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1. Introduction

Consider a process X (s,t) varying with s € S C R?andt € T C R.
| will be concentrating on d =2 and T = {t1,...,t,}
[Theoretically, continuous 7" simply means that d — d + 1]

2 routes are usually taken for modeling:

e direct (observation-driven)

e latent (parameter-driven)

Routes are somewhat disjoint



2. Direct approach

Covariance function (CF): Cov[X (s,t), X (s',t')] = K(s,s;t, 1)
Too general for reliable estimation without massive replications over S' X T'
Simplifying assumptions:
1) Temporal stationarity: K(s,s";t,t') = f(s,s";t —t)
2) Spatial stationarity: K (s,s;t,t") = f(s — &' t, 1)
3) Spatio-temporal stationarity: K(s,s’;t,t') = f(s — s';t —t)
4) Separability: K(s,s";t,t') = fi(s,s') fa(t, 1)
Cressie and Huang (1999), Gneiting (2002), many others:

stationary, non-separable CF's



3. Latent approach

Explain X behaviour through model components
CF's appear as a consequence
Knowledge on how X varies over (s, t), through known functions 7;(s, t),
= X(s,t) =3, 6mi(s,t) (+e(s;t))
errors e(s,t) do not carry any spatio-temporal correlation
Usually not feasible — knowledge rarely exists
Even when it does, there may remain substantial correlation

|dea can be used to span the space of possible representations



= X(s,t) =>_.0mi(s,t) (+e(s,t))
Now: unknown 7); functions form a basis for (smooth) functions of S'x T’
These functions adequately chosen to cover the entire space S X T'

This may require too many 7;'s

Alternative: tensor product

{ni(s,1)} replaced by {¢;(s)} and {a;(¢)}

= X(s,t) = 2_; di(s)u(t) (+e(s,t))
Substantial dimension reduction, but there is a cost

More importantly, relevant correlation may still remain



General approach: allow {7;(s,t)} to be stochastic

How? to be detailed later

Simplified approach: allow {¢;(s)} and/or {a;(t)} to be stochastic

S X(s,8) = Sy dils)oult) (+e(s,t))

{¢i(s)} are Gaussian processes (GP) and/or {a;(t)} are time series

Usual time series model: autoregressive

Example - AR(1): a(t) = G(t)a(t — 1)+ w(t), w(t) iid N(0,%)

Lots of references: Mardia, Goodall, Redfern & Alonso (1998), Wikle
& Cressie (1999), Stroud, Muller & Sansé (2001), Calder (2007), Sanso,

Schmidt & Nobre (2008), ...

Also leads to non-separable CF's



4. Dynamic Gaussian processes

Set 7)(s, t) = (M(s, 1), ..., (s, 1))
DGP: n(s,t) = G(t) n(s,t — 1) +w(s,t), w(-,t) did ,GP(0,p)
Process is completed with initialization (s, 1) ~ ,GP
Leads to non-separable but now also temporally non-stationary CF's
Simplest DGP: univariate spatio-temporal random walk

n(s,t) =n(s,t —1)+w(s,t), w(-,t) wid GP
Useful model for smooth spatio-temporal variation of the data Y'(s, )
Y(s,t) =n(s,t)+ WN error

Can handle spatio-temporal heterogeneity of other model components



4.1. Regression

Assume the presence of covariates Z(s,t) associated with data Y'(s,t)
Standard approach: Y (s,t) = Z(s,t)'n + Xo(s,t) + WN error
with Xg ~ DGP
Spatio-temporal heterogeneity may also be present in the regression part
Revised approach: Y (s,t) = Z(s,t)n(s,t) + Xo(s,t) + WN error
with X = [n, Xo| ~ DGP
The mean of the DGP may be separated from X (s, ?)
Now, X (s,t) = X(t) + X*(s,t) where X* is a zero-mean DGP

Model completed with an evolution for time-varying mean X (¢)



4.2. Trend

Assume the DGP X (s, t) is subject to spatio-temporal variations

These are modeled with an auxiliary growth process (s, t)

X(s,t) = X(s,t —1)+~(s,t) +wx(s,t), wx(,t) iid GP
Wt) = Ao t—1)+wls,t), wt) id GP
11

This is in the form of a bivariate DGP with G(t) =
01

Acceleration and higher order variations can be equally defined

Useful for estimation of trend features and specially for prediction



4.3. Seasonality

Assume the DGP X (s, t) is subject to seasonal variations
Seasonality given by a sinusoidal wave (temperature): single harmonic

