Bayesian Inference for Poisson Line Cluster Point Processes

Farzaneh Safavimanesh

Joint work with:

Jesper Møller, Jakob G Rasmussen

Department of Mathematical Sciences, Aalborg University, Denmark Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Denmark

June 24, PASI 2014, Búzios, RJ, Brazil

Minicolumns; To Be or Not? A columnar anisotropy in 3D point patterns

The Real World

Minicolumns; From Reality to Availability!

Outline

- Definition
- Non-parametric Estimation
- Edge effects
- Application

- Definition
- Intensity and rose of directions
- Moments
- Densities for the PLCPP and a fnite version of the PLCPP
- Simulation based Bayesian inference

Definitio

Cylindrical K-function Poisson Line Cluster Point Processes (PLCPP) Literatur

Non-parametric Estimation Edge effects Application

Cylindrical K-function: Definition

□ > < @ > < E > < E > E ∽ Q ↔ 5/64

Cylindrical K-function

Poisson Line Cluster Point Processes (PLCPP) Literatur Definition Non-parametric Estimation Edge effects Application

Cylindrical K-function: Definition

Cylindrical K-function vs Spherical (Ripley's) K-function

Definition Non-parametric Estimation Edge effects Application

Definition

- $W \subset \mathbb{R}^d$: an arbitrary Borel set with $0 < |W| < \infty$
- For u ∈ S^{d-1}₊, the cylindrical K-function in the directions ±u is defined as

$$\mathcal{K}_{\mathbf{u}}(r,t) = \frac{1}{\rho^2 |W|} \operatorname{E} \sum_{\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{X}}^{\neq} \mathbf{1}[\mathbf{x}_1 \in W, \mathbf{x}_2 - \mathbf{x}_1 \in C_{\mathbf{u}}(r,t)], \quad r,t > 0$$

C(r, t): the d-dimensional cylinder with midpoint o, radius r > 0, and height 2t > 0 in the direction along the x_d-axis.

Definition Non-parametric Estimation Edge effects Application

Properties

 ρK_u(r, t): the mean number of further points in the cylinder with radius r, height t, direction u, and midpoint at ξ, conditional on that X has a point at the location ξ

Definition Non-parametric Estimation Edge effects Application

Properties

- ρK_u(r, t): the mean number of further points in the cylinder with radius r, height t, direction u, and midpoint at ξ, conditional on that X has a point at the location ξ
- Does not depend on the choice of *W* because of stationarity of *X*

Definition Non-parametric Estimation Edge effects Application

Properties

- ρK_u(r, t): the mean number of further points in the cylinder with radius r, height t, direction u, and midpoint at ξ, conditional on that X has a point at the location ξ
- Does not depend on the choice of *W* because of stationarity of *X*
- For *d* = 3, a relationship with the space-time *K*-function in Diggle *et al* (2009).

Definition **Non-parametric Estimation** Edge effects Application

Non-parametric Estimation

$$\hat{\mathcal{K}}_{\boldsymbol{\mathsf{u}}}(r,t) = \frac{1}{\hat{\rho}^2} \sum_{\boldsymbol{\mathsf{x}}_1, \boldsymbol{\mathsf{x}}_2 \in \boldsymbol{\mathsf{y}}}^{\neq} w(\boldsymbol{\mathsf{x}}_1, \boldsymbol{\mathsf{x}}_2) \boldsymbol{1}[\boldsymbol{\mathsf{x}}_2 - \boldsymbol{\mathsf{x}}_1 \in \mathcal{C}_{\boldsymbol{\mathsf{u}}}(r, t)]$$

•
$$\widehat{
ho^2} = n(n-1)/|W|^2$$
 is the usual estimate of ho^2

□ > < ⓓ > < ≧ > < ≧ > ≧ > ≥ < ⊙ < ⊙ 11/64

Definition Non-parametric Estimation Edge effects Application

Three possibilities:

- Translation correction factor
- Isotropic correction factor
- Combined correction factor

Our choice: the translation correction factor because:

Definition Non-parametric Estimation Edge effects Application

Three possibilities:

- Translation correction factor
- Isotropic correction factor
- Combined correction factor

Our choice: the translation correction factor because:

• no restriction on the shape of W.

