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Definition

W ⊂ Rd : an arbitrary Borel set with 0 < |W | <∞
For u ∈ Sd−1+ , the cylindrical K-function in the directions ±u
is defined as

Ku(r , t) =
1

ρ2|W |
E

6=∑
x1,x2∈X

1[x1 ∈W , x2−x1 ∈ Cu(r , t)], r , t > 0

C (r , t): the d-dimensional cylinder with midpoint o, radius
r > 0, and height 2t > 0 in the direction along the xd -axis.
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Properties

ρKu(r , t): the mean number of further points in the cylinder
with radius r , height t, direction u, and midpoint at ξ,
conditional on that X has a point at the location ξ

Does not depend on the choice of W because of stationarity
of X

For d = 3, a relationship with the space-time K -function in
Diggle et al (2009).
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Non-parametric Estimation

K̂u(r , t) =
1

ρ̂2

6=∑
x1,x2∈y

w(x1, x2)1[x2 − x1 ∈ Cu(r , t)]

ρ̂2 = n(n − 1)/|W |2 is the usual estimate of ρ2
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Edge effects

Three possibilities:

Translation correction factor

Isotropic correction factor

Combined correction factor

Our choice: the translation correction factor because:

no restriction on the shape of W .

no restriction on the directions of Cu(r , t).

similar results for the translation and the combined results
based on the simulations
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Data sets

|W | = 510µ× 138µ× 518µ

Layer III; Brodmann area 4

16 / 64



Cylindrical K -function
Poisson Line Cluster Point Processes (PLCPP)

Literatur

Definition
Non-parametric Estimation
Edge effects
Application

Application in neuroscience: 3D Minicolumn data

For t = 80, n=999, type I error probability= 0.026
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Poisson Line Cluster Point Processes (PLCPP)

A Cox process with columnar structure

is used to validate the inferences on minicolumns data
Stepwise definition:

a Poisson line process L = {l1, l2, . . .} of (directed) lines li
on each line li , a Poisson process Yi

a new point process Xi obtained by random displacements in
Rd of the points in Yi

finally, X as the superposition of all the Xi .
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Notation

The phase representation:

L: is identified by a point process Φ ⊂ H × Sd−1

H: the hyperplane perpendicular to the xd -axis

Sd−1: the unit-sphere in Rd

l = l(y,u) ∈ L ≡ (y,u) ∈ H × Sd−1

u is the direction of l

y is the intersection point of l and H

pu⊥(x) = x− (x · u)u: the orthogonal projection of x ∈ Rd

onto u⊥ (the hyperplane perpendicular to u and containing

the origin).
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PLCPP: Assumptions

Φ: a Poisson process with intensity measure βλ(dy)M(du)

β: a positive and finite parameter
M is a probability measure on Sd−1

conditional on Φ, for each (yi ,ui ) ∈ Φ,

Yi is a stationary Poisson process on li = l(yi ,ui ) with positive
and finite intensity α
Xi is a Poisson process on Rd with intensity function

Λi (x) = αku⊥i
(pu⊥i

(x− yi )), x ∈ Rd ,

all the Yi ’s are independent; all the Xi ’s are independent

the PLCPP X: a Cox process with driving random intensity function
Λ(x) =

∑
i Λi (x) for x ∈ Rd
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PLCPP: Intensity and rose of directions

Useful for computational reason:

to specify the distribution of the Poisson line process L by
(β,M).

Useful for interpretation:

to specify the distribution of the Poisson line process L by
(ρL,R)

ρL: the intensity of L
R: the rose of directions of L
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ρL: the mean length of lines in L within any region of unit
volume in Rd

R: the distribution for the direction of a typical line in L

A one-to-one correspondence between (β,M) and (ρL,R):
For any Borel set B ⊆ Sd−1, [0.2]

ρL = β

∫
1/|ud |M(du), R(B) =

∫
B

1/|ud |M(du)

/∫
1/|ud |M(du).

A one-to-one correspondence between (ρL,R) and (β,M):

β = ρL

∫
|ud |R(du), M(B) =

∫
B
|ud |R(du)

/∫
|ud |R(du).
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PLCPP: Moments

Reminder: The PLCPP X is a Cox process with driving random
intensity Λ.

ρ = E[Λ(o)], ρ2g(x) = E[Λ(o)Λ(x)], x ∈ Rd .

We verified that
ρ = αρL

and

g(x) = 1 +
1

ρL

∫
ku⊥ ∗ k̃u⊥(pu⊥(x))R(du), x ∈ Rd ,

Thus g > 1, reflecting the clustering of the PLPCP
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PLCPP: Densities

XW = X∩W , the PLCPP restricted to a bounded region W ⊂ Rd

A finite approximation of the latent process Φ

Their densities are required for Bayesian inference

ku⊥(y) = f (y|σ2): the density for a zero-mean radially symmetric
normal distribution on H with variance σ2 > 0

R follows the von Mises-Fisher density f (·|µ, κ) with respect to
the surface measure νd−1 on Sd−1:

f (u|µ, κ) = cd(κ) exp(κµ·u), cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, u ∈ Sd−1,

Id : the modified Bessel function of the first kind and order d
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PLCPP: Densities

Conditional on Φ, XW is absolutely continuous with respect to the
unit rate Poisson process on W , with density

f ({x1, . . . , xn}|Φ, α, σ2) = exp

(
|W | −

∫
W

Λ(x|Φ, α, σ2)dx

) n∏
i=1

Λ(xi |Φ, α, σ2)

for finite point configurations {x1, . . . , xn} ⊂W .

