Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data

NZZ.ch

Reinhard Furrer, UZH

PASI, Búzios, 14-06-25

LESSON HANDLEY HANDLEY

Microarray data:

observations = fixed effects + spatial term + "noise"

- Microarray data
- Climate data

synthesize projections

Go

- Microarray data
- Climate data
- Satellite data

attribute spatial changes

(a) Observed change in vegetation activity (1982–2008)

observations

2 -1 0 1 2

(c) Structured change not explained by climatic effects *h* (*GRF*)

trend

spatial term

Motivation for roller data analysis

Compaction for road construction:

- one vibrating drum (smooth drum or padfoot)
- rolling at 1m/s
- 20cm material per layer
- typical bed is 12–15m wide and 30–150m long
- sufficient compaction is 'manually' tested after several layers of material (USA)

Motivation for roller data analysis

Compaction for road construction:

- one vibrating drum (smooth drum or padfoot)
- rolling at 1m/s
- 20cm material per layer
- typical bed is 12–15m wide and 30–150m long
- sufficient compaction is 'manually' tested after several layers of material (USA)

Is an automatic quality assurance and intelligent compaction possible?

Current "intelligent" compaction:

- precise GPS positioning
- on-board visualization
- off-board processing

Source: www.bomag.com

- Relation between measurement and actual soil modulus is unknown.
- (Linear) relationship is determined with a second measurement device (lightweight deflection, nuclear density . . .

囲

Spatial model

Spatial, additive mixed effects model for roller measurement values:

RMV = amplitude + roller type + driving direction + ...+ trend(s) + spatial term(s) + error

$$Y(\mathbf{s}) = \mathbf{X}\boldsymbol{\beta} + \alpha(\mathbf{s}) + \gamma(\mathbf{s}) + \varepsilon(\mathbf{s}) \qquad \mathbf{s} \in \mathcal{D} \subset \mathbb{R}^d, \ d \ge 1$$

with

- $X\beta$: fixed effects and trend
- $\alpha(\mathbf{s})$: spline component (trend)
- $\gamma(\mathbf{s})$: zero mean spatial Gaussian process
- $\varepsilon(\mathbf{s})$: iid noise, orthogonal to $\gamma(\mathbf{s})$

Spatial model

Spatial, additive mixed effects model for roller measurement values:

 $\begin{aligned} \mathsf{RMV} &= \mathsf{amplitude} + \mathsf{roller} \mathsf{type} + \mathsf{driving} \mathsf{direction} + & \dots \\ &+ & \mathsf{trend}(\mathbf{s}) + \mathsf{spatial} \mathsf{term}(\mathbf{s}) &+ & \mathsf{error} \end{aligned}$

$$Y(\mathbf{s}) = \mathbf{X}\boldsymbol{\beta} + \alpha(\mathbf{s}) + \gamma(\mathbf{s}) + \varepsilon(\mathbf{s}) \qquad \mathbf{s} \in \mathcal{D} \subset \mathbb{R}^d, \ d \ge 1$$

with

- $\alpha(\mathbf{s})$: spline component (trend) basis function coefficients θ_{α} ; smoothing parameter λ_{α}
- $\gamma({\bf s})$: zero mean spatial Gaussian process parameters ${\pmb \theta}_\gamma$ describing the covariance function
- $arepsilon(\mathbf{s})$: iid noise, orthogonal to $\gamma(\mathbf{s})$ variance σ^2

Multivariate modeling: setting

Spatial, additive mixed effects model:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \alpha_{1}(\mathbf{s}) + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

:
$$Y_{p}(\mathbf{s}) = \mathbf{X}_{p}\beta_{p} + \alpha_{p}(\mathbf{s}) + \gamma_{p}(\mathbf{s}) + \varepsilon_{p}(\mathbf{s}) \qquad \mathbf{s} \in \mathcal{D} \subset \mathbb{R}^{d}, \ d \ge 1$$

Multivariate modeling: setting

Spatial, additive mixed effects model:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \alpha_{1}(\mathbf{s}) + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

:
$$Y_{p}(\mathbf{s}) = \mathbf{X}_{p}\beta_{p} + \alpha_{p}(\mathbf{s}) + \gamma_{p}(\mathbf{s}) + \varepsilon_{p}(\mathbf{s}) \qquad \mathbf{s} \in \mathcal{D} \subset \mathbb{R}^{d}, \ d \ge 1$$

Modeling the spatial processes themselves:

Random field:

Random field modeling

Dependency through a cross-correlation model (1):

$$\begin{aligned} \mathbf{X} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}}) \\ \mathbf{Y} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}}) \end{aligned} \quad \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) = \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}} \\ &\sim & \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \sim \mathcal{N}_{2n} \left(\begin{pmatrix} \boldsymbol{\mu}_{\mathbf{X}} \\ \boldsymbol{\mu}_{\mathbf{Y}} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{\mathbf{X}} & \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}} \\ \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}}^{\mathsf{T}} & \boldsymbol{\Sigma}_{\mathbf{Y}} \end{pmatrix} \right) \end{aligned}$$

(e.g., Gneiting, Kleiber, Schlather 2010, Apanasovich, Genton, Sun 2012, ...)

