Half-Spectral Space-Time Covariance Models and a Natural Condition

Michael T. Horrell

Department of Statistics University of Chicago

June 11, 2014

Half-Spectral Representations of Space-Time Covariance Functions

$$\begin{aligned} \mathcal{K}(s,t) &= \int_{\mathbb{R}} \int_{\mathbb{R}^d} g(\lambda,\omega) \exp\left(is^T \lambda + it\omega\right) d\lambda \ d\omega \qquad (1) \\ \mathcal{K}(s,t) &= \int_{\mathbb{R}} f(\omega) \mathbb{C}(s\delta(\omega)) \exp(it\omega) d\omega, \qquad (2) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Natural Condition in Stein (2011)

$$K(s,t) = \int_{\mathbb{R}} \int_{\mathbb{R}^d} g(\lambda,\omega) \exp\left(is^{\mathsf{T}}\lambda + it\omega\right) d\lambda \,\,d\omega$$

$$\lim_{\|(\omega,\lambda)\|\to\infty} \sup_{\|(u,v)\|< R} \left| \frac{g(\omega+u,\lambda+v)}{g(\omega,\lambda)} - 1 \right| = 0$$
(3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Developed to ensure "nice" behavior of kriging predictors for models with g as a spectral density.

Goal

 Develop covariance functions that satisfy the condition in Stein (2011) that also have a half-spectral representation.

Spectral Form and Restrictions

$$K(s,t) = \int_{\mathbb{R}} \int_{\mathbb{R}^d} f(\omega) \delta(\omega)^{-d} h\left(\frac{\lambda}{\delta(\omega)}\right) \exp(it\omega + is^T \lambda) d\lambda d\omega.$$

- ► Restriction 1: If h(λ/δ(ω) satisfies the condition in (3), f(ω)δ(ω)^{-d} must be constant.
- Restriction 2: Function δ(ω) must increase unboundedly for large ω.
- A Conclusion:

$$h(\lambda/\delta(\omega)) = \delta(\omega)^d / f(\omega) H(\omega, \lambda)$$

where H satisfies the natural condition.

A New Class of Space-Time Models defined by Half-Spectrum

Let covariance function K_f have the following half-spectral representation

$$f(\omega)\mathbb{C}(s\delta(\omega)) = \phi f(\omega)\mathcal{M}_{\nu+1/2}\left(\alpha|s|f(\omega)^{-1/2\frac{1}{\nu+1/2}}\right).$$

• $\mathcal{M}_{\nu+1/2}$ is the Matérn covariance function with smoothness $\nu + 1/2$.

► Temporal spectrum f decreases to zero asymptotically proportional to ω^{-k}, where k > 1.

Example

Let f be a Matérn spectral density with smoothness κ .

$$g(\lambda,\omega) = \phi \left(\alpha^2 (\beta^2 + \omega^2)^{(\kappa+1/2)/(\nu+1/2)} + \lambda^2 \right)^{-(\nu+(d+1)/2)}$$
$$f(\omega)\mathbb{C}(s\delta(\omega)) = \phi \left(\beta^2 + \omega^2 \right)^{-(\kappa+1/2)} \mathcal{M}_{\nu+1/2} \left(\alpha |s| (\beta^2 + \omega^2)^{1/2\frac{\kappa+1/2}{\nu+1/2}} \right)$$

. (1 . . .) (0)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Temporal smoothness is κ .
- Spatial smoothness is $\kappa \frac{\nu + 1/2}{\kappa + 1/2}$

Figure: Contour and marginal covariance plots for the model in the example. Effective smoothness in space is 0.5. Effective smoothness in time is 2.

Application

Irish wind dataset (Haslett and Raftery (1989))

- Daily average wind speeds at 11 stations
- 1961-1978
- 72,314 observations with none missing

Short Memory Model Comparisons

	Log-Likelihood	Diff. From Ex. 1	# Param. Fit
Example ($\kappa = 1/2$)	20,318	0	5
Matérn (Example, $\kappa= u=1/2$)	20,199	119	4
Separable Exponential	18,703	1,615	4
Cressie and Huang (1999)	18,378	1,940	4

Whittle Log-Likelihoods of Short Memory Models

Table: Comparison of log-likelihoods of short memory models fitted to the Irish wind dataset.

Note a spatial nugget (as seen on the following slide) is included in all these models.

Long Memory Model Comparisons

Gneiting (2002) analyzes these data using the following model.

$$G(s,t) = \phi(\beta|u|^{\kappa}+1)^{-1} \exp\left(-\frac{\alpha \|s\|}{(\beta|u|^{\kappa}+1)^{\gamma/2}}\right) + \eta^2 (\beta|u|^{\kappa}+1)^{-1} \mathbf{1}_{s=0}$$

We fit versions of this model to the Irish wind dataset

κ = 1 and γ = 0.
κ = 1.

When $\kappa = 1$, let f_G be the spectrum of G(0, t). We compare these versions of G to K_{f_G} .

Comparison to Separable G

Whittle Log-Likelihoods of Longer Memory Models

	Log-Likelihood	Difference From K_{f_G}	# Parameters Fit
K_{f_G} ($\nu = 1/2$)	21,655	0	4
G^{-} $(\gamma=0,~\kappa=1)$	21,245	410	4

Table: Comparison of log-likelihoods of longer memory models fitted to the Irish wind dataset.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Comparison to Non-Separable G

Space-Time Log-Likelihoods of Long Memory Models

	Log-Likelihood	Difference From K_{f_G}	# Parameters Fit
K_{f_G} ($\nu = 1/2$)	6,744	Õ	4
G ($\kappa=1$)	6,705	39	5

Table: Comparison of log-likelihoods of longer memory models fitted to a subset of the Irish wind dataset containing the first 2,000 temporal points. In contrast to Table 2, G is a non-separable model.

References

- Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94, 1330-1340.
- Gneiting, T. (2002). Nonseparable, stationary covariance functions for spacetime data. J. Amer. Statist. Assoc. 97, 590-600.
- Haslett, J. and Raftery, A.E. (1989). Space-time modeling with long-memory dependence: Assessing Ireland's wind power resource. *Appl. Stat.* **38** 1-50.
- Stein, M.L. (2011). 2010 Rietz Lecture: When does the screening effect hold? Ann. Appl. Stat.. 39, 2795-2819.