Spatio-temporal processes,

including dynamic linear models

Dani Gamerman

Departamento de Métodos Estatísticos (DME)

Instituto de Matemática - UFRJ

dani@im.ufrj.br

PASI on Spatio-temporal Statistics

Búzios, 19 June 2014

Content

1 Introduction

- 2 Direct approach
- 3 Latent approach
- 4 Dynamic GP's
- **5** Applications
- **6** Final comments

Presentation based on GAMERMAN, D. (2010). Dynamic Spatial Models, Including Spatial Time Series. Chapter 24 of Handbook of Spatial Statistics (Eds.: A. E. Gelfand, A. E., Diggle, P., Guttorp, P. e Fuentes, M.). London: Chapman & Hall.

1. Introduction

Consider a process X(s,t) varying with $s \in S \subset R^d$ and $t \in T \subset R$.

I will be concentrating on d = 2 and $T = \{t_1, ..., t_n\}$

[Theoretically, continuous T simply means that $d \rightarrow d+1$]

2 routes are usually taken for modeling:

- direct (observation-driven)
- latent (parameter-driven)

Routes are somewhat disjoint

2. Direct approach

Covariance function (CF): Cov[X(s,t), X(s',t')] = K(s,s';t,t')

Too general for reliable estimation without massive replications over $S \times T$ Simplifying assumptions:

- 1) Temporal stationarity: K(s, s'; t, t') = f(s, s'; t t')
- 2) Spatial stationarity: K(s, s'; t, t') = f(s s'; t, t')
- 3) Spatio-temporal stationarity: K(s, s'; t, t') = f(s s'; t t')
- 4) Separability: $K(s, s'; t, t') = f_1(s, s')f_2(t, t')$

Cressie and Huang (1999), Gneiting (2002), many others:

stationary, non-separable CF's

3. Latent approach

Explain X behaviour through model components

CF's appear as a consequence

Knowledge on how X varies over (s, t), through known functions $\eta_i(s, t)$,

 $\Rightarrow X(s,t) = \sum_i \beta_i \eta_i(s,t) \quad (+e(s,t))$

errors e(s,t) do not carry any spatio-temporal correlation

Usually not feasible \rightarrow knowledge rarely exists

Even when it does, there may remain substantial correlation

Idea can be used to span the space of possible representations

$$\Rightarrow X(s,t) = \sum_{i} \beta_{i} \eta_{i}(s,t) \quad (+e(s,t))$$

Now: unknown η_i functions form a basis for (smooth) functions of $S \times T$ These functions adequately chosen to cover the entire space $S \times T$ This may require too many η_i 's

Alternative: tensor product

 $\{\eta_i(s,t)\}$ replaced by $\{\phi_i(s)\}$ and $\{\alpha_j(t)\}$

 $\Rightarrow X(s,t) = \sum_{i} \phi_i(s) \alpha_i(t) \quad (+e(s,t))$

Substantial dimension reduction, but there is a cost

More importantly, relevant correlation may still remain

General approach: allow $\{\eta_i(s,t)\}$ to be stochastic

How? to be detailed later

Simplified approach: allow $\{\phi_i(s)\}$ and/or $\{\alpha_j(t)\}$ to be stochastic

 $\Rightarrow X(s,t) = \sum_{i} \phi_i(s) \alpha_i(t) \quad (+e(s,t))$

 $\{\phi_i(s)\}\$ are Gaussian processes (GP) and/or $\{\alpha_j(t)\}\$ are time series Usual time series model: autoregressive

Example - AR(1): $\alpha(t) = G(t)\alpha(t-1) + w(t)$, w(t) iid $N(0, \Sigma)$

Lots of references: Mardia, Goodall, Redfern & Alonso (1998), Wikle

& Cressie (1999), Stroud, Muller & Sansó (2001), Calder (2007), Sansó, Schmidt & Nobre (2008), ...

