Spatial change-of-support and misalignment problems

Peter F. Craigmile

0 THE OHIO STATE UNIVERSITY
dgepartment of STATISTICS _

http://www.stat.osu.edu/~pfc/

Pan-American Advanced Study Institute on Spatio-Temporal Statistics

Buzios, RJ, Brazil

Thursday, June 26 2014


http://www.stat.osu.edu/~pfc/

Spatial statistics

e Remember, a spatial statistical analysis involves studying and model-

ing the dependence of data, collected in space.

— Depending on the form of the spatial process, the spatial data are typi-

cally indexed by locations/points or regions.

— The locations themselves may be random.

e We imagine the spatial data to be a realisation of a stochastic process,

a family of random variables,
{Z(s):s € D},
indexed by s € D, defined on a probability space (’s” could be a region).

e Clearly the choice of D determines the choice of spatial scale.
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The choice of spatial scale — some questions
1. Which spatial scale is correct?

2. What about if there is spatial misalignment — we collected the data on

one scale, but need to make inferences on a different scale.
3. How do we change from one spatial scale to another?

4. What if we have different spatial datasets that come to us on different spatial

scales” How do we combine data sources?

We need to be careful not to be misled in our inferences.



Some useful references
e Gotway and Young [2002]

e Gelfand et al. [2001] and Banerjee et al. 2004, Chapter 6]



The modifiable areal unit problem (MAUP)

[The term is due to Openshaw and Taylor, 1979, but the problem is much older]

e Some spatial processes are interpretable only on areal scales.

e Famous example: crop yield, which is defined in terms of the amount of crop

grown (e.g., weight) in a specific area.

— The choice of the area is user-defined or modifiable.

— An open question: how do we select the areal unit?



Two problems with MAUP

1. Scale effect or aggregation effect: we obtain potentially different inferences

as we aggregate to larger regions.

2. Grouping effect or the zoning effect: inferences can change depend on how

we choose to aggregate (for the same size of area).

These issues have some relationship to problems found in ecological infer-

ence [e.g., Cressie, 1996].



Ecological inference

e Robinson [1950] pointed out that often inference about individuals are made

based on group-level data — an ecological inference.

e Using data from the 1930 US Census he related the illiteracy rate and the

proportion of the population born outside the US.

— At the state (regional) level: Corr = —0.53

— At individual level: Corr = 0.12.

e The contradiction is due to a strong spatial effect.

(Immigrants tended to settle in states where the native population was more

literate.)



The ecological fallacy

e We obtain an ecological fallacy when analyses based on group data lead
to different conclusions than we would obtain from the individual level data,

(also called an ecological bias).
e T'wo effects [Morgenstern, 1982]:

1. Aggregation bias: the effect of the spatial aggregation itself.

2. Specification bias: the distribution of confounding variables is different

under aggregation.

e See, e.g., Wakefield and Lyons [2010].



Example: Pediatric lymphoma in Brazil

N (MNorth)

ME (Morth Eastern)

LL | 18% |
BL  26% LL | 19%
ALCL 3% BL  28%
HL 53% 7%
49%

SE (South Eastern)

LL 24%
BL 24%
CW (Center West) | ALCL 5%
LL 17% HL 48%
BL 31% o
AlCL | 5%
HL | 48%

| 24%

BL | 24%
ALCL | 9%
HL | 43%

Figure 8 - Overall distribution of the most frequent pediatric lymphomas according to main geographic regions in Brazil,
Footnote: LL: lymphoblastic lymphoma; BL: Burkitt lymphoma; ALCL: anaplastic large cell lymphoma; HL: Hodgkin lymphoma

|Gualco et al., 2010]



The union of twenty-seven federal units in Brazil

. French Guiana
) Suriname
Colombia Guyana

Atlantic
Ocean

0 Norte

Bolivia
Chile Paragua
Pacific [T North Region
Ocean atarina [l Northeast Region
_ [] Central-West Region
Argentina I Southeast Region

Urugua [ South Region

(http://en.wikipedia.org/wiki/States_of_Brazil)
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A solution

e The solution is to try to build our statistical model for the process of interest

on the finest spatial scale possible.
— We can then aggregate to produce inferences over coarser scales.
e Problems:

— The spatial data for the process of interest may not always be available

at the finest scale.