Random field modeling

Dependency through a cross-correlation model (1):

$$\begin{split} \mathbf{X} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}}) \\ \mathbf{Y} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}}) \end{split} \quad \mathsf{Cov}(\mathbf{X}, \mathbf{Y}) = \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}} \\ &\sim & \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \sim \mathcal{N}_{2n} \left(\begin{pmatrix} \boldsymbol{\mu}_{\mathbf{X}} \\ \boldsymbol{\mu}_{\mathbf{Y}} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{\mathbf{X}} & \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}} \\ \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}}^{\mathsf{T}} & \boldsymbol{\Sigma}_{\mathbf{Y}} \end{pmatrix} \right) \end{split}$$

(e.g., Gneiting, Kleiber, Schlather 2010, Apanasovich, Genton, Sun 2012, ...)

Dependency through common process(es) (2):

$$\begin{split} \mathbf{X} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}}) \\ \mathbf{Y} &\sim \mathcal{N}_{n}(\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}}) \end{split} \qquad \mathbf{Z} &\sim \mathcal{N}_{n}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{Z}}) \\ &\sim & \begin{pmatrix} \mathbf{X} + \mathbf{Z} \\ \mathbf{Y} + \mathbf{Z} \end{pmatrix} \sim \mathcal{N}_{2n} \left(\begin{pmatrix} \boldsymbol{\mu}_{\mathbf{X}} \\ \boldsymbol{\mu}_{\mathbf{Y}} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{\mathbf{X}} + \boldsymbol{\Sigma}_{\mathbf{Z}} & \boldsymbol{\Sigma}_{\mathbf{Z}} \\ \boldsymbol{\Sigma}_{\mathbf{Z}} & \boldsymbol{\Sigma}_{\mathbf{Y}} + \boldsymbol{\Sigma}_{\mathbf{Z}} \end{pmatrix} \right) \end{split}$$

Backfitting

Recall:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \alpha_{1}(\mathbf{s}) + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$
$$:$$
$$Y_{p}(\mathbf{s}) = \mathbf{X}_{p}\beta_{p} + \alpha_{p}(\mathbf{s}) + \gamma_{p}(\mathbf{s}) + \varepsilon_{p}(\mathbf{s})$$

Backfitting

Recall:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \alpha_{1}(\mathbf{s}) + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

:
$$Y_{p}(\mathbf{s}) = \mathbf{X}_{p}\beta_{p} + \alpha_{p}(\mathbf{s}) + \gamma_{p}(\mathbf{s}) + \varepsilon_{p}(\mathbf{s})$$

Extending the 'classical' backfitting approach to dependent data:

repeat until convergence
 repeat until convergence
 estimate fixed effects
 for all 'stochastic' effects
 estimate parameters
 predict smooth field

See Furrer, Sain (2009) Heersink, Furrer (2012|3)

Calculate Σ :

Calculate Σ :

Calculate Σ :

Distances :

Sparseness is guaranteed when

- the covariance function has a compact support
- ► a compact support is (artificially) imposed ~→ tapering

Sparseness is guaranteed when

- the covariance function has a compact support
- ► a compact support is (artificially) imposed ~→ tapering

Sparseness is guaranteed when

- the covariance function has a compact support
- a compact support is (artificially) imposed ~> tapering

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework
- $\blacktriangleright \quad \|\Sigma \Sigma \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\Sigma - \Sigma \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\Sigma - \Sigma \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Concept of Gaussian equivalent measures does not exist
- Domain increasing framework

$$\blacktriangleright \quad \|\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \circ \mathbf{T}\| \to 0 \text{ as } n \to \infty$$

- Tapering is purely pragmatic
- $T = \mathbf{Q} \otimes \mathbf{T}_i \qquad \mathbf{Q} = \epsilon \mathbf{I} + (1 \epsilon) \mathbf{J}$

"All models are wrong, but . . . "

- Iterative approaches
 - + Flexible, numerically feasible
 - Uncertainties
- Maximum likelihood
 - + Uncertainties, asymptotics
 - Numerical issues
- Bayesian hierarchical models
 - + Flexible, uncertainties
 - MCMC
- SPDE models

+ flexible, scalable University of

Example: Backfitting

Minnesota testbed:

Subgrade, subbase, base (top to bottom).

