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Multivariate Gaussian random �elds are needed in real world

Why we need Multivariate random �elds?

+ Used to model the correlated datasets;

+ Capture the spatial dependence structures;

+ Helpful to predict the other �elds;

+ Big area and a lot of issues needed to be solved.
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Multivariate Gaussian random �elds are needed in real world
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Motivation

Why systems of SPDEs for Multivariate GRFs ???

+ Automatically ful�ll the non-negative de�nite constrain;

+ The precision matrix Q is sparse;

+ The parameters in the (systems of) SPDEs are interpretable;

+ Fast infernece can be achieved;

+ Can be extended in various of ways.
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Matérn covariance function

The Matérn covariance function is isotropic and has the form

Cov (x(0), x(h)) = σ2M(h|ν, κ) =
σ221−ν

Γ(ν)
(κ‖h‖)νKν(κ‖h‖),

+ ‖h‖ denotes the Euclidean distance;

+ ν > 0 is the smoothness parameter;

+ κ > 0 is the scaling parameter;

+ σ2 is the marginal variance;

+ Kν is the modi�ed Bessel function of second kind.
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Link to SPDE

The important relationship is that a Gaussian Field x(s) with the

Matérn covariance function is a stationary solution to the linear

fractional SPDE (Lindgren et al, 2011)

(κ2 −∆)α/2x(s) =W(s), α = ν + d/2, ν > 0

+ (κ2 −∆)α/2 is a pseudo-di�erential operator,

+ W(s) is standard spatial Gaussian white noise

+ ∆ is the Laplacian
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The Matérn covariance function, restrictive ???

+ At the �rst glance, modelling with the Matérn covariance

function seems quite restrictive,

+ But actually it is not since it covers the most important and

mostly used covariance models in spatial statistics.

+ Stein (1999), on Page 14, recommend with �Use the Matérn

model".
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Multivariate Gaussian random �eld

A multivariate GRF is a collection of continuously indexed

multivariate normal random vectors

x(s) ∼ MVN(0,Σ(s)),

where, Σ(s) is a non-negative de�nite matrix which depends on the

points s ∈ Rd .
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Multivariate SPDE model

De�ne system of SPDEs
L11 L12 . . . L1p
L21 L22 . . . L2p
...

...
. . .

...

Lp1 Lp2 . . . Lpp



x1(s)
x2(s)
...

xp(s)

 =


ε1(s)
ε2(s)
...

εp(s)

 .

+ Lij = bij(κ
2
ij −∆)αij/2 are di�erential operators;

+ εi are independent but not necessarily identically distributed

noise processes;

+ Currently, we can only take integer valued αij .
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Solve the SPDEs

The idea is taken from �nite element analysis. The solution of the

SPDE could be represented by

x(s) =
n∑

i=1

ψi (s)ωi ,

+ ψi (s) is some chosen basis-function;

+ ωi is some Gaussian distributed weights;

+ n is the number of the vertices in the triangulation.
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Piece-wise linear basis function

We choose the piece-wise linear basis function.
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The Precision matrix

Denote Qαi
as the precision matrix for the Gaussian weights ωi for

αi = 1, 2, 3, · · · as a function of κij
Q1,κ2

ij
= Kκ2

ij

Q2,κ2
ij

= KT
κ2

ij

C−1Kκ2
ij

Qα,κ2
ij

= KT
κ2

ij

C−1Qα−2,κ2
ij
C−1Kκ2

ij
, for α = 3, 4, · · · .

+ 〈·, ·〉 denote the inner product;

+ Cij = 〈ψi , ψj〉, Gij = 〈∇ψi ,∇ψj〉, Kκ2
ij

= κ2ijCij + Gij .
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GMRF approximation

Cij = 〈ψi , ψj〉 is replaced by C̃ii = 〈ψi , 1〉.
+ C̃ii is a diagonal matrix;

+ diagonal matrix C̃ii yields a Markov approximation;

+ di�erence is negligible.
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Covariance-based model

Gneinting et al. (2010) "Matérn Cross-Covariance Functions for

Multivariate Random Fields":

C(h) =


C11(h) C12(h) · · · C1p(h)
C21(h) C22(h) · · · C2p(h)

...
...

