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Multivariate Gaussian random fields are needed in real world

Why we need Multivariate random fields?

55 Used to model the correlated datasets;

1= Capture the spatial dependence structures;
1= Helpful to predict the other fields;
(=3

Big area and a lot of issues needed to be solved.
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Multivariate Gaussian random fields are needed in real world
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Motivation

Why systems of SPDEs for Multivariate GRFs 777
1= Automatically fulfill the non-negative definite constrain;

The precision matrix Q is sparse;

(=3
1= The parameters in the (systems of) SPDEs are interpretable;
= Fast infernece can be achieved;

=

Can be extended in various of ways.
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Matérn covariance function

The Matérn covariance function is isotropic and has the form
26l—v

Cov (X(O),X(h)) = U2M(h‘y7 /4;) _ O'r(y)

(sl[hI)" K. (x[h]),

i | h|| denotes the Euclidean distance;
1 1 > 0 is the smoothness parameter;
= x> 0 is the scaling parameter;

w o is the marginal variance;

5 K, is the modified Bessel function of second kind.
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Link to SPDE

The important relationship is that a Gaussian Field x(s) with the
Matérn covariance function is a stationary solution to the linear
fractional SPDE (Lindgren et al, 2011)

(k2 — A)2x(s) =W(s), a=v+d/2, v>0
w (k2 — A)*/2 is a pseudo-differential operator,
= WV(s) is standard spatial Gaussian white noise

= A is the Laplacian
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The Matérn covariance function, restrictive 777

i At the first glance, modelling with the Matérn covariance
function seems quite restrictive,

1 But actually it is not since it covers the most important and
mostly used covariance models in spatial statistics.

1= Stein (1999), on Page 14, recommend with “Use the Matérn
model".
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Multivariate Gaussian random field

A multivariate GRF is a collection of continuously indexed
multivariate normal random vectors

x(s) ~ MVN(0, X(s)),

where, X(s) is a non-negative definite matrix which depends on the
points s € RY.
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Multivariate SPDE model

Define system of SPDEs

£11 £12 . ﬁlp X1 (S) 61(5)
£21 ,522 e ,Cgp X2(S) _ <€2(S)
Lp1 Loz .. Lpp xp(8) ep(s)

v L= bij(kj — A)%i/2 are differential operators;

= ¢; are independent but not necessarily identically distributed
noise processes;

1= Currently, we can only take integer valued a;.
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Solve the SPDEs

The idea is taken from finite element analysis. The solution of the

SPDE could be represented by
x(s) = 3 wi(s)wi,
i=1

1= 1)i(s) is some chosen basis-function;

1= (; is some Gaussian distributed weights;

= 1 is the number of the vertices in the triangulation.
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Piece-wise linear basis function

We choose the piece-wise linear basis function.
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The Precision matrix

Denote Q,; as the precision matrix for the Gaussian weights w; for

aj =1,2,3,--- as a function of xj;

Qll{?- =K 2

]

Q2/-;?. _KTC_IK 2

/]

Qan?. :KT 1Qa 2,€2C K2 fora =3,4,---.
7y

i (. -) denote the inner product;

w (= <1/J,',1/)j>, Gjj = <V¢,‘,V1/Jj), K“?j = /iIZJ-C,'j + Gjj.
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GMREF approximation

Cij = (¥i, 1)) is replaced by Ci = (i, 1).

w (Cj; is a diagonal matrix;

e diagonal matrix Cj yields a Markov approximation;

= difference is negligible.
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Covariance-based model

Gneinting et al. (2010) "Matérn Cross-Covariance Functions for
Multivariate Random Fields":

Cii(h) CGa(h) -+ Gp(h)
Clh) = C21:(h) ng:(h) Czp:(h) |
Coi(h) Cpo(h) -+ Cpp(h)

ww Ci(h) = o;iM(h|vi, aji) is the marginal covariance function;

w Cjj(h) = pjjoiojM(h|vj, ajj) is the cross-covariance function.
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Model matching

= The models based on the SPDEs approach and the
covariance-based approach are compared by matching the
corresponding elements of the spectral matrix.

1 Under the assumption that a;; = a»; = a»» and
V11 = Vo1 = V2o, the models constructed by using SPDEs

approach and the covariance-based
equivalent when
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b, + b3,
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01

9

po2
o11

022

16 / 44



Sampling the positively correlated bivariate GRFs
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Sampling the negatively correlated bivariate GRFs

18 / 44



The correlation functions
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Example and application

It can be shown that the logarithm of posterior distribution of 6 is
1
log(m(Bly)) = Const + log((8)) + 5 log(|Q(6)])

_% log(|Qc(0)]) + %MC(G)TQC(G)MC(G)-
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Triangular system of SPDEs

The triangular system of SPDEs is commonly used:

£11 0 N 0 X1 (S) 61(5)
£21 £22 e 0 XQ(S) _ 62(5)
Lot Ly - Lpp xp(s) ep(s)

== Can be solved sequentially;
= Much faster and robust;

1= Possible to model high dimensional multivariate GRFs.
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Results from simulated data

Table : Inference with simulated dataset 1

Parameters | True value | Estimated | Standard deviations
K11 0.3 0.295 0.019
K21 0.5 0.471 0.044
K22 0.4 0.380 0.020
b1 1 1.009 0.069
bo1 1 1.032 0.064
bao 1 0.997 0.059
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Statistical inference with real data example

