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 Joint modelling
 Account for dependence between longitudinal and time-to-event 

outcomes

 Scientific objectives for joint modelling
 Inferences about longitudinal outcome, while accounting for informative 

drop-out time
 Inferences about survival outcome, while accounting for association 

between the two outcomes
 Interested in the relationship between the two outcomes
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 μi (t) - mean response
 εi(t) - measurement error
 X - covariate
 W(t)=[W1i(t)  W2i(t)] - bivariate latent Gaussian process

Survival model λi (t) = λ0(t) exp{ Xiβ + W2i(t) }

Longitudinal model Yi (t) = μi (t) + W1i(t) + εi(t)
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 Shared Frailties

Survival model λi (t) = λ0(t) exp{ Xiβ + W2i(t) }

Longitudinal model Yi (t) = μi (t) + W1i(t) + εi(t)

W2i (t) = γ W1i (t) + Vi
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 Used in a variety of contexts

 Dunson (2009), for example, for linking glmms
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Common Spatial Factor Model for Count Data

Let yij |µij ∼ Poisson(µij) for i = 1, · · · , n regions and j = 1, · · · , J outcomes.
The model can be written as:

log(µij) = αj + log(Eij) + γjbi + hij

b = (b1, · · · , bn)′ ∼ MVN(0, σ2
b(D − W)−1): spatially correlated random

effects.

γj : factor loading for the shared spatial component with γ1 ≡ 1.

hj = (h1j , · · · , hnj )′ ∼ MVN(0, σ2
hj

I): spatially uncorrelated random effects.
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Common Spatial Factor Model for Count Data

The joint posterior distribution is expressed as

p(α, b, h,γ, σ2
b, σ

2
h1
, · · · , σ2

hJ |Y) ∝ L(Y|α, b, h,γ)p(b|σ2
b)p(h|σ2

h)

p(α)p(γ)p(σ2
b)p(σ2

h1
) · · · p(σ2

hJ ) .

The first term is the conditional likelihood,

L(Y|α, b, h,γ) ∝ exp

[
−

n∑
i=1

J∑
j=1

Eijexp(αj + γjbi + hij)

]

×
n∏

i=1

J∏
j=1

[Eijexp(αj + γjbi + hij)]yij .

The second and third terms are the distributions of b and h respectively and

the remaining terms are the prior distributions.
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Ontario Lung Cancer

Outcome: total observed counts of mortality from lung cancer for
males and females over the period 1995 to 2002.

Sub-regions: 37 local health areas (LHA) in Ontario.
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Ontario Lung Cancer

Let m and f index males and females, respectively. The common spatial factor
model is, {

log(µim) = αm + log(Eim) + bi + him
log(µif ) = αf + log(Eif ) + γ · bi + hif

Table : Posterior Summaries

Parameter Mean 95% CI
γ 1.145 (0.866, 1.466)

σ2
b 0.059 (0.032, 0.116)

σ2
hm

0.0038 (0.0018, 0.0094)

σ2
hf

0.0050 (0.0023, 0.0129)
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Ontario Lung Cancer
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Ontario Lung Cancer

Table : pD and DIC for competing models in the analysis of Ontario lung cancer
incidence.

Type Model pD DIC
Shared M1 log(µim) = αm + logEim + bi + him 56.5 725.9

log(µif ) = αf + logEif + γ · bi + hif

M2 log(µim) = αm + logEim + bi 56.5 727.5
log(µif ) = αf + logEif + γ · bi + hif

M3 log(µim) = αm + logEim + bi + him 56.6 728.3
log(µif ) = αf + logEif + γ · bi

M4 log(µim) = αm + logEim + bi 38.8 764.1
log(µif ) = αf + logEif + γ · bi

Separate M5 log(µim) = αm + logEim + bim + him 68.3 738.2
log(µif ) = αf + logEif + bif + hif