. . .
...

Cp1(h) Cp2(h) · · · Cpp(h)

 ,

+ Cii (h) = σiiM(h|νii , aii ) is the marginal covariance function;

+ Cij(h) = ρijσiσjM(h|νij , aij) is the cross-covariance function.
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Model matching

+ The models based on the SPDEs approach and the

covariance-based approach are compared by matching the

corresponding elements of the spectral matrix.

+ Under the assumption that a11 = a21 = a22 and

ν11 = ν21 = ν22, the models constructed by using SPDEs

approach and the covariance-based approach becomes

equivalent when

−b22
b21

=
σ1
ρσ2

,

b222
b211 + b221

=
σ11
σ22

.
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Sampling the positively correlated bivariate GRFs
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Sampling the negatively correlated bivariate GRFs
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The correlation functions
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Example and application

It can be shown that the logarithm of posterior distribution of θ is

log(π(θ|y)) = Const + log(π(θ)) +
1

2
log(|Q(θ)|)

−1

2
log(|Qc(θ)|) +

1

2
µc(θ)TQc(θ)µc(θ).
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Triangular system of SPDEs

The triangular system of SPDEs is commonly used:
L11 0 . . . 0

L21 L22 . . . 0
...

...
. . .

...

Lp1 Lp2 . . . Lpp



x1(s)
x2(s)
...

xp(s)

 =


ε1(s)
ε2(s)
...

εp(s)

 .

+ Can be solved sequentially;

+ Much faster and robust;

+ Possible to model high dimensional multivariate GRFs.
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Results from simulated data

Table : Inference with simulated dataset 1

Parameters True value Estimated Standard deviations

κ11 0.3 0.295 0.019

κ21 0.5 0.471 0.044

κ22 0.4 0.380 0.020

b11 1 1.009 0.069

b21 1 1.032 0.064

b22 1 0.997 0.059
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Statistical inference with real data example

+ Show how to use the SPDEs approach for constructing the

multivariate GRFs in real application;

+ The same meteorological dataset used by Gneiting et al.

(2010) was chosen and analyzed;

+ It contains the following data: pressure errors (in Pascal),

temperature errors (in Kelvin), measured against longitude and

latitude;

+ This meteorological dataset contains one observation at 157

locations in the north American Paci�c Northwest;

+ Valid on 18th, December of 2003 at 16:00 local time.
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The system of SPDEs

+ The system of SPDEs has been used for this dataset can be

written down explicitly as

b11(κ211 −∆)α11/2x1(s) = ε1(s),

b22(κ222 −∆)α22/2x2(s) + b21(κ221 −∆)α21/2x1(s) = ε2(s).

+ The noise processes are from SPDEs

(κ2n1 −∆)αn1
/2ε1(s) =W1(s),

(κ2n2 −∆)αn1
/2ε2(s) =W2(s).
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The re-construct bivariate �elds from SPDEs approach
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The re-construct bivariate �elds from Gneiting et al. (2010)
approach
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The predictive performance
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Figure : the covariance-based approach (left) and the predictive
performances of SPDEs approach (right)
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The predictive performance

Table : predictive errors for the SPDEs approach and the
covariance-based models

Models relative errors

pressure �eld temperature �eld

Covariance-based model 0.821 0.716

SPDEs approach 0.777 0.690
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Now we go even further!

Construct the multivariate GRFs with oscillating covariance

functions. Two approaches can be considered.

I Re-parametrization the systems of the SPDEs,

I Using the noise process with oscillating covariance function.
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Question: Why oscillating covariance functions

+ Some random �elds could have the oscillating covariance

structure, such as the pressure on the globe;

+ Using the SPDE approach, it is not hard to do that.

+ Didn't �nd many literatures doing this in spatial statistics.

