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Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.

Examples:
Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.

Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.

Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.

Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements

at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location

across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on ozone,
NO, CO, and PM2.5.
Community ecology: assembiages of plant species due to water
availibility, temerature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations

2 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Bivariate Linear Spatial Regression

A single covariate X(s) and a univariate response Y (s)

At any arbotrary point in the domain, we conceive a linear spatial
relationship:

E[Y (s) |X(s)] = β0 + β1X(s);

where X(s) and Y (s) are spatial processes.

Regression on uncountable sets:

Regress {Y (s) : s ∈ D} on {X(s) : s ∈ D} .

Inference:
Estimate β0 and β1.
Estimate spatial surface {X(s) : s ∈ D}.
Estimate spatial surface {Y (s) : s ∈ D}.
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Multivariate spatial modelling

Bivariate spatial process

A bivariate distribution [Y,X] will yield regression [Y |X].

So why not start with a bivariate process?

Z(s) =
[
X(s)
Y (s)

]
∼ GP2

([
µX(s)
µY (s)

]
,

[
CXX(·;θZ) CXY (·;θZ)
CY X(·;θZ) CY Y (·;θZ)

])
The cross-covariance function:

CZ(s, t;θZ) =
[
CXX(s, t;θZ) CXY (s, t;θZ)
CY X(s, t;θZ) CY Y (s, t;θZ)

]
,

where CXY (s, t) = cov(X(s), Y (t)) and so on.
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Multivariate spatial modelling

Cross-covariance functions satisfy certain properties:

CXY (s, t) = cov(X(s), Y (t)) = cov(Y (t), X(s)) = CY X(t,s).

Caution: CXY (s, t) 6= CXY (t,s) and CXY (s, t) 6= CY X(s, t) .

In matrix terms, CZ(s, t;θZ)> = CZ(t,s;θZ)

Positive-definiteness for any finite collection of points:

n∑
i=1

n∑
j=1

a>i CZ(si, tj ;θZ)aj > 0 for all ai ∈ <2 \ {0}.
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Multivariate spatial modelling

Bivariare Spatial Regression from a Separable Process

To ensure E[Y (s) |X(s)] = β0 + β1X(s), we must have

Z(s) =
[
X(s)
Y (s)

]
∼ N

([
µ1

µ2

]
,

[
T11 T12
T12 T22

])
for every s ∈ D

Simplifying assumption :

CZ(s, t) = ρ(s, t)T =⇒ ΣZ = {ρ(si,sj)T} = R(φ)⊗ T .
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Multivariate spatial modelling

Then, p(Y (s) |X(s)) = N(Y (s) |β0 + β1X(s), σ2), where

β0 = µ2 −
T12
T11

µ1,

β1 =
T12
T11

,

σ2 = T22 −
T 2
12

T11
.

Regression coefficients are functions of process parameters.

Estimate {µ1, µ2, T11, T12, T22} by sampling from

p(φ)×N(µ | δ,Vµ)× IW (T | r,S)×N(Z |µ,R(φ)⊗ T)

Immediately obtain posterior samples of {β0, β1, σ2}.
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Multivariate spatial modelling

Misaligned Spatial Data
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Multivariate spatial modelling

Bivariate Spatial Regression with Misalignment

Rearrange the components of Z to
Z̃ = (X(s1), X(s2), . . . , X(sn), Y (s1), Y (s2), . . . , Y (sn))> yields[

X
Y

]
∼ N

([
µ11
µ21

]
, T⊗ R (φ)

)
.

Priors: Wishart for T−1, normal (perhaps flat) for (µ1, µ2),
discrete prior for φ or perhaps a uniform on (0, .5max dist).