Definition Non-parametric Estimation Edge effects Application

Three possibilities:

- Translation correction factor
- Isotropic correction factor
- Combined correction factor

Our choice: the translation correction factor because:

- no restriction on the shape of W.
- no restriction on the directions of $C_{u}(r, t)$.

Definition Non-parametric Estimation Edge effects Application

Three possibilities:

- Translation correction factor
- Isotropic correction factor
- Combined correction factor

Our choice: the translation correction factor because:

- no restriction on the shape of W.
- no restriction on the directions of $C_{u}(r, t)$.
- similar results for the translation and the combined results based on the simulations

Cylindrical K-function

Poisson Line Cluster Point Processes (PLCPP) Literatur Definition Non-parametric Estimation Edge effects Application

Data sets

• $|W| = 510\mu \times 138\mu \times 518\mu$ • Layer III; Brodmann area 4

Definition Non-parametric Estimation Edge effects Application

Application in neuroscience: 3D Minicolumn data

• For t = 80, n=999, type I error probability= 0.026

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Poisson Line Cluster Point Processes (PLCPP)

• A Cox process with columnar structure

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Poisson Line Cluster Point Processes (PLCPP)

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data
- Stepwise definition:

• a Poisson line process $\mathbf{L} = \{l_1, l_2, \ldots\}$ of (directed) lines l_i

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Poisson Line Cluster Point Processes (PLCPP)

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data
- Stepwise definition:

a Poisson line process L = {l₁, l₂,...} of (directed) lines l_i
on each line l_i, a Poisson process Y_i

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data
- Stepwise definition:

- a Poisson line process $\mathbf{L} = \{l_1, l_2, \ldots\}$ of (directed) lines l_i
- on each line I_i , a Poisson process \mathbf{Y}_i
- a new point process \mathbf{X}_i obtained by random displacements in \mathbb{R}^d of the points in \mathbf{Y}_i

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data
- Stepwise definition:

- a Poisson line process $\mathbf{L} = \{l_1, l_2, \ldots\}$ of (directed) lines l_i
- on each line I_i , a Poisson process \mathbf{Y}_i
- a new point process \mathbf{X}_i obtained by random displacements in \mathbb{R}^d of the points in \mathbf{Y}_i
- finally, **X** as the superposition of all the X_i .

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- A Cox process with columnar structure
- is used to validate the inferences on minicolumns data
- Stepwise definition:

- a Poisson line process $\mathbf{L} = \{l_1, l_2, \ldots\}$ of (directed) lines l_i
- on each line I_i , a Poisson process \mathbf{Y}_i
- a new point process \mathbf{X}_i obtained by random displacements in \mathbb{R}^d of the points in \mathbf{Y}_i
- finally, **X** as the superposition of all the X_i .

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Realizations of PLCPP

□ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < </p>
25 / 64

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Notation

• The phase representation:

- L: is identified by a point process $\mathbf{\Phi} \subset H imes \mathbb{S}^{d-1}$
 - *H*: the hyperplane perpendicular to the x_d -axis
 - \mathbb{S}^{d-1} : the unit-sphere in \mathbb{R}^d

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

27/64

Notation

• The phase representation:

- L: is identified by a point process $\mathbf{\Phi} \subset H imes \mathbb{S}^{d-1}$
 - *H*: the hyperplane perpendicular to the x_d -axis
 - \mathbb{S}^{d-1} : the unit-sphere in \mathbb{R}^d
- $I = I(\mathbf{y}, \mathbf{u}) \in \mathbf{L} \equiv (\mathbf{y}, \mathbf{u}) \in H \times \mathbb{S}^{d-1}$
 - **u** is the direction of *l*
 - \mathbf{y} is the intersection point of I and H

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

Notation

• The phase representation:

- L: is identified by a point process $\mathbf{\Phi} \subset H imes \mathbb{S}^{d-1}$
 - *H*: the hyperplane perpendicular to the x_d -axis
 - \mathbb{S}^{d-1} : the unit-sphere in \mathbb{R}^d

•
$$l = l(\mathbf{y}, \mathbf{u}) \in \mathbf{L} \equiv (\mathbf{y}, \mathbf{u}) \in H \times \mathbb{S}^{d-1}$$

- **u** is the direction of *l*
- \mathbf{y} is the intersection point of I and H
- p_{u[⊥]}(x) = x (x ⋅ u)u: the orthogonal projection of x ∈ ℝ^d onto u[⊥] (the hyperplane perpendicular to u and containing the origin).

