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Half-Spectral Representations of Space-Time Covariance
Functions

K(s,t) /R/Rd g(\, w)exp (isT)\ + itw) d\ dw (1)

K(s,t) — /R F(w)C(s5(w)) exp(itw)deo, 2)



Natural Condition in Stein (2011)

K(s,t) / / exp /sT/\ + /tw) d\ dw
Rd

lim sup
(@, M) ll=00 ||(u,v) | <R

> Developed to ensure “nice” behavior of kriging predictors for
models with g as a spectral density.



Goal

» Develop covariance functions that satisfy the condition in
Stein (2011) that also have a half-spectral representation.



Spectral Form and Restrictions

K(s,t) = /R/Rd f(w)d(w)~9h (5( )) exp(itw + is T \)d\dw.

» Restriction 1: If h(\/0(w) satisfies the condition in (3),
f(w)d(w)~? must be constant.

» Restriction 2: Function §(w) must increase unboundedly for
large w.

» A Conclusion:

h(A/6(w)) = 6(w)?/f(w)H(w, A)

where H satisfies the natural condition.



A New Class of Space-Time Models defined by
Half-Spectrum

Let covariance function K¢ have the following half-spectral
representation

f(w)C(so(w)) = Pf(W)Myi1/2 (a|5!f(w)_1/2ﬁ1/2) .

» M, 11/2 is the Matérn covariance function with smoothness
v+1/2.

» Temporal spectrum f decreases to zero asymptotically
proportional to w™k, where k > 1.



Example

Let f be a Matérn spectral density with smoothness k.

—(v+(d+1)/2)
g w) = ( (52 )H+1/2)/(V—|—1/2) +)\2)

f(w)C(sé(w)) = ¢ (52 ) (e1/2) My i1)2 (a!s\(ﬂz + w2)1/2'311//§)

» Temporal smoothness is k.
v+1/2

» Spatial smoothness is k 1




Spatial Covariances
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Figure: Contour and marginal covariance plots for the model in the
example. Effective smoothness in space is 0.5. Effective smoothness in
time is 2.



Application

v

Irish wind dataset (Haslett and Raftery (1989))
Daily average wind speeds at 11 stations
1961-1978

72,314 observations with none missing
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Short Memory Model Comparisons

Whittle Log-Likelihoods of Short Memory Models

Log-Likelihood  Diff. From Ex. 1 # Param. Fit

Example (k = 1/2) 20,318 0 5
Matérn (Example, Kk = v =1/2) 20,199 119 4
Separable Exponential 18,703 1,615 4
Cressie and Huang (1999) 18,378 1,940 4

Table: Comparison of log-likelihoods of short memory models fitted to
the Irish wind dataset.

» Note a spatial nugget (as seen on the following slide) is
included in all these models.



Long Memory Model Comparisons

Gneiting (2002) analyzes these data using the following model.

alls|

W) +0?(Blul*+1) Mezg

G(s.t) = (Blul"+1) " exp (—

We fit versions of this model to the Irish wind dataset

» k=1and y=0.

> k=1.
When k =1, let fg be the spectrum of G(0,t). We compare these
versions of G to K.



Comparison to Separable G

Whittle Log-Likelihoods of Longer Memory Models

Log-Likelihood  Difference From Ky # Parameters Fit

K, (v=1)2) 21,655 0 4
G (y=0rk=1) 21,245 410 4

Table: Comparison of log-likelihoods of longer memory models fitted to
the lIrish wind dataset.



Comparison to Non-Separable G

Space-Time Log-Likelihoods of Long Memory Models
Log-Likelihood  Difference From K.  # Parameters Fit
K. (v=1/2) 6,744 0 4
G (k=1) 6,705 39 5

Table: Comparison of log-likelihoods of longer memory models fitted to a
subset of the Irish wind dataset containing the first 2,000 temporal
points. In contrast to Table 2, G is a non-separable model.
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