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Outline of the talk

I Motivation and aims
I Distributions for multivariate counts: a brief review
I Our proposed model
I Covariates in covariance structure
I Model comparison and results
I Discussion
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Sampling locations in Lake
St. Pierre (+)
and geodetic depth
contours (curves)

Central navigation channel
(deep; strong current)

I On each sampling date, measurements were made at a
cluster of locations on a shore, selected randomly among all
clusters on that shore

I Sampling dates were unevenly spaced in time over a period
of 70 days; the North and South shores were visited in
alternation on consecutive sampling dates
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Fish were collected by electrofishing: fish are attracted
to anodes hanging from the booms
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Most abundant fish species observed in Lake St. Pierre

(a) Yellow perch (b) Brown bullhead

(c) Golden shiner (d) Pumpkinseed
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Main aims

I Assess the influence of local habitat
(characterized by environmental covariates water
depth, water transparency, substrate, vegetation)
on the abundance of fish species

I Determine whether species abundances are
correlated across space and among themselves

I Understand the spatial distribution of each
species
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Distributions for multivariate counts

Probability distributions for multivariate counts can be
defined through:

the sum of independent Poisson distributions→ does
not account for overdispersion or negative covariance;
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Distributions for multivariate counts

Probability distributions for multivariate counts can be
defined through:

continuous mixtures of independent Poisson
distributions. Let Y = (Y1, · · · ,YK), with
Yk | δk ∼ Poi(δk), k = 1, · · · ,K, conditionally
independent, then

f (y | θ) =

∫ K∏
k=1

p(yk | δk)g(δ | θ)dδ,

where δ = (δ1, · · · , δK).
I g(.) can be the pdf of a multivariate gamma→

accounts for overdispersion but not for negative
covariance

I g(.) can be the pdf of a multivariate log-normal
distribution
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Multivariate Poisson as a Sum of
Independent Poisson Random Variables

Let

Y1 = W1 + W12 + W13 + W123

Y2 = W2 + W12 + W23 + W123

Y3 = W3 + W23 + W13 + W123,

with Wi ∼ Poi(λi), Wij ∼ Poi(λij) Wijl ∼ Poi(λijl),
i, j, l = {1, 2, 3}, i < j < l.

More generally, Y = BW, such that, E(Y) = Bλ and
V(Y) = BΣBT, where Σ = diag (λ1, · · · , λq).

I Mean and variance of Yi are assumed identical.
I Model only accounts for positive covariance

structures.
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Multivariate Count Distributions Based on
Mixtures

Let Y = (Y1, · · · ,YK), with Yk | δk ∼ Poi(δk),
k = 1, · · · ,K, conditionally independent, then

f (y | θ) =

∫ K∏
k=1

p(yk | δk)g(δ | θ)dδ,

where δ = (δ1, · · · , δK).
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Multivariate Poisson-Gamma Mixture

A multivariate gamma distribution for a K-dimensional
random vector δ can be obtained by defining

δ = B W =


b0
b1

1 0 · · · 0
b0
b2

0 1 · · · 0
...

...
...

...
...

b0
bK

0 0 · · · 1




W0
W1
...

WK

 , (1)

with Wk ∼ Ga(ak, bk) for k = 0, 1, 2, · · · ,K; Wk
independent among themselves (Mathai &
Moschopoulos, 1991).
It is easy to show that Cov(δk, δl) = a0

bk bl
,

k, l = 1, 2, · · · ,K.
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If Y = (Y1, · · · ,YK), such that Yi|δi ∼ Poi(δi),
independently, and δ = BW it can be shown that,
marginally,

E(Yi) =
ai

bi
+

a0

bi
= µi i, j = 1, · · · ,K

V(Yi) = µi +
a0

b2
i

+
ai

bi

Cov(Yi,Yj) =
a0

bi bj
.

I It accounts for overdispersion,
I however, it only captures positive covariance

structures.
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Multivariate Poisson-lognormal mixture
(Aitchison & Ho 1989)
Assume that

log δ ∼ NK(µ,Σ),

where Σ has elements σkl. Assuming Yk | δk ∼ Poi(δk)
independently.
Marginally,

E(Yk) = exp
(
µk +

1
2
σkk

)
= αk

V(Yk) = αk + α2
k{exp(σkk)− 1}

Cov(Yk,Yl) = αkαl{exp(σkl)− 1}, k, l = 1, · · · ,K.

I This model accounts for overdispersion
I Allows for both positive and negative covariance

structures
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Multivariate Poisson-lognormal mixture
(Aitchison & Ho 1989)
Assume that

log δ ∼ NK(µ,Σ),

where Σ has elements σkl. Assuming Yk | δk ∼ Poi(δk)
independently.
This approach is appealing, as we can write

log δk = βXk + εk, k = 1, · · · ,K
ε ∼ NK(0,Σ)

I Chib and Winkelmann (2001) were the first to
provide a full Bayesian treatment of this model

I A similar approach has been widely used for
multiple disease mapping (e.g., Carlin and
Banerjee 2003, Gelfand and Vounatsou 2003, Jin
et al. 2007; good overview in Lawson 2009)
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Proposed model

Let Yk(stj) represent the number of individuals (counts)
of species k, k = 1, · · · ,K, observed at location stj ,
j = 1, · · · ,nt and time t = 1, · · · ,T. We assume

Yk(stj) | θk(stj), δk(stj) ∼ Poi(θk(stj)δk(stj)),

where

log θk(stj) = Xk(stj)βk

which captures local habitat structures.