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - M is a probability measure on \mathbb{S}^{d-1}

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPF Simulation based Bayesian inference

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - *M* is a probability measure on \mathbb{S}^{d-1}
- conditional on $\mathbf{\Phi}$, for each $(\mathbf{y}_i, \mathbf{u}_i) \in \mathbf{\Phi}$,
 - Y_i is a stationary Poisson process on I_i = I(y_i, u_i) with positive and finite intensity α

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

31/64

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - M is a probability measure on \mathbb{S}^{d-1}
- conditional on $\mathbf{\Phi}$, for each $(\mathbf{y}_i, \mathbf{u}_i) \in \mathbf{\Phi}$,
 - Y_i is a stationary Poisson process on I_i = I(y_i, u_i) with positive and finite intensity α
 - X_i is a Poisson process on \mathbb{R}^d with intensity function

$$\Lambda_i(\mathbf{x}) = lpha k_{\mathbf{u}_i^{\perp}}(\mathbf{p}_{\mathbf{u}_i^{\perp}}(\mathbf{x} - \mathbf{y}_i)), \quad \mathbf{x} \in \mathbb{R}^d,$$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Assumptions

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - M is a probability measure on \mathbb{S}^{d-1}
- conditional on $\mathbf{\Phi}$, for each $(\mathbf{y}_i, \mathbf{u}_i) \in \mathbf{\Phi}$,
 - Y_i is a stationary Poisson process on I_i = I(y_i, u_i) with positive and finite intensity α
 - X_i is a Poisson process on \mathbb{R}^d with intensity function

$$\Lambda_i(\mathbf{x}) = \alpha k_{\mathbf{u}_i^{\perp}}(\boldsymbol{p}_{\mathbf{u}_i^{\perp}}(\mathbf{x} - \mathbf{y}_i)), \quad \mathbf{x} \in \mathbb{R}^d,$$

• all the Y_i's are independent; all the X_i's are independent

□ ▶ < ⓓ ▶ < 重 ▶ < 重 ▶ = ∽ < ↔ 32 / 64

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - *M* is a probability measure on \mathbb{S}^{d-1}
- conditional on $\mathbf{\Phi}$, for each $(\mathbf{y}_i, \mathbf{u}_i) \in \mathbf{\Phi}$,
 - Y_i is a stationary Poisson process on I_i = I(y_i, u_i) with positive and finite intensity α
 - \mathbf{X}_i is a Poisson process on \mathbb{R}^d with intensity function

$$\Lambda_i(\mathbf{x}) = \alpha k_{\mathbf{u}_i^{\perp}}(p_{\mathbf{u}_i^{\perp}}(\mathbf{x} - \mathbf{y}_i)), \quad \mathbf{x} \in \mathbb{R}^d,$$

- all the **Y**_i's are independent; all the **X**_i's are independent
- the PLCPP **X**: a Cox process with driving random intensity function $\Lambda(\mathbf{x}) = \sum_i \Lambda_i(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

- Φ : a Poisson process with intensity measure $\beta\lambda(d\mathbf{y})M(d\mathbf{u})$
 - β : a positive and finite parameter
 - *M* is a probability measure on \mathbb{S}^{d-1}
- conditional on $\mathbf{\Phi}$, for each $(\mathbf{y}_i, \mathbf{u}_i) \in \mathbf{\Phi}$,
 - Y_i is a stationary Poisson process on I_i = I(y_i, u_i) with positive and finite intensity α
 - \mathbf{X}_i is a Poisson process on \mathbb{R}^d with intensity function

$$\Lambda_i(\mathbf{x}) = \alpha k_{\mathbf{u}_i^{\perp}}(p_{\mathbf{u}_i^{\perp}}(\mathbf{x} - \mathbf{y}_i)), \quad \mathbf{x} \in \mathbb{R}^d,$$

- all the **Y**_i's are independent; all the **X**_i's are independent
- the PLCPP **X**: a Cox process with driving random intensity function $\Lambda(\mathbf{x}) = \sum_i \Lambda_i(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

35/64

PLCPP: Intensity and rose of directions

• Useful for computational reason:

to specify the distribution of the Poisson line process **L** by (β, M) .