Also leads to non-separable CF's

4. Dynamic Gaussian processes

Set $\eta(s,t) = (\eta_1(s,t), ..., \eta_m(s,t))$ DGP: $\eta(s,t) = G(t) \ \eta(s,t-1) + w(s,t), \quad w(\cdot,t) \quad iid \quad {}_{m}GP(0,\rho)$ Process is completed with initialization $\eta(s,1) \sim {}_m GP$ Leads to non-separable but now also temporally non-stationary CF's Simplest DGP: univariate spatio-temporal random walk $\eta(s,t) = \eta(s,t-1) + w(s,t), \quad w(\cdot,t) \quad iid \quad GP$ Useful model for smooth spatio-temporal variation of the data Y(s,t) $Y(s,t) = \eta(s,t) + WN$ error

Can handle spatio-temporal heterogeneity of other model components

4.1. Regression

Assume the presence of covariates Z(s,t) associated with data Y(s,t)Standard approach: $Y(s,t) = Z(s,t)^T \eta + X_0(s,t) + WN$ error with $X_0 \sim DGP$

Spatio-temporal heterogeneity may also be present in the regression part Revised approach: $Y(s,t) = Z(s,t)^T \eta(s,t) + X_0(s,t) + WN$ error with $X = [\eta, X_0] \sim DGP$

The mean of the DGP may be separated from X(s,t)

Now, $X(s,t) = X(t) + X^*(s,t)$ where X^* is a zero-mean DGP

Model completed with an evolution for time-varying mean X(t)

4.2. Trend

Assume the DGP X(s,t) is subject to spatio-temporal variations

These are modeled with an auxiliary growth process $\gamma(s,t)$

$$\begin{split} X(s,t) &= X(s,t-1) + \gamma(s,t) + w_X(s,t), \quad w_X(\cdot,t) \quad iid \quad GP \\ \gamma(s,t) &= \gamma(s,t-1) + w_\gamma(s,t), \quad w_\gamma(\cdot,t) \quad iid \quad GP \\ \end{split}$$

This is in the form of a bivariate DGP with $G(t) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Acceleration and higher order variations can be equally defined Useful for estimation of trend features and specially for prediction

4.3. Seasonality

Assume the DGP X(s,t) is subject to seasonal variations

Seasonality given by a sinusoidal wave (temperature): single harmonic

Requires an auxiliary process $\gamma(s,t)$

$$\begin{pmatrix} X(s,t) \\ \gamma(s,t) \end{pmatrix} = \begin{pmatrix} \cos(2\pi/q) & \sin(2\pi/q) \\ -\sin(2\pi/q) & \cos(2\pi/q) \end{pmatrix} \begin{pmatrix} X(s,t-1) \\ \gamma(s,t-1) \end{pmatrix} + w_S(s,t),$$

where $w_S(\cdot,t) \quad iid \quad _2GP$ and q is the seasonal cycle length.

More elaborate seasonal patterns \rightarrow additional bivariate processes

 $(X_2, \gamma_2), ..., (X_{[q/2]}, \gamma_{[q/2]})$ associated with 2nd, ..., [q/2]th harmonics Simpler form: $\sum_{j=1}^q X(s, t - j) = w(s, t)$, where $w(\cdot, t)$ iid $_1GP$ but requires q-dimensional DGP

5. Applications

DGP can be used in models for 3 types of spatial data Directly applied to the mean structure of spatio-temporal data Y(s,t)

5.1. Geostatistics - continuous space

Spatial version of generalized dynamic linear models

 $Y(s,t) \sim \mathcal{F} \text{ with mean } \mu(s,t) \quad \left[\text{ eg } N\left(\mu(s,t),\sigma^2 \right) \right]$ $g[\mu(s,t)] = F(s,t)^T X(s,t) \quad \left[F^T = (Z^T,1) \text{ and } X = (\eta,X_0)\right]$ $X(s,t) = G(t)X(s,t-1) + w_X(s,t), \quad w_X(\cdot,t) \quad iid \quad GP$

Illustration: Effect of precipitation (Prec) over temperature (Temp)

$$\begin{aligned} \text{Temp}(s,t) &= \beta_0(s,t) + \beta_1(s,t) \ \text{Prec}(s,t) + v(s,t) \\ \beta_0(s,t) &= \beta_0(s,t-1) + w_0(s,t), \quad w_0(\cdot,t) \quad iid \quad GP \\ \beta_1(s,t) &= \beta_1(s,t-1) + w_1(s,t), \quad w_1(\cdot,t) \quad iid \quad GP \end{aligned}$$

Intercept β_0 and regression coef β_1 are spatio-temporally varying Disturbance processes w_0 and w_1 may be related

eg. linear transformations of independent GP's

S: region in the state of Colorado, USA (+ - monitoring stations) T: $\{Jan/1997, \dots, Dec/1997\}$

Posterior mean of the spatio-temporal variation of the regression coefficient β_1 for a region of the State of Colorado, USA (Gelfand, Banerjee and Gamerman, 2005).