The parameter vector δ(stj) = (δ1(stj), · · · , δK(stj))
′

plays the role of the mixing component.
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Proposed model - Mixing component

log δk(stj) = γk(st) + νk(stj),

log(mixing component) = temporal effect + local effect
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Proposed model - Mixing component

log δk(stj) = γk(st) + νk(stj),

Modelling the temporal effect:

Let γ(st) = (γ1(st) · · · γK(st))
′.

We assume

γ(st) ∼ NK(0,Ω), ∀ t = 1, · · · ,T,

where Ω captures the covariance among species at
each time t.
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Proposed model - Mixing component

log δk(stj) = γk(st) + νk(stj),

Modelling the local effect:
Let ν(stj) = (ν1(stj), · · · , νK(stj)), following the LMC
(Gelfand et al 2004)

ν(stj) = Aω(stj).

A is lower triangular and ω(stj) = (ω1(stj) · · ·ωK(stj))
′

such that, independently,

ωk(.) ∼ GP(0, ρ(ϑk; d)), k = 1, · · · ,K.

Then

Cov(ν(s),ν(s′)) =

K∑
k=1

ρ(ϑk; d)Mk, with Mk = akaT
k
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Joint distribution of log δ

Let δ be the nK-dimensional vector containing the
elements of the mixing component,
δ = (δ(s11), · · · , δ(sTnT

))′.
I Separable model (ρ(ϑ; d), for k = 1, · · · ,K)

log δ | γ ∼ N ( (IK ⊗ C)γ , R⊗M ) ,

where M = AAT.
I Non-separable model (ρ(ϑk; d))

log δ | γ ∼ N

(IK ⊗ C)γ ,

K∑
j=1

Rj ⊗Mk

 .

We now discuss the specification of the spatial
correlation function (elements of R).
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Isotropic model

The correlation structure of ωk(.) is given by

ρ(s, s′;ϑk) = exp(−φk||s− s′||).

with parameter ϑk = φk.
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Elliptical anisotropy

The correlation structure of ωk(.) is given by

ρ(s, s′;ϑk) = exp(−φk||dk(s)− dk(s′)||),

with dk(s) = s Dk, and

Dk =

[
cosψAk − sinψAk

sinψAk cosψAk

] [
1 0
0 ψ−1

Rk

]
,

where ψAk is the anisotropy angle and ψRk > 1 is the

anisotropy ratio, with parameters ϑk = (φk, ψAk , ψRk).



Multivariate counts
in space

Alex Schmidt
IM-UFRJ

Brazil

PASI 2014
Multivariate Spatial

Stats
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Covariates in the covariance structure
(Schmidt et al. 2011)

Now location has a broader interpretation.
Let w = (long, lat, z3, · · · , zC), and

ρ(w,w′;ϑk) = exp
(
−
√

(w−w′)T Φ−1 (w−w′)
)
.

Similar to assuming a GP in RC, generating an
anisotropic correlation function in R2 (“geographical”
space).

Our model assumes

ρ(w,w′;ϑk) = exp
(
−φ1||s− s′|| − φ2|z− z′|

)
,

where z is geodetic depth (because lake level
fluctuates, local habitat travels, but geodetic depth is
fixed).
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Likelihood function

Let
y = (y(s11),y(s12), · · · ,y(s1n1

), · · · ,y(sT1), · · · ,y(sTnT
))′

be the observed counts over the sampling period at
each location stj , t = 1, · · · ,T, j = 1, · · · ,nt.

The likelihood function is

l(y | θ, δ) ∝
T∏

t=1

nt∏
j=1

K∏
k=1

exp
{
−θk(stj) δk(stj)

} [
θk(stj) δk(stj)

]yk(stj ) .
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Prior specification

I β ∼ N(0, σ2
βIp)

I φij ∼ IG(2, b), i = 1, 2, j = 1, · · · ,K, and b is fixed
such that the practical range (correlation = 0.05) is
reached at half of the maximum distance between
observations

I Ω ∼ IW(K + 1, c Ik)

I ψR ∼ Pareto(1, 2), ψA ∼ U(0, π)

I aij ∼ N(0, 5) and log aii ∼ N(0, 5)
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MCMC sampling scheme

We reparametrize the model such that
ϕk(stj) = θk(stj) δ(stj), and

logϕk(stj) = X∗k (stj)β
∗
k + Wk(stj)

and Wk(stj) = β1k + γk(st) + νk(stj), where
X∗k (.) does not have a column of ones, and
β∗k = (β2k, · · · , βpkk)

T.