• Useful for interpretation:

to specify the distribution of the Poisson line process ${\bf L}$ by (ρ_L, \mathcal{R})

- *ρ_L*: the intensity of L
- $\mathcal{R}:$ the rose of directions of $\boldsymbol{\mathsf{L}}$

 Cylindrical K-function
 Intensity and rose of directions

 Poisson Line Cluster Point Processes (PLCPP)
 Moments

 Literatur
 Densities for the PLCPP and a fnite version of the PLCPP

- ρ_L : the mean length of lines in ${\bf L}$ within any region of unit volume in ${\mathbb R}^d$
- \mathcal{R} : the distribution for the direction of a typical line in $\boldsymbol{\mathsf{L}}$

- ρ_L : the mean length of lines in **L** within any region of unit volume in \mathbb{R}^d
- \mathcal{R} : the distribution for the direction of a typical line in $\boldsymbol{\mathsf{L}}$

A one-to-one correspondence between (β, M) and (ρ_L, \mathcal{R}) : For any Borel set $B \subseteq \mathbb{S}^{d-1}$, [0.2]

$$\rho_L = \beta \int 1/|u_d| M(\mathrm{d}\mathbf{u}), \quad \mathcal{R}(B) = \int_B 1/|u_d| M(\mathrm{d}\mathbf{u}) \bigg/ \int 1/|u_d| M(\mathrm{d}\mathbf{u}).$$

A one-to-one correspondence between (ρ_L, \mathcal{R}) and (β, M) :

$$\beta = \rho_L \int |u_d| \mathcal{R}(\mathrm{d}\mathbf{u}), \quad M(B) = \int_B |u_d| \mathcal{R}(\mathrm{d}\mathbf{u}) / \int |u_d| \mathcal{R}(\mathrm{d}\mathbf{u}).$$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Moments

Reminder: The PLCPP \mathbf{X} is a Cox process with driving random intensity Λ .

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPF Simulation based Bayesian inference

PLCPP: Moments

Reminder: The PLCPP **X** is a Cox process with driving random intensity Λ .

$$\rho = \mathrm{E}[\Lambda(\mathbf{o})], \quad \rho^2 g(\mathbf{x}) = \mathrm{E}[\Lambda(\mathbf{o})\Lambda(\mathbf{x})], \quad \mathbf{x} \in \mathbb{R}^d.$$

We verified that

$$\rho = \alpha \rho_L$$

and

$$g(\mathbf{x}) = 1 + rac{1}{
ho_L} \int k_{\mathbf{u}^{\perp}} * \tilde{k}_{\mathbf{u}^{\perp}}(p_{\mathbf{u}^{\perp}}(\mathbf{x})) \mathcal{R}(\mathrm{d}\mathbf{u}), \quad \mathbf{x} \in \mathbb{R}^d,$$

Thus g > 1, reflecting the clustering of the PLPCP

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

- $\mathbf{X}_W = \mathbf{X} \cap W$, the PLCPP restricted to a bounded region $W \subset \mathbb{R}^d$
- A finite approximation of the latent process Φ
 - Their densities are required for Bayesian inference

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

- $X_W = X \cap W$, the PLCPP restricted to a bounded region $W \subset \mathbb{R}^d$
- A finite approximation of the latent process Φ

Their densities are required for Bayesian inference

k_{u[⊥]}(y) = f(y|σ²): the density for a zero-mean radially symmetric normal distribution on H with variance σ² > 0

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

- $X_W = X \cap W$, the PLCPP restricted to a bounded region $W \subset \mathbb{R}^d$
- A finite approximation of the latent process Φ