M6 log(µim) = αm + logEim + bim 68.8 740.1
log(µif ) = αf + logEif + bif + hif

M7 log(µim) = αm + logEim + bim + him 69.4 741.6
log(µif ) = αf + logEif + bif

M8 log(µim) = αm + logEim + bim 70.1 743.9
log(µif ) = αf + logEif + bif
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Power of the Test of Common Spatial Structure

Hypothesis test: H0 : γ = 0 versus H1 : γ 6= 0 .
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Precision Gains Through Joint Outcome Modeling

Table : The average absolute relative bias (ABIAS) of estimated risks, as well as

their average standard deviation (ASE) and average root mean squared error

(ARMSE), along with average exceedance probability (APREX) for regions with true

relative risks greater than one. The expected disease counts are scaled by the inverse

of δ. The true value of σ2
h is 0.01.

σ2
b = 0.1 σ2

b = 0.5 σ2
b = 1

Joint Separate Joint Separate Joint Separate
δ = 1 ABIAS 0.073 0.073 0.135 0.135 0.215 0.214

ASE 0.044 0.047 0.044 0.048 0.043 0.047
ARMSE 0.099 0.099 0.174 0.175 0.301 0.303
APREX 0.767 0.757 0.790 0.783 0.779 0.776

δ = 50 ABIAS 0.113 0.122 0.155 0.185 0.190 0.222
ASE 0.132 0.136 0.190 0.215 0.212 0.252
ARMSE 0.196 0.205 0.296 0.331 0.399 0.442
APREX 0.567 0.560 0.634 0.614 0.668 0.644

δ = 100 ABIAS 0.130 0.136 0.199 0.230 0.238 0.288
ASE 0.143 0.145 0.221 0.242 0.260 0.297
ARMSE 0.219 0.225 0.349 0.385 0.462 0.513
APREX 0.528 0.523 0.590 0.575 0.615 0.592

14 / 28



Modeling for Zero-Inflated Data

Zero Inflation

The presence of excess zeros is a special case of overdispersion,

Excess zeros may arise from unsuitable habitat or immunity of
individuals,

Difference in excess zeros and sampling zeros.

Zero-inflated Models for Count Data

Mixture model and two-part model.

Zero-inflated Models for Correlated Data

GEE or random effect model.

Zero-inflated Models for Spatially Correlated Data

Spatial correlation in the counts and in the probabilities for subjects
coming from the component of excess zeros.
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Common Spatial Factor Model for Zero-Inflated Data

Suppose the response variable Yij is distributed as

Yij |zij =

{
0 if zij = 1,
Poisson(µij) if zij = 0

The probability distribution functions are

Pr(Yij = yij) =

{
πij + (1− πij)e

−µij if yij = 0,

(1− πij)
e
−µij µ

yij
ij

yij !
if yij > 0

.
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Common Spatial Factor Model for Zero-Inflated Data

The common spatial factor model is

log(µij ) = αj + γjbi + hij , logit(πij ) = ζj + ωjdi ,

where

b = (b1, · · · , bn)T ∼ MVN(0, σ2
b(D − W)−1),

d = (d1, · · · , dn)T ∼ MVN(0, σ2
d (D − W)−1),

hj = (h1j , · · · , hnj )T ∼ MVN(0, σ2
hj

I)
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Common Spatial Factor Model for Zero-Inflated Data

The joint posterior distribution of the parameters is:

p(α, ζ, b, d, h,γ,ω, σ2
b, σ

2
d |Y) ∝  L(Y|α, ζ, b, d, h,γ,ω)p(α)p(ζ)p(γ)p(ω)

p(b|σ2
b)p(d|σ2

d)p(h|σ2
h)p(σ2

b)p(σ2
d)p(σ2

h) , (1)

The first term is the conditional likelihood,

L(Y|α, ζ, b, d, h,γ,ω) ∝
n∏

i=1

J∏
j=1

[
I (yij = 1) {πij + (1− πij)e

µij }

+ I (yij = 0)

{
(1− πij)

e−µijµ
yij
ij

yij !