(Am I Wrong?)
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Systems of SPDEs with oscillating noise processes


L11 L12 . . . L1p
L21 L22 . . . L2p
...

...
. . .

...

Lp1 Lp2 . . . Lpp



x1(s)
x2(s)
...

xp(s)

 =


ε1(s)
ε2(s)
...

εp(s)

 .

+ Lij = bij(κ
2
ij −∆)αij/2 are di�erential operators;

+ εi are independent but not necessarily identically distributed

noise processes;

+ Some εi can have oscillating covariance functions
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Triangular system of SPDEs

+ We recommend the lower triangular operator matrix
L11
L21 L22
...

...
. . .

Lp1 Lp2 . . . Lpp



x1(s)
x2(s)
...

xp(s)

 =


ε1(s)
ε2(s)
...

εp(s).

 .

+ Many advantages: less parameters, fast inference, easy

interpreting, and easy locating the position of the oscillating

�elds.
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Triangular system of SPDEs

If only the noise process εi (s) has oscillating covariance function,

then

+ All random �elds xj(s), j < i will have non-oscillating

covariance functions;

+ Random �elds xj(s), j = i will be sure to have oscillating

covariance function;

+ Random �elds xj(s), j > i could possibly have oscillating

covariance functions;
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systems of SPDEs with oscillating noise processes
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The correlation function

11

 

 

20 40 60 80 100120

20

40

60

80

100

−1

0

1

12

 

 

20 40 60 80 100120

20

40

60

80

100

−1

0

1

21

 

 

20 40 60 80 100120

20

40

60

80

100

−1

0

1

 

 

22

20 40 60 80 100120

20

40

60

80

100

−1

0

1

35 / 44



systems of SPDEs with oscillating noise processes
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The correlation function
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Results from simulated data 1

Table : Inference for the simulated dataset 1

Parameters True values Estimates Standard deviations

b11 0.5 0.495 0.013

b21 0.25 0.248 0.017

b22 1 1.027 0.032

h11 0.25 0.248 0.010

h22 0.36 0.355 0.029

κn2 0.6 0.601 0.004

ω 0.95 0.953 0.092

This is with the case only the second random �eld is oscillating and

the �rst �elds is a Matérn random �eld.
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Results from simulated data 2

Table : Inference for the simulated dataset 2

Parameters True values Estimates Standard deviations

b11 0.5 0.497 0.014

b21 0.25 0.234 0.012

b22 1 0.964 0.029

h11 0.25 0.269 0.024

h22 0.36 0.339 0.022

κn1 0.5 0.496 0.005

κn2 0.6 0.636 0.049

ω 0.95 0.956 0.113

This is with the case both the random �elds are with oscillating

covariance functions.
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Practical settings for inference

+ κ11 = κn1 and κ22 = κn2 ;

+ Model selection: �x αij and αni
at di�erent values;

+ Multivariate GRFs with oscillating covariance functions:

4 Fewer noise processes with oscillating covariance

functions when possible;

4 Pre-analysis for the location the oscillating random �elds.
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Inference with real dataset

This dataset is from the ERA 40 database, and this dataset

contains the temperature and pressure data on the whole globe on

4th of September, 2002.
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Figure : Real dataset from ERA 40 database with temperature (a) and
pressure (b)
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Estimated bivariate random �elds: 2D
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Figure : Estimated conditional mean of bivariate random �elds for
temperature (a) and pressure (b)
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Prediction
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Figure : Prediction for the bivariate random �elds at another 5000 data
points for temperature (left) and pressure (right)
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Conclusion, discussion and future work

+ Illustrated the possibility of construction the multivariate GRFs

with the system of SPDEs;

+ the GRFs constructed by the system of SPDEs ful�ll the

�non-negative de�nite � constrain;

+ The precision matrix for the GMRFs are sparse and hence fast

inferences are feasible even for large datasets;

+ Demonstrate the connection between the covariance-based

models and SPDE-based models;

+ Looking for real datasets for good applications!!!

44 / 44


