SN,P}$	0.49 (0.26, 1.25)	0.20 (0.09, 0.50)	0.23 (0.11, 0.75)
$\sigma^2_{SBC,SBC}$	0.44 (0.27, 1.08)	0.54 (0.18, 1.64)	0.36 (0.13, 1.01)
$\sigma^2_{SN,SBC}$	0.19 (0.06, 0.51)	0.14 (0.06, 0.36)	0.15 (0.07, 0.38)
$\sigma^2_{SN,SN}$	0.39 (0.19, 1.08)	1.85 (0.62, 6.11)	1.77 (0.41, 10.38)
ϕ_a	-	0.0135 (0.0125, 0.0173)	0.0134 (0.0125, 0.0170)
ϕw	0.0499 (0.0165, 0.0873)	0.0371 (0.0180, 0.0737)	0.0284 (0.0133, 0.0603)
Eff. range $_a$ m	-	222.13 (173.32, 238.97)	224.36 (176.57, 239.17)
Eff. range $_w$ m	60.04 (34.31, 181.08)	80.68 (40.66, 166.33)	105.64 (49.65, 225.05)
τ_P^2	0.21 (0.14, 0.30)	0.19 (0.13, 0.28)	0.19 (0.13, 0.28)
τ_{SBC}^2	0.07 (0.05, 0.11)	0.06 (0.04, 0.09)	0.06 (0.04, 0.09)
τ_{SN}^2	0.15 (0.11, 0.21)	0.11 (0.07, 0.16)	0.09 (0.06, 0.14)

Parameter credible intervals, 50 (2.5 97.5) percentiles, for soil nutrient data analysis candidate models.

Model Assessment

イロト イポト イヨト イヨト

2

Non-stationary - full versus predictive process

Pred. proc. $\rho(s)_{P,SBC}$

Pred. proc. $\rho(s)_{P,SN}$

Pred. proc. $\rho({\pmb s})_{SN,SBC}$

Pred. proc. P

Pred. proc. SN

Challenge - to meet spatial modeling needs:

- Predictive process models for large datasets and complex models
 - Use some model-based adjustment to compensate for over-smoothing;
 - stochastically model the knots?
 - Tapered adjustment delivers same level of smoothness as parent (Guhaniyogi et al., 2011).

• Computing: C++ with OpenMP/MKL

• Now available in the R package spBayes.

This work was supported by:

NSF Grant DMS 0706870.

Thank you!

2

イロト イポト イヨト イヨ