Their densities are required for Bayesian inference

- k_{u[⊥]}(y) = f(y|σ²): the density for a zero-mean radially symmetric normal distribution on H with variance σ² > 0
- *R* follows the von Mises-Fisher density f(·|μ, κ) with respect to the surface measure ν_{d-1} on S^{d-1}:

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

- $\mathbf{X}_W = \mathbf{X} \cap W$, the PLCPP restricted to a bounded region $W \subset \mathbb{R}^d$
- A finite approximation of the latent process Φ

Their densities are required for Bayesian inference

- k_{u[⊥]}(y) = f(y|σ²): the density for a zero-mean radially symmetric normal distribution on H with variance σ² > 0
- *R* follows the von Mises-Fisher density f(·|μ, κ) with respect to the surface measure ν_{d−1} on S^{d−1}:

$$f(\mathbf{u}|\boldsymbol{\mu},\kappa) = c_d(\kappa) \exp(\kappa \boldsymbol{\mu} \cdot \mathbf{u}), \quad c_d(\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2} I_{d/2-1}(\kappa)}, \quad \mathbf{u} \in \mathbb{S}^{d-1},$$

 I_d : the modified Bessel function of the first kind and order d

43/64

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

 Conditional on Φ, X_W is absolutely continuous with respect to the unit rate Poisson process on W, with density

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

 Conditional on Φ, X_W is absolutely continuous with respect to the unit rate Poisson process on W, with density

$$f(\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}|\mathbf{\Phi},\alpha,\sigma^2) = \exp\left(|W| - \int_W \Lambda(\mathbf{x}|\mathbf{\Phi},\alpha,\sigma^2) \,\mathrm{d}x\right) \prod_{i=1}^n \Lambda(\mathbf{x}_i|\mathbf{\Phi},\alpha,\sigma^2)$$

for finite point configurations $\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset W$.

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

 Conditional on Φ, X_W is absolutely continuous with respect to the unit rate Poisson process on W, with density

$$f(\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}|\mathbf{\Phi},\alpha,\sigma^2) = \exp\left(|W| - \int_W \Lambda(\mathbf{x}|\mathbf{\Phi},\alpha,\sigma^2) \,\mathrm{dx}\right) \prod_{i=1}^n \Lambda(\mathbf{x}_i|\mathbf{\Phi},\alpha,\sigma^2)$$

for finite point configurations $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \subset W$.

• We replace the infinite Φ by a finite approximation $\Phi_{\mathcal{S}} = \Phi \cap \mathcal{S}$ so that

$$\Lambda(\mathbf{x}|\mathbf{\Phi}_{\mathcal{S}}, \alpha, \sigma^2) = \alpha \sum_{(\mathbf{y}, \mathbf{u}) \in \mathbf{\Phi}_{\mathcal{S}}} f(p_{\mathbf{u}^{\perp}}(\mathbf{x} - \mathbf{y})|\sigma^2)$$

is a finite sum.

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

47/64

PLCPP: Densities

• S: the set of lines hitting a bounded region $W_{\text{ext}} \supseteq W$

$$S = \{(\mathbf{y}, \mathbf{u}) \in H \times \mathbb{S}^{d-1} : I(\mathbf{y}, \mathbf{u}) \cap W_{\mathsf{ext}} \neq \emptyset\}.$$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• S: the set of lines hitting a bounded region $W_{\text{ext}} \supseteq W$

$$S = \{ (\mathbf{y}, \mathbf{u}) \in H \times \mathbb{S}^{d-1} : I(\mathbf{y}, \mathbf{u}) \cap W_{\mathsf{ext}} \neq \emptyset \}.$$

• The choice of W_{ext}

• depends on the model and the data at hand

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• S: the set of lines hitting a bounded region $W_{\text{ext}} \supseteq W$

$$S = \{ (\mathbf{y}, \mathbf{u}) \in H \times \mathbb{S}^{d-1} : I(\mathbf{y}, \mathbf{u}) \cap W_{\mathsf{ext}} \neq \emptyset \}.$$

• The choice of W_{ext}

- depends on the model and the data at hand
- to elliminate boundary effects, W_{ext} is sufficiently large so that it is very unlikely that for some line l_i = l(y_i, u_i) ∈ L with (y_i, u_i) ∉ S, X_i has a point in W.

