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1. Introduction

Consider a process X(s, t) varying with s ∈ S ⊂ Rd and t ∈ T ⊂ R.

I will be concentrating on d = 2 and T = {t1, ..., tn}

[Theoretically, continuous T simply means that d → d + 1 ]

2 routes are usually taken for modeling:

• direct (observation-driven)

• latent (parameter-driven)

Routes are somewhat disjoint
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2. Direct approach

Covariance function (CF): Cov[X(s, t), X(s′, t′)] = K(s, s′; t, t′)

Too general for reliable estimation without massive replications over S×T

Simplifying assumptions:

1) Temporal stationarity: K(s, s′; t, t′) = f (s, s′; t− t′)

2) Spatial stationarity: K(s, s′; t, t′) = f (s− s′; t, t′)

3) Spatio-temporal stationarity: K(s, s′; t, t′) = f (s− s′; t− t′)

4) Separability: K(s, s′; t, t′) = f1(s, s′)f2(t, t′)

Cressie and Huang (1999), Gneiting (2002), many others:

stationary, non-separable CF’s
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3. Latent approach

Explain X behaviour through model components

CF’s appear as a consequence

Knowledge on howX varies over (s, t), through known functions ηi(s, t),

⇒ X(s, t) =
∑

i βiηi(s, t) ( +e(s, t) )

errors e(s, t) do not carry any spatio-temporal correlation

Usually not feasible → knowledge rarely exists

Even when it does, there may remain substantial correlation

Idea can be used to span the space of possible representations
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⇒ X(s, t) =
∑

i βiηi(s, t) ( +e(s, t) )

Now: unknown ηi functions form a basis for (smooth) functions of S×T

These functions adequately chosen to cover the entire space S × T

This may require too many ηi’s

Alternative: tensor product

{ηi(s, t)} replaced by {φi(s)} and {αj(t)}

⇒ X(s, t) =
∑

i φi(s)αi(t) ( +e(s, t) )

Substantial dimension reduction, but there is a cost

More importantly, relevant correlation may still remain



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

General approach: allow {ηi(s, t)} to be stochastic

How? to be detailed later

Simplified approach: allow {φi(s)} and/or {αj(t)} to be stochastic

⇒ X(s, t) =
∑

i φi(s)αi(t) ( +e(s, t) )

{φi(s)} are Gaussian processes (GP) and/or {αj(t)} are time series

Usual time series model: autoregressive

Example - AR(1): α(t) = G(t)α(t− 1) + w(t), w(t) iid N(0,Σ)

Lots of references: Mardia, Goodall, Redfern & Alonso (1998), Wikle

& Cressie (1999), Stroud, Muller & Sansó (2001), Calder (2007), Sansó,

Schmidt & Nobre (2008), ...

Also leads to non-separable CF’s
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4. Dynamic Gaussian processes

Set η(s, t) = (η1(s, t), ..., ηm(s, t))

DGP: η(s, t) = G(t) η(s, t− 1) + w(s, t), w(·, t) iid mGP (0, ρ)

Process is completed with initialization η(s, 1) ∼ mGP

Leads to non-separable but now also temporally non-stationary CF’s

Simplest DGP: univariate spatio-temporal random walk

η(s, t) = η(s, t− 1) + w(s, t), w(·, t) iid GP

Useful model for smooth spatio-temporal variation of the data Y (s, t)

Y (s, t) = η(s, t) + WN error

Can handle spatio-temporal heterogeneity of other model components
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4.1. Regression

Assume the presence of covariates Z(s, t) associated with data Y (s, t)

Standard approach: Y (s, t) = Z(s, t)Tη + X0(s, t) + WN error

with X0 ∼ DGP

Spatio-temporal heterogeneity may also be present in the regression part

Revised approach: Y (s, t) = Z(s, t)Tη(s, t) + X0(s, t) + WN error

with X = [η,X0] ∼ DGP

The mean of the DGP may be separated from X(s, t)

Now, X(s, t) = X(t) + X∗(s, t) where X∗ is a zero-mean DGP

Model completed with an evolution for time-varying mean X(t)
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4.2. Trend

Assume the DGP X(s, t) is subject to spatio-temporal variations

These are modeled with an auxiliary growth process γ(s, t)

X(s, t) = X(s, t− 1) + γ(s, t) + wX(s, t), wX(·, t) iid GP

γ(s, t) = γ(s, t− 1) + wγ(s, t), wγ(·, t) iid GP

This is in the form of a bivariate DGP with G(t) =

 1 1

0 1


Acceleration and higher order variations can be equally defined

Useful for estimation of trend features and specially for prediction
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4.3. Seasonality

Assume the DGP X(s, t) is subject to seasonal variations

Seasonality given by a sinusoidal wave (temperature): single harmonic

Requires an auxiliary process γ(s, t) X(s, t)

γ(s, t)

 =

 cos(2π/q) sin(2π/q)

− sin(2π/q) cos(2π/q)


 X(s, t− 1)

γ(s, t− 1)

+wS(s, t),

where wS(·, t) iid 2GP and q is the seasonal cycle length.