We replace the infinite Φ by a finite approximation ΦS = Φ ∩ S so
that

Λ(x|ΦS , α, σ
2) = α

∑
(y,u)∈ΦS

f (pu⊥(x− y)|σ2)

is a finite sum.
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We replace the infinite Φ by a finite approximation ΦS = Φ ∩ S so
that

Λ(x|ΦS , α, σ
2) = α

∑
(y,u)∈ΦS

f (pu⊥(x− y)|σ2)

is a finite sum.
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PLCPP: Densities

S : the set of lines hitting a bounded region Wext ⊇W

S = {(y,u) ∈ H × Sd−1 : l(y,u) ∩Wext 6= ∅}.

The choice of Wext

depends on the model and the data at hand

to elliminate boundary effects, Wext is sufficiently large so that it is very
unlikely that for some line li = l(yi ,ui ) ∈ L with (yi ,ui ) 6∈ S , Xi has a
point in W .
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PLCPP: Densities

ΦS is a Poisson process on S with intensity function

χ(y,u|µ, κ) = ρL|ud |f (u|µ, κ)

with respect to the measure λ(dy)νd−1(du)

The distribution of ΦS is absolutely continuous with respect to the
distribution of a natural reference process Φ0,S defined as the
Poisson process on S with intensity function

χ0(y,u) = |ud |Γ(d/2)/(2πd/2)

with respect to the measure λ(dy)νd−1(du)

The reference process corresponds to the case of an isotropic
Poisson line process with unit intensity.
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PLCPP: Densities

Letting Φ0,S = Φ0 ∩ S , then the density of ΦS with respect to the
distribution of Φ0,S is

f ({(y1,u1), . . . , (yk ,uk)}|ρL,µ, κ)

= exp

(∫
S

[χ0(y,u)− χ(y,u|µ, κ)]λ(dy)νd−1(du)

) k∏
j=1

χ(yj ,uj |µ, κ)

χ0(yj ,uj)

for finite point configurations {(y1,u1), . . . , (yk ,uk)} ⊂ S .
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PLCPP: Densities

That is
f ({(y1,u1), . . . , (yk ,uk)}|ρL,µ, κ)

∝ exp

(
−ρL

∫
Sd−1

|ud |λ(Ju)f (u|µ, κ)νd−1(du)

)

×
k∏

j=1

[
2πd/2

Γ(d/2)
ρLf (uj |µ, κ)1[yj ∈ Juj ]

]
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Our data: XW = {x1, . . . , xn}

Independent priors on the parameters: p(α), p(σ2), p(ρL), p(µ), p(κ)

The missing data: ΦS

The joint density of XW and ΦS :

l(α, σ2, ρL,µ, κ|{x1, . . . , xn}, {(y1, u1), . . . , (yk , uk)})

= f ({x1, . . . , xn}|{(y1, u1), . . . , (yk , uk)}, α, σ2)f ({(y1, u1), . . . , (yk , uk)}|ρL,µ, κ)

Thus the posterior density:

p(α, σ2, ρL,µ, κ, {(y1, u1), . . . , (yk , uk)}|{x1, . . . , xn})

∝ l(α, σ2, ρL,µ, κ|{x1, . . . , xn}, {(y1, u1), . . . , (yk , uk)})p(α)p(σ2)p(ρL)p(µ)p(κ).
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A hybrid MCMC algorithm for estimating the parameters

α and ρL: Gibbs updates from two gamma distributions

Rσ2 =
p(σ′2)

p(σ2)
exp

α ∫
W

k∑
j=1

[
f (pu⊥j

(x− yj)|σ2)− f (pu⊥j
(x− yj)|σ′2)

]
dx


n∏

i=1

∑k
j=1 f (pu⊥j

(xi − yj)|σ′2)∑k
j=1 f (pu⊥j

(xi − yj)|σ2)
,

Rµ =
p(µ′)

p(µ)
exp (ρL [I (µ, κ)− I (µ′, κ)])

k∏
j=1

f (uj |µ′, κ)

f (uj |µ, κ)
,

Rκ =
p(κ′)

p(κ)
exp (ρL [I (µ, κ)− I (µ, κ′)])

k∏
j=1

f (uj |µ, κ′)
f (uj |µ, κ)

.
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Updating the missing data: The birth-death-move
Metropolis-Hastings algorithm

Rbirth = Rbirth(k , y,u) =
ρLλ(Ju)|ud |

k + 1
1[l(y,u) ∩Wext 6= ∅]

Rdeath = Rdeath(k , yj ,uj) =
k

ρLλ(Juj )|ud,j |

Rmove = Rdeath(k , yj ,uj)Rbirth(k−1, y′j ,u
′
j) =

|u′d,j |λ(Ju′j
)

|ud,j |λ(Juj )
1[l(y′j ,u

′
j)∩Wext 6= ∅]
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