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• Φ_S is a Poisson process on S with intensity function $\chi(\mathbf{y},\mathbf{u}|\boldsymbol{\mu},\kappa)=\rho_L|u_d|f(\mathbf{u}|\boldsymbol{\mu},\kappa)$

with respect to the measure $\lambda(d\mathbf{y})\nu_{d-1}(d\mathbf{u})$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• $\mathbf{\Phi}_S$ is a Poisson process on S with intensity function

 $\chi(\mathbf{y}, \mathbf{u} | \boldsymbol{\mu}, \kappa) = \rho_L | u_d | f(\mathbf{u} | \boldsymbol{\mu}, \kappa)$

with respect to the measure $\lambda(d\mathbf{y})\nu_{d-1}(d\mathbf{u})$

 The distribution of Φ_S is absolutely continuous with respect to the distribution of a natural reference process Φ_{0,S} defined as the Poisson process on S with intensity function

$$\chi_0(\mathbf{y},\mathbf{u}) = |u_d|\Gamma(d/2)/(2\pi^{d/2})$$

with respect to the measure $\lambda(d\mathbf{y})\nu_{d-1}(d\mathbf{u})$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• $\mathbf{\Phi}_S$ is a Poisson process on S with intensity function

 $\chi(\mathbf{y}, \mathbf{u} | \boldsymbol{\mu}, \kappa) = \rho_L | u_d | f(\mathbf{u} | \boldsymbol{\mu}, \kappa)$

with respect to the measure $\lambda(d\mathbf{y})\nu_{d-1}(d\mathbf{u})$

• The distribution of Φ_S is absolutely continuous with respect to the distribution of a natural reference process $\Phi_{0,S}$ defined as the Poisson process on S with intensity function

$$\chi_0(\mathbf{y},\mathbf{u}) = |u_d| \Gamma(d/2)/(2\pi^{d/2})$$

with respect to the measure $\lambda(d\mathbf{y})\nu_{d-1}(d\mathbf{u})$

• The reference process corresponds to the case of an isotropic Poisson line process with unit intensity.

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• Letting $\Phi_{0,S} = \Phi_0 \cap S$, then the density of Φ_S with respect to the distribution of $\Phi_{0,S}$ is

$$f(\{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\} | \rho_L, \boldsymbol{\mu}, \kappa)$$

= exp $\left(\int_{\mathcal{S}} [\chi_0(\mathbf{y}, \mathbf{u}) - \chi(\mathbf{y}, \mathbf{u} | \boldsymbol{\mu}, \kappa)] \lambda(\mathrm{d}\mathbf{y}) \nu_{d-1}(\mathrm{d}\mathbf{u}) \right) \prod_{j=1}^k \frac{\chi(\mathbf{y}_j, \mathbf{u}_j | \boldsymbol{\mu}, \kappa)}{\chi_0(\mathbf{y}_j, \mathbf{u}_j)}$

for finite point configurations $\{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\} \subset S$.

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

PLCPP: Densities

• That is $f(\{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\} | \rho_L, \boldsymbol{\mu}, \kappa)$ $\propto \exp\left(-\rho_L \int_{\mathbb{S}^{d-1}} |u_d| \lambda(J_{\mathbf{u}}) f(\mathbf{u}|\boldsymbol{\mu}, \kappa) \nu_{d-1}(\mathrm{d}\mathbf{u})\right)$ $\times \prod_{j=1}^k \left[\frac{2\pi^{d/2}}{\Gamma(d/2)} \rho_L f(\mathbf{u}_j|\boldsymbol{\mu}, \kappa) \mathbf{1}[\mathbf{y}_j \in J_{\mathbf{u}_j}]\right]$

> > < ⓓ > < ≧ > < ≧ > ≧ 54 / 64

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPF Simulation based Bayesian inference

