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application to roller data
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I Microarray data:

construct alternative

“background” correction
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observations = fixed effects + spatial term + “noise”

Chip 1

Chip 2
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I Microarray data

I Climate data

synthesize projections
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I Microarray data

I Climate data

I Satellite data

attribute spatial changes
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Fig. 4 Decomposition of (a) the observed changes in vegetation activity into (b) fixed climatology effects as represented by the regres-

sion-tree model, (c) other spatially correlated, or ‘structured’, effects as represented by the Gaussian random field and (d) residual term

e. The four insets illustrate the spatial structure of each model component at pixel level for the example of southern Africa. For few grid

cells, fixed effects could not be estimated and, as a result, the spatial field was not predicted, due to masking of water bodies and per-

manent wetlands (e.g. Lake Malawi in the insets).

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12193
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trend
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“noise”



Motivation for roller data analysis
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Compaction for road construction:

I one vibrating drum

(smooth drum or padfoot)

I rolling at 1m/s

I 20cm material per layer

I typical bed is 12–15m wide

and 30–150m long

I sufficient compaction is

‘manually’ tested after several

layers of material (USA)
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Compaction for road construction:

I one vibrating drum

(smooth drum or padfoot)

I rolling at 1m/s

I 20cm material per layer

I typical bed is 12–15m wide

and 30–150m long

I sufficient compaction is

‘manually’ tested after several

layers of material (USA)

Is an automatic quality assurance

and intelligent compaction possible?



Motivation
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Source: www.bomag.com

Current “intelligent” compaction:

I precise GPS positioning

I on-board visualization

I off-board processing
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Motivation
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I Relation between measurement and actual soil modulus is

unknown.

I (Linear) relationship is determined with a second measurement

device (lightweight deflection, nuclear density . . .

Source: B. Rinehart



Spatial model
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Spatial, additive mixed effects model for roller measurement values:

RMV = amplitude + roller type + driving direction + . . .

+ trend(s) + spatial term(s) + error

Y (s) = Xβ + α(s) + γ(s) + ε(s) s ∈ D ⊂ Rd, d ≥ 1

with

Xβ: fixed effects and trend

α(s): spline component (trend)

γ(s): zero mean spatial Gaussian process

ε(s): iid noise, orthogonal to γ(s)
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Spatial, additive mixed effects model for roller measurement values:

RMV = amplitude + roller type + driving direction + . . .

+ trend(s) + spatial term(s) + error

Y (s) = Xβ + α(s) + γ(s) + ε(s) s ∈ D ⊂ Rd, d ≥ 1

with

Xβ: fixed effects and trend
coefficients β

α(s): spline component (trend)
basis function coefficients θα; smoothing parameter λα

γ(s): zero mean spatial Gaussian process
parameters θγ describing the covariance function

ε(s): iid noise, orthogonal to γ(s)
variance σ2



Multivariate modeling: setting
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Spatial, additive mixed effects model:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s) s ∈ D ⊂ Rd, d ≥ 1
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Spatial, additive mixed effects model:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s) s ∈ D ⊂ Rd, d ≥ 1

Modeling the spatial processes themselves:

Random field:

GRF GMRF

cross-correlation model À Â
Dependency:

common process(es) Á Ã



Random field modeling
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Dependency through a cross-correlation model À:

X ∼ Nn(µX,ΣX)

Y ∼ Nn(µY,ΣY)
Cov(X,Y) = ΣXY

 
(

X

Y

)
∼ N2n

((
µX

µY

)
,

(
ΣX ΣXY

ΣXY
T ΣY

))

(e.g., Gneiting, Kleiber, Schlather 2010, Apanasovich, Genton, Sun 2012, . . . )
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,
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ΣX ΣXY

ΣXY
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(e.g., Gneiting, Kleiber, Schlather 2010, Apanasovich, Genton, Sun 2012, . . . )

Dependency through common process(es) Á:

X ∼ Nn(µX,ΣX)

Y ∼ Nn(µY,ΣY)
Z ∼ Nn(0,ΣZ)

 
(

X + Z

Y + Z

)
∼ N2n

((
µX

µY

)
,

(
ΣX + ΣZ ΣZ

ΣZ ΣY + ΣZ

))



Backfitting
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Recall:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s)



Backfitting
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Recall:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s)

Extending the ‘classical’ backfitting approach to dependent data:

repeat until convergence

repeat until convergence

estimate fixed effects

for all ‘stochastic’ effects

estimate parameters

predict smooth field

See Furrer, Sain (2009) Heersink, Furrer (2012|3)



Sparse covariance matrices
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Calculate Σ:
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Sparse covariance matrices
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Sparseness is guaranteed when

I the covariance function has a compact support

I a compact support is (artificially) imposed  tapering
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Sparseness is guaranteed when

I the covariance function has a compact support

I a compact support is (artificially) imposed  tapering
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Multivariate tapering

17

I Concept of Gaussian equivalent measures does not exist

I Domain increasing framework

I ||Σ−Σ ◦T|| → 0 as n→∞
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I Concept of Gaussian equivalent measures does not exist
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Multivariate tapering
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I Concept of Gaussian equivalent measures does not exist

I Domain increasing framework

I ||Σ−Σ ◦T|| → 0 as n→∞

0 10 20 30 40

C
ov

ar
ia

nc
e

Distance, lag h

Matern ν = 1.5
Wendland
Matern * Wendland

0 10 20 30 40 50 60 70

D
iff

er
en

ce

Distance, lag h

Wendland



Multivariate tapering
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I Concept of Gaussian equivalent measures does not exist