Estimation: Markov chain Monte Carlo (Gibbs, Metropolis, Slice,
HMC/NUTS); Integrated Nested Laplace Approximation (INLA).
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Multivariate spatial modelling

Dew-Shrub Data from Negev Desert in Israel

Negev desert is very arid

Condensation can contribute to annual water levels

Analysis: Determine impact of shrub density on dew duration

1129 locations with UTM coordinates

X(s) : Shrub density at location s (within 5m× 5m blocks)

Y (s) : Dew duration at location s (in 100-th of an hour)

Separable model with an exponential correlation function,
ρ(‖s− t‖;φ) = e−φ‖s−t‖

10 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling
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Multivariate spatial modelling

Parameter 2.5% 50% 97.5%
µ1 73.12 73.89 74.67
µ2 5.20 5.38 5.572
T11 95.10 105.22 117.69
T12 –4.46 –2.42 –0.53
T22 5.56 6.19 6.91
φ 0.01 0.03 0.21
β0 5.72 7.08 8.46
β1 –0.04 –0.02 –0.01
σ2 5.58 6.22 6.93

T12/
√
T11T22 –0.17 –0.10 –0.02
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Multivariate spatial modelling

Hierarchical approach (Royle and Berliner, 1999; Cressie and Wikle,
2011)

Y (s) and X(s) observed over a finite set of locations
S = {s1,s2, . . . ,sn}.

Y and X are n× 1 vectors of observed Y (si)’s and X(si)’s,
respectively.

How do we model Y |X?

No “conditional process”—meaningless to talk about the joint
distribution of Y (si) |X(si) and Y (sj) |X(sj) for two distinct
locations si and sj .

Can model using [X]× [Y |X] but can we interpolate/predict at
arbitrary locations?

13 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Hierarchical approach (contd.)

X(s) ∼ GP (µX(s), CX(·;θX)). Therefore, X ∼ N(µX ,CX(θX)).

CX(θX) is n× n with entries CX(si,sj ;θX).

e(s) ∼ GP (0, Ce(·;θe)); Ce is analogous to CX .

Y (si) = β0 + β1X(si) + e(si) , for i = 1, 2, . . . , n .

Joint distribution of Y and X:(
X
Y

)
∼ N

([
µX
µY

]
,

[
CX(θX) β1CX(θX)
β1CX(θX) Ce(θe) + β2

1CX(θX)

])
,

where µY = β01 + β1µX .
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Multivariate spatial modelling

This joint distribution arises from a bivariate spatial process:

W(s) =
[
X(s)
Y (s)

]
and E[W(s)] = µW (s) =

[
µX(s)

β0 + β1µX(s)

]
.

and cross-covariance

CW(s,s′) =
[

CX(s,s′) β1CX(s,s′)
β1CX(s,s′) β2

1CX(s,s′) + Ce(s,s′)

]
,

where we have suppressed the dependence of CX(s,s′) and
Ce(s,s′) on θX and θe respectively. This implies that
E[Y (s) |X(s)] = β0 + β1X(s) for any arbitrary location s, thereby
specifying a well-defined spatial regression model for an arbitrary s.
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Multivariate spatial modelling

Coregionalization (Wackernagel)

Separable models assume one spatial range for both X(s) and
Y (s).

Coregionalization helps to introduce a second “range parameter.”

Introduce two “latent” independent GP’s, each having its own
parameters:

v1(s) ∼ GP (0, ρ1(·;φ1)) and v2(s) ∼ GP (0, ρ2(·;φ2))

Construct a bivariate process as the linear transformation:

w1(s) = a11v1(s)
w2(s) = a21v1(s) + a22v2(s)

16 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Coregionalization

Short form:

w(s) =
[
a11 0
a21 a22

] [
v1(s)
v2(s)

]
= Av(s)

Cross-covariance of v(s):

Cv(s, t) =
[
ρ1(s, t;φ1) 0

0 ρ2(s, t;φ2)

]
Cross-covariance of w(s):

Cw(s, t) = ACv(s, t)A> .

It is a valid cross-covariance function (by construction).

If s = t, then Cw(s,s) = AA>. No loss of generality to speficy A
as (lower) triangular.

17 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

If v1(s) and v2(s) have identical correlation functions, then
ρ1(s, t) = ρ2(s, t) and

Cw(s) = ρ(s, t;φ)AA> =⇒ separable model

Coregionalized Spatial Linear Model[
X(s)
Y (s)

]
=

[
µX(s)
µY (s)

]
+

[
w1(s)
w2(s)

]
+

[
eX(s)
eY (s)

]
,

where eX(s) and eY (s) are independent white-noise processes[
eX(s)
eY (s)

]
∼ N2

([
0
0

]
,

[
τ2X 0
0 τ2Y

])
for every s ∈ D .