• Our data:
$$\mathbf{X}_W = {\mathbf{x}_1, \dots, \mathbf{x}_n}$$

 Cylindrical K-function
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Intensity and rose of directions

 Literatur
 Definition

 Simulation based Bayesian inference
 Definition

- Our data: $\mathbf{X}_W = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- Independent priors on the parameters: $p(\alpha), p(\sigma^2), p(\rho_L), p(\mu), p(\kappa)$

 Cylindrical K-function
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Intensity and rose of directions

 Literatur
 Definition

 Simulation based Bayesian inference
 Definition

- Our data: $\mathbf{X}_W = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- Independent priors on the parameters: $p(\alpha), p(\sigma^2), p(\rho_L), p(\mu), p(\kappa)$
- The missing data: Φ_S

 Cylindrical K-function
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Intensity and rose of directions

 Literatur
 Definition

 Difficult
 Intensity and rose of directions

 Definition
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Moments

 Definition
 Definition

 Simulation based Bayesian inference
 Simulation based Bayesian inference

- Our data: $\mathbf{X}_W = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- Independent priors on the parameters: $p(\alpha), p(\sigma^2), p(\rho_L), p(\mu), p(\kappa)$
- The missing data: Φ_S
- The joint density of X_W and Φ_S :

$$\begin{split} &I(\alpha,\sigma^2,\rho_L,\boldsymbol{\mu},\kappa|\{\mathbf{x}_1,\ldots,\mathbf{x}_n\},\{(\mathbf{y}_1,\mathbf{u}_1),\ldots,(\mathbf{y}_k,\mathbf{u}_k)\})\\ &=f(\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}|\{(\mathbf{y}_1,\mathbf{u}_1),\ldots,(\mathbf{y}_k,\mathbf{u}_k)\},\alpha,\sigma^2)f(\{(\mathbf{y}_1,\mathbf{u}_1),\ldots,(\mathbf{y}_k,\mathbf{u}_k)\}|\rho_L,\boldsymbol{\mu},\kappa) \end{split}$$

 Cylindrical K-function
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Intensity and rose of directions

 Literatur
 Definition

 Definition
 Intensity and rose of directions

 Definition
 Definition

 Poisson Line Cluster Point Processes (PLCPP)
 Moments

 Definition
 Definition

 Simulation based Bayesian inference
 Simulation based Bayesian inference

- Our data: $\mathbf{X}_W = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- Independent priors on the parameters: $p(\alpha), p(\sigma^2), p(\rho_L), p(\mu), p(\kappa)$
- The missing data: Φ_S
- The joint density of X_W and Φ_S :

$$\begin{aligned} &I(\alpha, \sigma^2, \rho_L, \boldsymbol{\mu}, \kappa | \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\}) \\ &= f(\{\mathbf{x}_1, \dots, \mathbf{x}_n\} | \{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\}, \alpha, \sigma^2) f(\{(\mathbf{y}_1, \mathbf{u}_1), \dots, (\mathbf{y}_k, \mathbf{u}_k)\} | \rho_L, \boldsymbol{\mu}, \kappa) \end{aligned}$$

• Thus the posterior density:

$$p(\alpha, \sigma^{2}, \rho_{L}, \boldsymbol{\mu}, \kappa, \{(\mathbf{y}_{1}, \mathbf{u}_{1}), \dots, (\mathbf{y}_{k}, \mathbf{u}_{k})\} | \{\mathbf{x}_{1}, \dots, \mathbf{x}_{n}\})$$

$$\propto l(\alpha, \sigma^{2}, \rho_{L}, \boldsymbol{\mu}, \kappa | \{\mathbf{x}_{1}, \dots, \mathbf{x}_{n}\}, \{(\mathbf{y}_{1}, \mathbf{u}_{1}), \dots, (\mathbf{y}_{k}, \mathbf{u}_{k})\}) p(\alpha) p(\sigma^{2}) p(\rho_{L}) p(\boldsymbol{\mu}) p(\kappa).$$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPP Simulation based Bayesian inference