— Important covariates may collected at different scales.
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The change of support problem (COSP)

e The spatial support is the volume, shape, size, and orientation associated

with each spatial measurement.
e A change of support is an example of data transformation.

e Thus, the change of support problem (COSP) involves studying the statis-

tical properties of a spatial process as we change the spatial support.
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Example changes of support

[Adapted from Gotway and Young, 2002]

Observed at | Inference at Examples
Point Point Kriging
Point Line Contouring (upscaling)
Point Area Block kriging (upscaling)
Point Surface Environmental monitoring
Area Point Ecological inference (downscaling)
Area Area MAUP, misaligned regions (up- or downscaling)
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An example
e Consider a Gaussian geostatistical process
Z ={Z(s):s € D}
defined on the domain D C R? (easily generalizes to other domains).

e Suppose that the process has mean function E(Z(s)) = u(s) and stationary

covariance function cov(Z(s), Z(s')) = C(s — s').

e Now let B denote a block defined in D, and let Z(B) denote the block

average of the process Z in B:

Z(B) = |B|"! / Z(s)ds,

B
where [, is shorthand for [, g_p, and |B| = [;1ds is the area of B.
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Properties of the block average

e The process Z(B) is a random integral.

e We have that the block mean is

u(B) = E(Z(B) = |B|" / (s)ds.

e For two blocks B and B’

C(B.B)) = cov(Z(B).Z(B) = |B|"\|B"" /B /B cov(Z(s). Z(s"))dsds
= \B|_1\B’]_1/B B/C’(s—s’)dsds’.

e We also have

C(s.B) = cov(Z(s). 2(B)) = |B|"" /B cov(Z(s), Z(s'))ds’
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Exercises
1. If the mean function is constant over a block what is the block mean”?

2. Suppose the mean function depends on a spatially-varying covariate
{x(s) : s € D} through the linear function u(s) = By + Srz(s).
What happens to the mean function over blocks?
(This should tell you something about a grouping effect).

3. Let Ay, ..., Ay, denote a partition of D; ie., Ul Ay = D and A;NA; = ()
for any ¢ and j. Suppose that for any points s; € A; and s; € A; (¢ # 7)
that cov(Z(s;), Z(s;j)) = 0.

Describe the statistical properties of {Z(A4;) i =1,...,m}.
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Approximating the integrals

e In practice the integrals may not be available in a closed-form.

e Gelfand et al. [2001] shows that we can approximate the integrals using

points from B.

e [or example letting sy,..., sy, denote Lp points sampled uniformly from

B

)

w(B) ~ L'y p(se).

e The sum converges in probability to the LHS as long as the spatial process

Z is mean squared continuous [e.g. Stein, 1999];
ie., lim,oE[Z(s+h)— Z(s)]>=0.
If Z is stationary, only need the covariance function to be continuous at 0.
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Standard kriging

e Standard kriging is an example of a COSP.

—Based on Z = (Z(sy),...,Z(s,))! we predict the geostatistical process

Z at a new location s*.

e The best linear predictor of Z(s*) given Z is

E(Z(s")|Z) = pl(s") + e(s") £, (Z — p,),

where g is the mean vector of Z, ¥, is the n X n covariance matrix for Z,

and c,(s) is a n-vector with ith element cov(Z(s*), Z(s;)).
e The kriging variance is

var(Z(s*)|Z) = C(0) — cy(s*) ' X Tey(s).