Requires an auxiliary process 7(s, t)

X(s,t) cos(2m/q) sin(27/q) X(s,t—1)
= + wg(s, t),

v(s,t) —sin(2w/q) cos(27/q) v(s,t —1)
where wg(-,t) iid oGP and q is the seasonal cycle length.
More elaborate seasonal patterns — additional bivariate processes
(X2,72), -, (X[g/2], Vig/2) associated with 2nd, ... , [¢/2]th harmonics
Simpler form: > % | X(s,t — j) = w(s,t), where w(-,t) iid GP

but requires ¢g-dimensional DGP



5. Applications

DGP can be used in models for 3 types of spatial data

Directly applied to the mean structure of spatio-temporal data Y (s, )

5.1. Geostatistics - continuous space
Spatial version of generalized dynamic linear models

Y(s,t) ~ F with mean u(s,t) [eg N ( p(s,t),0”) ]
g[ﬂ(37t)] - F(Sat)TX(S7t) [FT - (ZT7 1) and X = (777 XO)}

X(s,t) = G(t)X(s,t —1)+wx(s,t), wx(-,t) iid GP



llustration: Effect of precipitation (Prec) over temperature (Temp)

Temp(s,t) = Bo(s,t) + Bi(s,t) Prec(s,t) +v(s,t)
Bo(s,t) = Bols,t —1)+w(s,t), wo(-,t) did GP

Bi(s,t) = Bi(s,t —1)+wi(s,t), wi(-t) #d GP

Intercept (3y and regression coef (3, are spatio-temporally varying
Disturbance processes w, and w; may be related

eg. linear transformations of independent GP's
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5.2. Areal data

[based on Vivar and Ferreira (JCGS, 2012)]
Correlations are no longer based on CF's and Euclidean space
Mostly based on precision (inv. variance) matrices and neighbourhoods
Dynamic GP's replaced by dynamic Markov random fields (MRF)

Generalized spatio-temporal linear model
Yi: ~ F with mean p; [eg N ( ,LLZ’,t,O'Z ) }
glpid = Z(s,t) Xiy
X, = GOX;_1+w,, w, iid MRF(0,Q)=N(0,Q™ Y

@ is sparse (full of 0's) ... ¢;; # 0 indicates neighborhood (3, j)



[llustration:
Evolution of the homicide rate in Rio de Janeiro state municipalities

Contamination model

2
Yie = pit+eip, where ej; ~ N(0,07,)

9

fy = Hyu_q +w, , where v, ~ N(0,Q ")
(

1, if1=7
hij = ¢X§ «, ifiandj are neighbors
0, otherwise
\

« is the contamination index

c is the contamination persistence
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5.3. Point pattern

based on Pinto Jr. (2014)
Data: space-time locations of occurrence of events
Usual models: PP, NHPP, Cox process (CP), log-Gaussian CP
LGCP (space only): Y ~ NHPP(A) and log\ = X ~ GP
Liang et al (2008): log A(s) = Z(s)!n + X(s), X ~GP

Our extension:

Y ~ PP(\) where \: SxT — R*

glMs, )] = Z(s,t)'n(s,t)  [eg.: g=log]

n(s,t) = G@t)n(s,t —1)+wy(s,t), wy(-,t) id GP



Likelihood:

(A Y) = HMSM) Hexp [— /S A, £) du]

difficult problem — depends on an infinite-dimensional unknown function

Mgller et al (1998) solution for CP: discretize A\ over space —
problem: it is an approximation

Adams et al (2009) solution for CP: use thinning —
problems: does not extend easily for discrete time and for further model
components and dimension explosion and MCMC...

We are currently working on these solutions for our DGP model



lllustration:
Evolution of the vehicle casualties (theft/robbery) in Rio de Janeiro city

considering Type (private/commercial) and Age (manufacturing year)

Y ~ PP(r \) wherer,\:SxT — R"
r(s,t; Type,Age) = total exposure at (s,t) |known offset]
A(s,t; Type,Age) = exp{Xy(s,t) + Type Xi(s,t) + Age Xs(s,t)}

{X(),Xl,XQ}(S,t) = {Xo,Xl,XQ}(S,t — 1) +wX(s,t), wX(-,t) 1d GP
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6. Final comments

Flexible approach

Handles non-separable processes

Handles spatial non-stationary/stationary processes
Handles temporal non-stationary/stationary processes
More on the point process: Jony Pinto Jr. (here)

More on point process without discretization: F. B. Gongalves (JSM 2014)



Thank you!

dani@im.ufrj.br
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