I βk and Wk(.) M-H algorithm proposed by
Gamerman (1997)

I β1. = (β11, · · · , β1K)′ and γ normal posterior full
conditionals

I Ω follows an inverse-Wishart posterior full
conditional

I φ1, φ2, ψR, ψA, and elements of A are sampled
through M-H steps
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Fitted models

M1: Separable isotropic covariance structure
M2: Separable elliptical anisotropy covariance

structure
M3: Separable covariate-dependent (z = geodetic

depth) covariance structure
M4: Non-separable isotropic covariance structure
M5: Non-separable elliptical anisotropy covariance

structure
M6: Non-separable, covariate-dependent (z =

geodetic depth) covariance structure

I γ(st) assumed to be independent across time and
common to both shores

I We allow for different local random effects for the
North and South shores (Glémet and Rodrı́guez
2007; Schmidt et al. 2010b)
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M1: Separable isotropic covariance structure
M2: Separable elliptical anisotropy covariance

structure
M3: Separable covariate-dependent (z = geodetic

depth) covariance structure
M4: Non-separable isotropic covariance structure
M5: Non-separable elliptical anisotropy covariance

structure
M6: Non-separable, covariate-dependent (z =

geodetic depth) covariance structure

I γ(st) assumed to be independent across time and
common to both shores

I We allow for different local random effects for the
North and South shores (Glémet and Rodrı́guez
2007; Schmidt et al. 2010b)
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M3: Separable covariate-dependent (z = geodetic

depth) covariance structure
M4: Non-separable isotropic covariance structure
M5: Non-separable elliptical anisotropy covariance

structure
M6: Non-separable, covariate-dependent (z =

geodetic depth) covariance structure

I γ(st) assumed to be independent across time and
common to both shores

I We allow for different local random effects for the
North and South shores (Glémet and Rodrı́guez
2007; Schmidt et al. 2010b)
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Model comparison
Yellow perch Brown bullhead

Model pD DIC EPD

M1 144.8 1039.0 2019063.4
M2 145.2 1038.6 2019061.1
M3 137.1 1031.3 2019023.1
M4 145.1 1040.0 2019030.6
M5 144.0 1036.4 2019067.2
M6 136.5 1032.1 2018988.0

Model pD DIC EPD

M1 109.4 626.2 133777.8
M2 110.1 628.3 133778.2
M3 101.1 621.3 133755.5
M4 111.9 633.7 133768.1
M5 112.6 635.1 133770.4
M6 101.1 622.9 133754.1

Golden shiner Pumpkinseed
Model pD DIC EPD

M1 106.0 590.1 246747.8
M2 106.0 591.7 246729.9
M3 98.6 585.4 246714.3
M4 103.2 592.1 246734.8
M5 105.5 596.2 246741.1
M6 99.6 590.6 246699.6

Model pD DIC EPD

M1 81.9 432.4 54044.9
M2 81.4 429.8 54056.2
M3 75.6 428.9 54037.7
M4 82.9 434.0 54050.2
M5 82.8 434.7 54046.9
M6 75.7 432.7 54038.1

Table : Values of the effective number of parameters, pD, DIC (Spiegelhalter et al. 2001), and

EPD (Gelfand and Ghosh, 1998) for the six fitted models, by fish species.

Models including geodetic depth as a covariate in the correlation
structure of the spatial effects generally fit better than those
assuming isotropy or geometrical anisotropy
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Posterior predictive distributions for counts of the four species
under M6 showed agreement with observed counts
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Water transparency had positive influence on the abundance of
three of the four fish species, whereas water depth and vegetation
each influenced the abundance of one fish species. Substrate
composition had no apparent effect on fish abundances
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Variances and correlations tended to be greater in the North shore
than in the South shore. The two strongest correlations, both in
the North shore, were positive. Negative correlations, possibly
indicative of competition between species, were not apparent.
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For all non-separable models, the decay parameter φ1 showed
well-defined information gain and marked differences among
component spatial processes ωk(.).
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M5 provided strong evidence of anisotropy associated with spatial
process ω1(.), but little deviation from the priors for components
ω2(.), ω3(.), and ω4(.), indicating a single anisotropic pattern
shared across species and suggesting that the spatial component
of M5 may be overparametrized.
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Similar to M5, the posterior distribution of φ2 under M6 provides
strong evidence of anisotropy. However, in contrast to M5, the gain
in information reflected in differences between priors and
posteriors is distributed across components, indicating that
species do not share a common anisotropic pattern.
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Decay of correlation under M6 had directionality generally similar
to that of M5, but was further modified by geodetic lake depth.
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Conclusions

I Our model accounts for overdispersion and both
positive and negative covariances (among
species and across space)

I The LMC provided flexible covariance structures
for the mixing component

I Anisotropic spatial effects improved fit (DIC and
EPD)

I Including information on geodetic lake depth in
the spatial covariance structure of the spatial
process provided a flexible, yet relatively simple,
means of capturing anisotropy along the
shorelines of the lake
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