S
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Predicting blocks
e Now based on Z = (Z(sy),...,Z(s,))! we predict Z(B) at block B.
e The best linear predictor of Z(B) given Z is
E(Z(B)|Z) = u(B) + csy(B) $,(Z — py),

where g is the mean vector of Z, ¥, is the n X n covariance matrix for
Z, 1(B) is the mean of Z(B), and Cj4(B) is a n-vector with ¢th element
cov(Z(s;), Z(B)).

e The kriging variance is

var(Z(B)|Z) = var[Z(B)] — s 4(B) ¥ e, s(B).
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Exercise: Block kriging

(This is the solution to the MAUP.)

e Now suppose we observe Z(By), ... Z(B,) and wish to predict Z(B*) at a

new block B* different from B;.

1. Derive the kriging mean and variance for this predictor.

2. Show that if u(s) = u; for each s € B; then

?:1 |Bi M B*| Y<Bz'>
| B¥| |

u(B) ~ 2
the areally-weighted average.

e The solution to downsampling (predicting Z(s*), say, based on block aver-

ages) follows in a similar fashion.
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Practical remarks

e In practice we need to estimate the mean and covariance function of the
Gaussian process Z, and plug the estimates into the relevant kriging equa-

tion.

(As discussed previously we may also need to approximate the integrals.)

e Common estimation approaches include [see, e.g., Banerjee et al., 2004,

Cressie and Wikle, 2011]:

1. Naive approaches (e.g., weighted least squares).
2. Maximum (reduced) likelihood.

3. Bayesian methods.
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Spatial misalignment and the use of hierarchical modeling
e Often variables come to us at different spatial scales.
e This makes the statistical inference problem harder.

e Some advice:

— Which scale do you want to carry out inference on?

— It helps to write down hierarchical models to relate the different

variables — if possible, try to relate them on a common spatial scale.

— But, remember the problem of the ecological fallacy. It helps to build

models on the finest scale possible.
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Pediatric lymphoma revisited

e Suppose that we wish to predict the rate of pediatric Hodgkins lymphoma

(HL) in the federal units level in Brazil, based on the following information.

Region| N NE CW S SE

HL b7 161 43 71 214

Total | 114 373 105 209 500

e What is a naive estimate of the rate of HL in each federal unit?
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The map (again)

. Frepnch Guiana
_ Suriname
Colombia guyana

0 Norte

Bolivia

Chile Paragua)

Pacific

Paa [0 North Region
an

Catarina gl Northeast Region
[ Central-West Region
I Southeast Region
[ South Region

Argentina

Urugua

(http://en.wikipedia.org/wiki/States_of_Brazil)
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Building a hierarchical model
[See, e.g., Flowerdew and Green, 1989, 1993, 1994, Mugglin and Carlin, 1998]

Consider the following simplified example from Mugglin and Carlin [1998]:

Region | Region Il

m1

m2 m1 m2 m1 mi

Region | Region Il
Figure 1. Regional Map For Motivating Example.
Figure 2. Subregional Map for Motivating Example.

In the right hand figure, m1 and m2 are two different means.
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Multiscale models

e There is considerable interest in building statistical models over different

spatial scales.

e For early climatology examples see Berliner et al. [1999], Wikle et al. [2001],
Nychka et al. [2002].

e See Calder et al. [2009] for a multiscale method for predicting pollution in
soils. See Craigmile et al. [2009] for a simpler model for modeling metal

concentrations in public water systems in Arizona, USA.

e For tree models see, e.g., Basseville et al. [1992], Chou et al. [1994], Huang

and Cressie [2000] — Johannesson et al. [2007] has a space-time extension.
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Spatio-temporal extensions
e Spatio-temporal extensions follow naturally.
e See Wei [2005] for formal aggregation results for time series processes.
e For methods for spatio-temporal processes see Gelfand et al. [2001].

e Read Dominici et al. [2010] for the challenges of modeling multiple pollutants

collected at different spatial resolutions. All see Choi et al. [2009].

e In context of modeling temperature, Peter Guttorp will discuss Craigmile

and Guttorp [2011] this afternoon.
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