Example: Backfitting

Minnesota testbed:

Model:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

$$Y_{2}(\mathbf{s}) = \mathbf{X}_{2}\beta_{2} + c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s}) + \varepsilon_{2}(\mathbf{s})$$

$$Y_{3}(\mathbf{s}) = \mathbf{X}_{3}\beta_{3} + c_{2}(c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s})) + \gamma_{3}(\mathbf{s}) + \varepsilon_{3}(\mathbf{s})$$

Geometric anisotropy directionally colored noise

Example: Backfitting

Minnesota testbed:

Model:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

$$Y_{2}(\mathbf{s}) = \mathbf{X}_{2}\beta_{2} + c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s}) + \varepsilon_{2}(\mathbf{s})$$

$$Y_{3}(\mathbf{s}) = \mathbf{X}_{3}\beta_{3} + c_{2}(c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s})) + \gamma_{3}(\mathbf{s}) + \varepsilon_{3}(\mathbf{s})$$

(add measurement operator . . .)

Example: Backfitting

Minnesota testbed:

Model:

$$Y_{1}(\mathbf{s}) = \mathbf{X}_{1}\beta_{1} + \gamma_{1}(\mathbf{s}) + \varepsilon_{1}(\mathbf{s})$$

$$Y_{2}(\mathbf{s}) = \mathbf{X}_{2}\beta_{2} + c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s}) + \varepsilon_{2}(\mathbf{s})$$

$$Y_{3}(\mathbf{s}) = \mathbf{X}_{3}\beta_{3} + c_{2}(c_{1}\gamma_{1}(\mathbf{s}) + \gamma_{2}(\mathbf{s})) + \gamma_{3}(\mathbf{s}) + \varepsilon_{3}(\mathbf{s})$$

(add measurement operator . . .)

Cell 27: Fitted smooths:

Multiresolution analysis

- Using Holmström et al. (2010), extensions from original SiZER ~~ Ready to use software
- Decomposition into different scales:

$$0 = \lambda_1 < \lambda_2 < \cdots < \lambda_L = \infty$$

smoothing parameters

$$\gamma = \sum_{i=1}^{L-1} (\mathbf{S}_{\lambda_i} - \mathbf{S}_{\lambda_{i+1}})\gamma + \mathbf{S}_{\lambda_L}\gamma$$
$$\equiv \mathbf{z}_1 + \mathbf{z}_2 + \dots + \mathbf{z}_L$$

Multiresolution analysis

- Using Holmström et al. (2010), extensions from original SiZER ~~ Ready to use software
- Decomposition into different scales:

$$0 = \lambda_1 < \lambda_2 < \dots < \lambda_L = \infty$$

smoothing parameters

$$egin{aligned} & \gamma = \sum\limits_{i=1}^{L-1} (\mathbf{S}_{\lambda_i} - \mathbf{S}_{\lambda_{i+1}}) \gamma + \mathbf{S}_{\lambda_L} \gamma \ & \equiv \mathbf{z}_1 + \mathbf{z}_2 + \dots + \mathbf{z}_L \end{aligned}$$

Example: multiresolution analysis

Minnesota testbed:

Subgrade, subbase, base (top to bottom).

Example: Multiresolution analysis

Cell 27: Fitted smooths:

Multiresolution analysis:

subgrade

subbase

base

Afterthoughts/outlook

Flexible setting ... toolbox(es)

Multivariate spatial (spatio-temporal) non-stationary data

Bayesian framework

Non-Gaussian data

Collaboration with:

- Daniel Heersink, now Research Scientist at CSIRO, Canberra
- Mike Mooney, CSM
- Roland Anderegg, FHNW ...

URPP Systems Biology/Functional Genomics & URPP Global Change and Biodiversity

SWISS NATIONAL SCIENCE FOUNDATION 129782, 143282, 144973

References (some)

de Jong, Schaepman, Furrer, de Bruin, Verburget (2013) Spatial relationship between climatologies and changes in global vegetation activity, Global Change Biology, 19(6), 1953–1964.

Facas, Furrer, Mooney (2010) Anisotropy in the Spatial Distribution of Roller-Measured Soil Stiffness. International Journal of Geomechanics, 10(4), 129–135.

Furrer, Sain (2009) Spatial Model Fitting for Large Datasets with Applications to Climate and Microarray Problems, *Statistics and Computing*, 19(2), 113–128.

Heersink, Furrer (2013) Sequential Spatial Analysis of Large Datasets with Applications to Modern Soil Compaction Roller Measurement Values, Spatial Statistics, 6, 41-56.

Heersink, Furrer, Mooney (2013) Intelligent Compaction and Quality Assurance of Roller Measurement Values utilizing Backfitting and Multiresolution Scale Space Analysis, arXiv:1302.4631.

Heersink, Furrer, Mooney (2013) Spatial Backfitting of Roller Measurement Values from a Florida Test Bed, arXiv:1302.4659.

Heersink, Furrer (2012) Moore–Penrose Inverses of Quasi-Kronecker Structured Matrices, Linear Algebra and its Applications, 436(3), 561-570.

Holmström, Pasanen, Furrer, Sain (2011) Scale Space Multiresolution Analysis of Random Signals. Computational Statistics and Data Analysis, 55, 2840-2855. Jniversity of