}]
, (2)

To avoid computational instability, normal priors can be assigned on α, ζ, γ

and ω with a moderately large variance and uniform distribution with again

moderately large variance for σb, σd and σh.
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Comandra Blister Rust Study

Comandra blister rust (CBR) is a disease of hard pines that is caused by
a fungus growing in the inner bark; CBR infects pines but needs an
alternate host plant (AHP) to spread from one pine to another.

Plantation of lodgepole pine trees over a 124 × 64 grid;

Each grid is 1.5 meters × 1.5 meters;

1000 trees susceptible to CBR infection were randomly sampled over
the field;

In each grid cell, two outcomes:
(1) counts of lesions on each tree,
(2) counts of disease host plants in each grid cell.
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Comandra Blister Rust Study
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Comandra Blister Rust Study
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Comandra Blister Rust Study
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Joint Modeling of Tree Infection and Host Plants

Let L and H index counts of lesion and counts of disease host plants, respectively.
The zero-inflated common spatial factor model is then,

{
log(µHi ) = αH + bi + hHi
log(µLi ) = αL + γ · bi + hLi

logit(πHi ) = ζH + di
logit(πLi ) = ζL + ω · di

where

b = (b1, · · · , bn)T ∼ MVN(0, σ2
b(D − W)−1),

d = (d1, · · · , dn)T ∼ MVN(0, σ2
d (D − W)−1),

hL = (h1L, · · · , hnL)T ∼ MVN(0, σ2
hL

I),

hH = (h1H , · · · , hnH)T ∼ MVN(0, σ2
hH

I),
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Comandra Blister Rust Study

Table : Posterior summaries

Parameter Mean 95% CI

γ 0.25 (0.23, 0.33)

ω 1.42 (0.03, 5.88)

σ2
b 532.49 (354.53, 793.72)

σ2
hH 0.89 (0.35, 2.57)

σ2
hL 0.20 (0.11, 0.37)

Remark: Spatial similarity of the random process exists across the spatial maps

through a latent random effect and zero mass components of the two distributions are

also correlated though a latent spatially varying process.
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Posterior Medians of the Shared Random Effects
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Joint Modeling of Tree Infection and Host Plants

Table : pD and DIC for competing models

Type Model Poisson distribution Excess Zero pD DIC

Shared M1 log(µiH ) = αH + bi + hiH logit(πiH ) = ζH + di 530.0 3457.5
log(µiL) = αL + γb · bi + hiL logit(πiL) = ζL + γd · di

M2 log(µiH ) = αH + bi + hiH logit(πiH ) = ζH 534.8 3462.6
log(µiL) = αL + γb · bi + hiL logit(πiL) = ζL

M3 log(µiH ) = αH + bi logit(πiH ) = ζH + di 461.0 3505.5
log(µiL) = αL + γb · bi logit(πiL) = ζL + γd · di

M4 log(µiH ) = αH + bi logit(πiH ) = ζH 462.4 3508.7
log(µiL) = αL + γb · bi logit(πiL) = ζL

Separate M5 log(µiH ) = αH + biH + hiH logit(πiH ) = ζH + diH 658.0 3645.0
log(µiL) = αL + biL + hiL logit(πiL) = ζL + diL

M6 log(µiH ) = αH + biH + hiH logit(πiH ) = ζH 654.9 3659.8
log(µiL) = αL + biL + hiL logit(πiL) = ζL

M7 log(µiH ) = αH + biH logit(πiH ) = ζH + diH 513.6 3721.7
log(µiL) = αL + biL logit(πiL) = ζL + diL

M8 log(µiH ) = αH + biH logit(πiH ) = ζH 547.2 3723.7
log(µiL) = αL + biL logit(πiL) = ζL
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Remarks

The common spatial factor model can be used to identify the
common spatial structures across outcomes and it also offers some
improvement in efficiency of estimating relative risks.

Correlations of the two components of the zero-inflated model
would be useful.

Spatio-temporal extension of the common spatial factor model
would be interesting.

Gains may be obtained by assuming the shared frailty term is
spatially uncorrelated, when it is not clear what neighborhood
spatial structure is appropriate.

Shared frailty models have found utility in many applications.
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