I Domain increasing framework

I ||Σ−Σ ◦T|| → 0 as n→∞
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Multivariate tapering
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I Concept of Gaussian equivalent measures does not exist

I Domain increasing framework

I ||Σ−Σ ◦T|| → 0 as n→∞

I Tapering is purely pragmatic

I T = Q⊗Ti Q = εI + (1− ε)J



“All models are wrong, but . . . ”

20

I Iterative approaches

+ Flexible, numerically feasible

– Uncertainties

I Maximum likelihood

+ Uncertainties, asymptotics

– Numerical issues

I Bayesian hierarchical models

+ Flexible, uncertainties

– MCMC

I SPDE models

+ flexible, scalable



Example: Backfitting
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Minnesota testbed:

Cell 28 Cell 27

Subgrade, subbase, base (top to bottom).



Example: Backfitting
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Minnesota testbed:

Model:

Y1(s) = X1β1 + γ1(s) + ε1(s)

Y2(s) = X2β2 + c1γ1(s) + γ2(s) + ε2(s)

Y3(s) = X3β3 + c2(c1γ1(s) + γ2(s)) + γ3(s) + ε3(s)



Inset: nonstationarity

23

1.2 Florida Test Bed Data

For a detailed investigation of roller properties, statistical characteristics, etc., a test bed

with atypical dimensions was atypically densely compacted. A compaction roller traversed

the compaction site in both the x- and y-directions. This Florida dataset consists of 19,145

observations of x- and y-coordinates, soil stiffness (ks), and lane number in the x-direction

driving and 19,975 observations in the y-direction driving. This analysis focuses on the

driving direction.

The roller first traversed the compaction site in the x-direction in a snaking fash-

ion, first left-to-right and then back again right-to-left. The roller then traversed the

compaction site a second time in the y-direction. The physical limitations of the site

prohibited a snaking traversal in the y-direction, so the roller moved from bottom to top

only. There are 29 lanes in the x-direction and 27 lanes in the y-direction. Figure 2 is

a plot of the RMVs in the x-driving direction and the y-driving direction. Blue values

represent high stiffness and red values represent low. An optimally compacted site would

be uniformly blue.
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Figure 2: Data from the test bed in Florida, USA. RMVs collected from driving in the
x-direction (left) and from driving in the y-direction (right) are depicted.
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Figure 5: Directional empirical semivariograms and fitted spherical models from three
polynomial detrended subsamples of RMVs of the x-driving direction subset (left) and of
the y-driving direction subset (right). Dashed lines indicated fitted models, x-directional
semivariograms are in black and green and y-directional semivariograms are in red and
blue.

2.4 Sampling Concerns

To maintain computational efficiency, the data was subsampled for empirical semivari-

ogram estimation. 10,000 data points were sampled from each of x- and y-direction driving

datasets. A loess detrending of each sample was performed. This produced two detrended

datasets from which subsamples of 2500, 3500, and 4500 data points were drawn. Direc-

tional empirical semivariograms were then calculated in the x- and y-direction to generate

a total of twelve empirical semivariograms. These empirical semivariograms were then fit

to a spherical model.

There was no discernible difference between the empirical semivariograms within each

dataset. Figure 5 depicts the empirical and fitted directional semivariograms of the x-

driving direction dataset (left) and y-driving direction (right). Since the sampled direc-

tional empirical semivariograms are essentially identical within each dataset, we concluded

the subsampling was adequate, i.e. the subsampling produced a representative sample
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Geometric anisotropy

directionally colored noise



Example: Backfitting
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Minnesota testbed:

Model:

Y1(s) = X1β1 + γ1(s) + ε1(s)

Y2(s) = X2β2 + c1γ1(s) + γ2(s) + ε2(s)

Y3(s) = X3β3 + c2(c1γ1(s) + γ2(s)) + γ3(s) + ε3(s)

(add measurement operator . . . )
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Minnesota testbed:

Model:

Y1(s) = X1β1 + γ1(s) + ε1(s)
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(add measurement operator . . . )

Cell 27:

Fitted smooths:



Multiresolution analysis
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I Simultaneous inference for IC and QA

 “which features are ‘really there’ ?”

I Using Holmström et al. (2010), extensions from original SiZER

 Ready to use software

I Decomposition into different scales:

0 = λ1 < λ2 < · · · < λL =∞

smoothing parameters

γ =
L−1∑
i=1

(Sλi − Sλi+1
)γ + SλLγ

≡ z1 + z2 + · · ·+ zL
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Example: multiresolution analysis
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Minnesota testbed:

Cell 28 Cell 27

Subgrade, subbase, base (top to bottom).



Example: Multiresolution analysis
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Cell 27:

Fitted smooths:

Multiresolution analysis:

subgrade subbase base



Afterthoughts/outlook
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I Flexible setting . . . toolbox(es)

I Multivariate spatial (spatio-temporal) non-stationary data

I Bayesian framework

I Non-Gaussian data
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Collaboration with:

— Daniel Heersink, now Research Scientist at CSIRO, Canberra

— Mike Mooney, CSM

— Roland Anderegg, FHNW . . .

URPP Systems Biology/Functional Genomics &

URPP Global Change and Biodiversity

129782, 143282, 144973
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