18 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling

Generalizations

Each location contains m spatial regressions

Yk(s) = µk(s) + wk(s) + εk(s), k = 1, . . . ,m.

Let vk(s) ∼ GP (0, ρk(s,s′)), for k = 1, . . . ,m be m independent
GP’s with unit variance.

Assume w(s) = A(s)v(s) arises as a space-varying linear
transformation of v(s). Then:

Cw(s, t) = A(s)Cv(s, t)A>(t)

is a valid cross-covariance function.

A(s) is unknown!
Should we first model A(s) to obtain Γw(s, s)?
Or should we model Γw(s, s′) first and derive A(s)?
A(s) is completely determined from within-site associations.

19 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling Modelling cross-covariances

Moving average or kernel convolution of a process:
Let Z(s) ∼ GP (0, ρ(·)). Use kernels to form:

wj(s) =

∫
κj(u)Z(s + u)du =

∫
κj(s− s′)Z(s′)ds′

Γw(s− s′) has (i, j)-th element:

[Γw(s− s′)]i,j =

∫ ∫
κi(s− s′ + u)κj(u′)ρ(u− u′)dudu′

Convolution of Covariance Functions:
ρ1, ρ2, ...ρm are valid covariance functions. Form:

[Γw(s− s′)]i,j =

∫
ρi(s− s′ − t)ρj(t)dt.

20 Bayesian Multivariate Spatial Regression Models



Multivariate spatial modelling Modelling cross-covariances

Other approaches for cross-covariance models

Latent dimension approach:
Apanasovich and Genton (Biometrika, 2010).
Apanasovich et al. (JASA, 2012).

Multivariate Matérn family
Gneiting et al. (JASA, 2010).

Nonstationary variants of Coregionalization
Space-varying: Gelfand et al. (Test, 2010); Guhaniyogi et al.
(JABES, 2012).
Multi-resolution: Banerjee and Johnson (Biometrics, 2006).
Dimension-reducing: Ren and Banerjee (Biometrics, 2013).
Variogram modeling: De Iaco et al. (Math. Geo., 2003).
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Multivariate spatial modelling Modelling cross-covariances

Big Multivariate Spatial Data

Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du
et al. 2009; Kaufman et al., 2009).

Approximations using GMRFs: INLA (Rue et al. 2009; Lindgren
et al., 2011).

Nearest-neighbor models (processes) (Vecchia 1988; Stein et al.
2004; Datta et al., 2014)

Low-rank approaches (Wahba, 1990; Higdon, 2002; Lin et al.,
2000; Kamman & Wand, 2003; Paciorek, 2007; Rasmussen &
Williams, 2006; Stein 2007, 2008; Cressie & Johannesson, 2008;
Banerjee et al., 2008; 2010; Sang et al., 2011; Ren and
Banerjee, 2013).
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Illustration

Illustration from:

Finley, A.O., S. Banerjee, A.R. Ek, and R.E. McRoberts. (2008)
Bayesian multivariate process modeling for prediction of forest
attributes. Journal of Agricultural, Biological, and Environmental
Statistics, 13:60–83.
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Illustration Bartlett Experimental Forest

Study objectives:
Evaluate methods for multi-source forest attribute mapping

Find the “best” model, given the data

Produce maps of biomass and uncertainty, by tree species

Study area:
USDA FS Bartlett Experimental Forest (BEF), NH

1,053 ha heavily forested

Major tree species: American beech (BE), eastern hemlock
(EH), red maple (RM), sugar maple (SM), and yellow birch (YB)
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Illustration Bartlett Experimental Forest

Bartlett Experimental Forest

Image provided by www.fs.fed.us/ne/durham/4155/bartlett

25 Bayesian Multivariate Spatial Regression Models
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Illustration Bartlett Experimental Forest

USDA FS Bartlett Experimental Forest (BEF), NH

1,053 ha heavily forested

Major tree species: American beech (BE), eastern hemlock
(EH), red maple (RM), sugar maple (SM), and yellow birch (YB)
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Illustration Bartlett Experimental Forest

Response variables:
Metric tons of total tree
biomass per ha

Measured on 437 1
10 ha

plots

Models fit using random
subset of 218 plots

Prediction at remaining
219 plots
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Illustration Bartlett Experimental Forest

Coregionalized model with dependence within locations

Parameters: A (15), φ (5), Diag{τ2i } (5).