5.2. Areal data

[based on Vivar and Ferreira (JCGS, 2012)]

Correlations are no longer based on CF's and Euclidean space

Mostly based on precision (inv. variance) matrices and neighbourhoods

Dynamic GP's replaced by dynamic Markov random fields (MRF)

Generalized spatio-temporal linear model

 $Y_{i,t} \sim \mathcal{F}$ with mean $\mu_{i,t} \quad \left[\text{ eg } N\left(\mu_{i,t}, \sigma^2 \right) \right]$

 $g[\mu_{i,t}] = Z(s,t)^T X_{i,t}$ $X_t = G(t) X_{t-1} + w_t, \quad w_t \quad iid \quad MRF(0,Q) \equiv N(0,Q^{-1})$

Q is sparse (full of 0's) ... $q_{ij} \neq 0$ indicates neighborhood (i,j)

Illustration:

Evolution of the homicide rate in Rio de Janeiro state municipalities Contamination model

$$Y_{i,t} = \mu_{i,t} + e_{i,t} , \text{ where } e_{i,t} \sim N(0, \sigma_{i,t}^2)$$

$$\mu_t = H\mu_{t-1} + w_t , \text{ where } v_t \sim N(0, Q^{-1})$$

$$I, \quad \text{if } i = j$$

$$h_{i,j} = c \times \begin{cases} 1, & \text{if } i = j \\ \alpha, & \text{if } i \text{ and } j \text{ are neighbors} \\ 0, & \text{otherwise} \end{cases}$$

 α is the contamination index

 \boldsymbol{c} is the contamination persistence

 $\boldsymbol{\beta}_0$

Posterior mean of the area level

based on Pinto Jr. (2014)

Data: space-time locations of occurrence of events

Usual models: PP, NHPP, Cox process (CP), log-Gaussian CP LGCP (space only): $Y \sim NHPP(\lambda)$ and $\log \lambda = X \sim GP$ Liang et al (2008): $\log \lambda(s) = Z(s)^T \eta + X(s)$, $X \sim GP$ Our extension:

 $Y \sim PP(\lambda) \text{ where } \lambda : S \times T \to R^+$ $g[\lambda(s,t)] = Z(s,t)^T \eta(s,t) \qquad [eg.: g = \log]$ $\eta(s,t) = G(t)\eta(s,t-1) + w_\eta(s,t), \quad w_\eta(\cdot,t) \quad iid \quad GP$

Likelihood:

$$l(\lambda;Y) = \prod_{i} \lambda(s_{i},t_{i}) \prod_{t} \exp\left[-\int_{S} \lambda(u,t) \ du\right]$$

difficult problem \rightarrow depends on an infinite-dimensional unknown function

Møller et al (1998) solution for CP: discretize λ over space \rightarrow problem: it is an approximation

Adams et al (2009) solution for CP: use thinning \rightarrow

problems: does not extend easily for discrete time and for further model components and dimension explosion and MCMC...

We are currently working on these solutions for our DGP model

Illustration:

Evolution of the vehicle casualties (theft/robbery) in Rio de Janeiro city considering Type (private/commercial) and Age (manufacturing year)

 $Y \sim PP(r \lambda)$ where $r, \lambda : S \times T \rightarrow R^+$

$$\begin{split} r(s,t;\texttt{Type},\texttt{Age}) &= \texttt{total exposure at } (s,t) \quad [\texttt{known offset}] \\ \lambda(s,t;\texttt{Type},\texttt{Age}) &= \exp\{X_0(s,t) + \texttt{Type} \; X_1(s,t) + \texttt{Age} \; X_2(s,t)\} \\ \{X_0, X_1, X_2\}(s,t) &= \{X_0, X_1, X_2\}(s,t-1) + w_X(s,t), \; w_X(\cdot,t) \; iid \; GP \end{split}$$

S: Rio de Janeiro municipality

 $T: \{sem1/2009, \cdots, sem2/2011\}$

Posterior mean of the spatio-temporal coefficient process of Age

6. Final comments

Flexible approach

Handles non-separable processes

Handles spatial non-stationary/stationary processes

Handles temporal non-stationary/stationary processes

More on the point process: Jony Pinto Jr. (here)

More on point process without discretization: F. B. Gonçalves (JSM 2014)

Thank you!

dani@im.ufrj.br