A hybrid MCMC algorithm for estimating the parameters

 α and $\rho_{\textit{L}}:$ Gibbs updates from two gamma distributions

$$\begin{aligned} R_{\sigma^2} &= \frac{p(\sigma'^2)}{p(\sigma^2)} \exp\left(\alpha \int_W \sum_{j=1}^k \left[f(p_{\mathbf{u}_j^\perp}(\mathbf{x} - \mathbf{y}_j) | \sigma^2) - f(p_{\mathbf{u}_j^\perp}(\mathbf{x} - \mathbf{y}_j) | \sigma'^2) \right] \, \mathrm{d}\mathbf{x} \right) \\ &\prod_{i=1}^n \frac{\sum_{j=1}^k f(p_{\mathbf{u}_j^\perp}(\mathbf{x}_i - \mathbf{y}_j) | \sigma'^2)}{\sum_{j=1}^k f(p_{\mathbf{u}_j^\perp}(\mathbf{x}_i - \mathbf{y}_j) | \sigma^2)}, \\ R_{\boldsymbol{\mu}} &= \frac{p(\boldsymbol{\mu}')}{p(\boldsymbol{\mu})} \exp\left(\rho_L\left[I(\boldsymbol{\mu}, \boldsymbol{\kappa}) - I(\boldsymbol{\mu}', \boldsymbol{\kappa}) \right] \right) \prod_{j=1}^k \frac{f(\mathbf{u}_j | \boldsymbol{\mu}', \boldsymbol{\kappa})}{f(\mathbf{u}_j | \boldsymbol{\mu}, \boldsymbol{\kappa})}, \\ R_{\boldsymbol{\kappa}} &= \frac{p(\boldsymbol{\kappa}')}{p(\boldsymbol{\kappa})} \exp\left(\rho_L\left[I(\boldsymbol{\mu}, \boldsymbol{\kappa}) - I(\boldsymbol{\mu}, \boldsymbol{\kappa}') \right] \right) \prod_{j=1}^k \frac{f(\mathbf{u}_j | \boldsymbol{\mu}, \boldsymbol{\kappa})}{f(\mathbf{u}_j | \boldsymbol{\mu}, \boldsymbol{\kappa})}. \end{aligned}$$

Definition Intensity and rose of directions Moments Densities for the PLCPP and a fnite version of the PLCPF Simulation based Bayesian inference

Updating the missing data: The birth-death-move Metropolis-Hastings algorithm

$$\begin{split} R_{\text{birth}} &= R_{\text{birth}}(k, \mathbf{y}, \mathbf{u}) = \frac{\rho_L \lambda(J_{\mathbf{u}}) |u_d|}{k+1} \mathbf{1} [l(\mathbf{y}, \mathbf{u}) \cap W_{\text{ext}} \neq \emptyset] \\ R_{\text{death}} &= R_{\text{death}}(k, \mathbf{y}_j, \mathbf{u}_j) = \frac{k}{\rho_L \lambda(J_{\mathbf{u}_j}) |u_{d,j}|} \\ R_{\text{move}} &= R_{\text{death}}(k, \mathbf{y}_j, \mathbf{u}_j) R_{\text{birth}}(k-1, \mathbf{y}'_j, \mathbf{u}'_j) = \frac{|u'_{d,j}| \lambda(J_{\mathbf{u}'_j})}{|u_{d,j}| \lambda(J_{\mathbf{u}_j})} \mathbf{1} [l(\mathbf{y}'_j, \mathbf{u}'_j) \cap W_{\text{ext}} \neq \emptyset] \end{split}$$

(ロ) (문) (문) (문) (문) (문) (대) 61/64

- Møller, J., Safavimanesh, F. & Rasmussen, J. G. (2014). The cylindrical *k*-function and models for anisotropy and linear structures in spatial point patterns .
- Rafati, A., Safavimanesh, F., Dorph-Petersen, K., Rasmussen, J. G., Møller, J. & Nyengaard, J. R. (2014). The degree of columnarity: an index for spatial quantification of minicolumns in cerebral cortex.
- Safavimanesh, F. & Redenbach, C. (2014). A comparison of functional summary statistics for detencting anisotropy of three-dimensional point processes .

Thank you!