Focus on spatial cross-covariance matrix AA> (for brevity).

Posterior inference of corr(AA>), e.g., 50 (2.5, 97.5) percentiles:

BE EH · · ·
BE 1 · · ·
EH 0.16 (0.13, 0.21) 1 · · ·
RM · · ·
SM -0.20 (-0.22, -0.17) -0.12 (-0.16, -0.09) · · ·
YB 0.07 (0.04, 0.08) 0.22 (0.20, 0.25) · · ·
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Illustration Bartlett Experimental Forest

Parameters 50% (2.5%, 97.5%) Parameters 50% (2.5%, 97.5%)
BE Model RM Model

Intercept -480.75 (-747.52, -213.54) Intercept 158.94 (16.92, 295.91)
ELEV 0.17 (0.09, 0.24) ELEV -0.07 (-0.14, 0.00)

AprTC2 1.72 (0.69, 2.74) SLOPE -1.76 (-2.75, -0.77)
AprTC3 -1.00 (-1.93, -0.06) AprTC2 -0.87 (-1.42, -0.30)
AugTC1 3.39 (2.25, 4.51) AugTC3 1.30 (0.43, 2.14)
AugTC3 1.45 (-0.25, 3.19) OctTC2 -0.95 (-1.61, -0.29)
OctTC2 -0.77 (-1.83, 0.25) SM Model

EH Model Intercept -97.71 (-191.86, 0.62)
Intercept -170.85 (-364.6, 21.45) SLOPE 1.11 (0.48, 1.74)
SLOPE -0.95 (-1.69, -0.17) AugTC2 1.05 (0.71, 1.37)
AprTC1 2.08 (0.54, 3.66) AugTC3 -0.44 (-1.1, 0.21)
AprTC2 -0.87 (-1.85, 0.13) YB Model
AprTC3 1.75 (0.38, 3.13) Intercept -174.62 (-308.22, -29.63)
AugTC2 -0.65 (-1.11, -0.18) ELEV 0.08 (0.01, 0.13)
AugTC3 1.54 (0.60, 2.51) SLOPE 0.01 (-0.76, 0.82)
OctTC1 -1.74 (-2.76, -0.73) AugTC1 0.27 (-0.26, 0.77)
OctTC2 1.55 (0.63, 2.45) AugTC3 1.37 (0.47, 2.21)
OctTC3 -1.27 (-2.24, -0.31)
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Illustration Bartlett Experimental Forest

Response Estimates: 50% (2.5%, 97.5%)
BE 270.84 (200.15, 334.52)
EH 697.47 (466.23, 998.97)
RM 756.50 (504.08, 954.28)
SM 275.10 (207.13, 395.49)
YB 314.03 (253.71, 856.79)

Table: Distance in meters at which the spatial correlation drops to 0.05 for
each of the response variables. Distance calculated by solving the Matérn
correlation function for d using ρ = 0.05 and response specific φ and ν
parameters estimates from co-regionalized model.
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Illustration Bartlett Experimental Forest

E[Y∗ | Data]
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Illustration Bartlett Experimental Forest
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Software

Available software for modeling and visualization

spBayes R package for Bayesian hierarchical modeling for
univariate (spLM) and multivariate (spMvLM) spatial data

http://blue.for.msu.edu/software.html
http://cran.r-project.org

MBA R package for surface approximation/interpolation with
multilevel B-splines

http://blue.for.msu.edu/software.html
http://cran.r-project.org

Manuscripts and course notes at
http://www.biostat.umn.edu/∼sudiptob Also check out
Andrew Finley’s website:
http://blue.for.msu.edu/index.html
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Software

Thank You!
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