1= Show how to use the SPDEs approach for constructing the
multivariate GRFs in real application;

= The same meteorological dataset used by Gneiting et al.
(2010) was chosen and analyzed;

1= |t contains the following data: pressure errors (in Pascal),
temperature errors (in Kelvin), measured against longitude and
latitude;

= This meteorological dataset contains one observation at 157
locations in the north American Pacific Northwest;

= Valid on 18th, December of 2003 at 16:00 local time.
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The system of SPDEs

1= The system of SPDEs has been used for this dataset can be
written down explicitly as

bu (ki — A)*/%x (s) = e1(s),
baa (52 — A)*%/%xa(s) + ba (5, — A)*2/%x (s) = ea(s)-
1= The noise processes are from SPDEs

(7, — A)m/%ei(s) = Wa(s),

m

(K2, — D) /2e5(s) = Wh(s).

mn
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The re-construct bivariate fields from SPDEs approach
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The re-construct bivariate fields from Gneiting et al. (2010)
approach
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The predictive performance
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Figure : the covariance-based approach (left) and the predictive
performances of SPDEs approach (right)
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The predictive performance

Table : predictive errors for the SPDEs approach and the
covariance-based models

Models relative errors
pressure field | temperature field
Covariance-based model 0.821 0.716
SPDEs approach 0.777 0.690
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Now we go even further!

Construct the multivariate GRFs with oscillating covariance
functions. Two approaches can be considered.

» Re-parametrization the systems of the SPDEs,

» Using the noise process with oscillating covariance function.
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Question: Why oscillating covariance functions

= Some random fields could have the oscillating covariance
structure, such as the pressure on the globe;

= Using the SPDE approach, it is not hard to do that.

= Didn't find many literatures doing this in spatial statistics.
(Am | Wrong?)
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Systems of SPDEs with oscillating noise processes

[,11 ,C12 . ,Clp X1(S) €1 (S)
£21 £22 e ﬁzp XQ(S) _ 62(5)
Loy Ly oo Lpp) \xp(8) £p(s)

w L= bu(/ﬁ} — A)%i/? are differential operators;

= ¢; are independent but not necessarily identically distributed
noise processes;

= Some ¢; can have oscillating covariance functions
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Triangular system of SPDEs

1 \We recommend the lower triangular operator matrix

£11 X1(S) 61(5)
L1 Lo x(s) [ [ e2(s)
['pl Epz AN ﬁpp Xp(S) Ep(S).

= Many advantages: less parameters, fast inference, easy
interpreting, and easy locating the position of the oscillating
fields.
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Triangular system of SPDEs

If only the noise process ¢;(s) has oscillating covariance function,
then

w All random fields x;(s),j < i will have non-oscillating
covariance functions;

15 Random fields x;(s),/ = i will be sure to have oscillating
covariance function;

© Random fields x;(s),j > i could possibly have oscillating
covariance functions;
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systems of SPDEs with oscillating noise processes
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The correlation function
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systems of SPDEs with oscillating noise processes
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The correlation function
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Results from simulated data 1

Table : Inference for the simulated dataset 1

Parameters | True values | Estimates | Standard deviations
b1 0.5 0.495 0.013
bs1 0.25 0.248 0.017
b>o 1 1.027 0.032
h11 0.25 0.248 0.010
hoo 0.36 0.355 0.029
Kny 0.6 0.601 0.004
w 0.95 0.953 0.092

This is with the case only the second random field is oscillating and
the first fields is a Matérn random field.
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Results from simulated data 2

Table : Inference for the simulated dataset 2

Parameters | True values | Estimates | Standard deviations
b1 0.5 0.497 0.014
b1 0.25 0.234 0.012
by 1 0.964 0.029
h11 0.25 0.269 0.024
hoo 0.36 0.339 0.022
Kny 0.5 0.496 0.005
Ky 0.6 0.636 0.049
w 0.95 0.956 0.113

This is with the case both the random fields are with oscillating

covariance functions.
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Practical settings for inference

IF K11 = Kp, and K2 = Kp,;
1 Model selection: fix ajj and oy, at different values;
= Multivariate GRFs with oscillating covariance functions:

v’ Fewer noise processes with oscillating covariance
functions when possible;
v’ Pre-analysis for the location the oscillating random fields.
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Inference with real dataset

This dataset is from the ERA 40 database, and this dataset
contains the temperature and pressure data on the whole globe on
4th of September, 2002.

uuuuu

Figure : Real dataset from ERA 40 database with temperature (a) and
pressure (b)
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Estimated bivariate random fields: 2D

Figure : Estimated conditional mean of bivariate random fields for
temperature (a) and pressure (b)
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Prediction
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Figure : Prediction for the bivariate random fields at another 5000 data
points for temperature (left) and pressure (right)
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Conclusion, discussion and future work

=

[llustrated the possibility of construction the multivariate GRFs
with the system of SPDEs;

the GRFs constructed by the system of SPDEs fulfill the
“non-negative definite " constrain;

The precision matrix for the GMRFs are sparse and hence fast
inferences are feasible even for large datasets;

Demonstrate the connection between the covariance-based
models and SPDE-based models;

Looking for real datasets for good applications!!!
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