More elaborate seasonal patterns → additional bivariate processes

(X2, γ2), ..., (X[q/2], γ[q/2]) associated with 2nd, ... , [q/2]th harmonics

Simpler form:
∑q

j=1X(s, t− j) = w(s, t), where w(·, t) iid 1GP

but requires q-dimensional DGP
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5. Applications

DGP can be used in models for 3 types of spatial data

Directly applied to the mean structure of spatio-temporal data Y (s, t)

5.1. Geostatistics - continuous space

Spatial version of generalized dynamic linear models

Y (s, t) ∼ F with mean µ(s, t)
[

eg N
(
µ(s, t), σ2

) ]
g[µ(s, t)] = F (s, t)TX(s, t) [F T = (ZT , 1) and X = (η,X0)]

X(s, t) = G(t)X(s, t− 1) + wX(s, t), wX(·, t) iid GP
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Illustration: Effect of precipitation (Prec) over temperature (Temp)

Temp(s, t) = β0(s, t) + β1(s, t) Prec(s, t) + v(s, t)

β0(s, t) = β0(s, t− 1) + w0(s, t), w0(·, t) iid GP

β1(s, t) = β1(s, t− 1) + w1(s, t), w1(·, t) iid GP

Intercept β0 and regression coef β1 are spatio-temporally varying

Disturbance processes w0 and w1 may be related

eg. linear transformations of independent GP’s
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S: region in the state of Colorado, USA ( + - monitoring stations )

T : {Jan/1997, · · · , Dec/1997}
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Posterior mean of the spatio-temporal variation of the regression coef-

ficient β1 for a region of the State of Colorado, USA (Gelfand, Banerjee

and Gamerman, 2005).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5.2. Areal data

[based on Vivar and Ferreira (JCGS, 2012)]

Correlations are no longer based on CF’s and Euclidean space

Mostly based on precision (inv. variance) matrices and neighbourhoods

Dynamic GP’s replaced by dynamic Markov random fields (MRF)

Generalized spatio-temporal linear model

Yi,t ∼ F with mean µi,t
[

eg N
(
µi,t, σ

2
) ]

g[µi,t] = Z(s, t)TXi,t

Xt = G(t)Xt−1 + wt, wt iid MRF (0, Q) ≡ N(0, Q−1)

Q is sparse (full of 0’s) ... qij 6= 0 indicates neighborhood (i, j)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Illustration:

Evolution of the homicide rate in Rio de Janeiro state municipalities

Contamination model

Yi,t = µi,t + ei,t , where ei,t ∼ N(0, σ2
i,t)

µt = Hµt−1 + wt , where vt ∼ N(0, Q−1)

hi,j = c×


1, if i = j

α, if i and j are neighbors

0, otherwise

α is the contamination index

c is the contamination persistence
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Posterior mean of the area level
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5.3. Point pattern

based on Pinto Jr. (2014)

Data: space-time locations of occurrence of events

Usual models: PP, NHPP, Cox process (CP), log-Gaussian CP

LGCP (space only): Y ∼ NHPP (λ) and log λ = X ∼ GP

Liang et al (2008): log λ(s) = Z(s)Tη + X(s) , X ∼ GP

Our extension:

Y ∼ PP (λ) where λ : S × T → R+

g[λ(s, t)] = Z(s, t)Tη(s, t) [ eg. : g = log ]

η(s, t) = G(t)η(s, t− 1) + wη(s, t), wη(·, t) iid GP
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Likelihood:

l(λ;Y ) =
∏
i

λ(si, ti)
∏
t

exp

[
−
∫
S

λ(u, t) du

]
difficult problem → depends on an infinite-dimensional unknown function

Møller et al (1998) solution for CP: discretize λ over space →

problem: it is an approximation

Adams et al (2009) solution for CP: use thinning →

problems: does not extend easily for discrete time and for further model

components and dimension explosion and MCMC...

We are currently working on these solutions for our DGP model
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Illustration:

Evolution of the vehicle casualties (theft/robbery) in Rio de Janeiro city

considering Type (private/commercial) and Age (manufacturing year)

Y ∼ PP (r λ) where r, λ : S × T → R+

r(s, t; Type, Age) = total exposure at (s, t) [known offset]

λ(s, t; Type, Age) = exp{X0(s, t) + Type X1(s, t) + Age X2(s, t)}

{X0, X1, X2}(s, t) = {X0, X1, X2}(s, t− 1) + wX(s, t), wX(·, t) iid GP
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S: Rio de Janeiro municipality

T : {sem1/2009, · · · , sem2/2011}
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Posterior mean of the spatio-temporal coefficient process of Age
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6. Final comments

Flexible approach

Handles non-separable processes

Handles spatial non-stationary/stationary processes

Handles temporal non-stationary/stationary processes

More on the point process: Jony Pinto Jr. (here)

More on point process without discretization: F. B. Gonçalves (JSM 2014)
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Thank you!

dani@im.ufrj.br


	blackIntroduction
	blackDirect approach
	blackLatent approach
	blackDynamic Gaussian processes
	blackRegression
	blackTrend
	blackSeasonality

	blackApplications
	blackGeostatistics - continuous space
	blackAreal data
	blackPoint pattern

	blackFinal comments

