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Introduction

• The event of interest is known.

• But the locations of occurrences of the event are unknown.

• Examples of events: infection of trees by a plague, deaths from stroke and vehicle
casualties (theft/robbery) ...

• Geo-referenced data is very common: Ecology, Geography and Epidemiology.

• Point pattern is the set of these locations.
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Introduction

t = 1 t = 2 t = 3 t = 4

• Point pattern is usually the result of a dynamic process that occurs both in space
and in time.

• For example, event of interest is the infection of trees by a plague in a location.

• This process evolves over time as new trees are born and older trees die.

→ spatial point pattern resulting from this process has a temporal dynamic.
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Introduction

• Heterogeneity requires flexible models to capture this spatio-temporal variation.

• Geo-referenced data with the precise spatial location→ study of point patterns.

• Connections with explanatory variables.

• Agronomist’s interest: effects of spatial and unit-specific factors in the pattern
of infection of trees by a plague and possible changes of these effects over time

→ design plans of action to intervene where the infection of trees is larger.
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Introduction

• Models for these types of data: spatio-temporal point processes.

• The literature for analyzing data with spatio-temporal heterogeneity is well
developed.

• Brix and Diggle (2001): flexible class of spatio-temporal point process based
on log-Gaussian Cox model.

• Diggle et al. (2005): model with deterministic spatial, temporal and spatio-
temporal components.

• Reis et al. (2013): deterministic and stochastic component and included a
dynamic structure in the temporal component.
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Introduction

• They assumed the effects of the covariates, when they are considered, to be
the same over space.

• May be appropriate in many practical situations but...

• Not a realistic assumption for dataset with a large spatio-temporal
heterogeneity in the effect of some explanatory covariates.

• We would like to consider spatial and unit-specific covariates (Liang et al.,
2009).

• Purpose of this work: models allowing spatio-temporal variation of the
effects.
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Spatial Point Patterns

• X = {X (s) : s ∈ S}, where S ⊆ <d , d > 0 and

X (s) =

{
1, if the event of interest occurred in s,
0, otherwise.

• X can be unequivocally identified with occurrence set {s1, . . . , sn}, si ∈ S .

• Most common model: (non-homogeneous) Poisson process with intensity
function Λ(·) = {Λ(s) : s ∈ S}.

• Notation: X ∼ PP (Λ(·)).

• [log-Gaussian] Cox process (LGCP): Λv are random [with log Λv ∼ GP].
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Spatial Point Patterns

• Y (·), defined in S , is said to be isotropic Gaussian if ∀ n > 1 and {s1, . . . , sn} ∈
S

(Y (s1), . . . ,Y (sn))′ ∼ N(µ1, τ−1Rγ), (1)

denoted by
Y (·) ∼ GP(µ, τ, ργ), (2)

where Rγ is a correlation matrix with elements Ri,j = ργ(||si − sj ||).

• Spatio-temporal point pattern: X (·, ·) and Λ(·, ·).

• Covariate information: (z1(s, t), . . . , zp1 (s, t))′ and (v1, . . . , vp2 )′.

• Model: continuous space and discrete time.
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Likelihood

• Consider collections {Xv (s, t) : v ∈ V} of Poisson point patterns and
{Λv (s, t) : s ∈ S , t ∈ {1, . . . ,T} and v ∈ V} of intensities, for covariate
configuration v.

• The likelihood is given by

L(Λ(·, ·)) =
∏
v∈V

L(Λv (·, ·)),

where L(Λv (·, ·)) =
nv∏
i=1

Λv (sv ,i , tv ,i ) exp

{
−

T∑
t=1

∫
S

Λv (s, t)dsdt

}
, (3)

nv is the number of events observed for the configuration v,
sv ,i is the location of the i th event, for i = 1, . . . , nv ,
tv ,i is the time of the i th event, for i = 1, . . . , nv .
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Space-time varying coefficients model

Xv ∼ PP(Λv (·, ·)),∀ v ∈ V,
Λv (s, t) = r(s, t, v)λ(s, t, v), ∀s ∈ S , v ∈ V,

log λ(s, t, v) = z(s, t)′β(t) + v′α(s, t) + w(s, t),

β(t) = β(t − 1) + εβ(t), εβ(t) ∼ N(0,Ωt),

αl(s, t) = αl(s, t − 1) + εαl (s, t), εαl (s, t) ∼ PG
(

0, ταl , ργαl

)
,

w(s, t) = w(s, t − 1) + εw (s, t), εw (s, t) ∼ PG (0, τw , ργw ) .

• Λ(·, ·) (multiplicative decomposition), r(·, ·, ·) representing a known offset
(required for standardization).

• Time-varying coefficients: β(·).

• Space-time varying coefficients: αl(·, ·) and w(·, ·).

• α(·, ·) and w(·, ·) are stationary and isotropic GP in space and autoregressive
and non-stationary in time.
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Space-time varying coefficients model

Xv ∼ PP(Λv (·, ·)),∀ v ∈ V,
Λv (s, t) = r(s, t, v)λ(s, t, v), ∀s ∈ S , v ∈ V,

log λ(s, t, v) = z(s, t)′β(t) + v′α(s, t) + w(s, t),

β(t) = β(t − 1) + εβ(t), εβ(t) ∼ N(0,Ωt),

αl(s, t) = αl(s, t − 1) + εαl (s, t), εαl (s, t) ∼ PG
(

0, ταl , ργαl

)
,

w(s, t) = w(s, t − 1) + εw (s, t), εw (s, t) ∼ PG (0, τw , ργw ) .

• Non-stationary β(·), αl(·, ·) and w(·, ·) is one of the possibilities.

• The equations above define a generalization of log-Gaussian Cox process.

• Interactions between spatial and non-spatial covariates can be considered.

(Pinto Junior et al) Búzios - 2014 June 24, 2014 12 / 30



Discretizing log-Gaussian Cox processes

• The likelihood function for the model depends on uncountable functions β(·),
α(·, ·) and w(·, ·).

• This poses a difficult problem to handle.

• Exact solutions are only available in very limited cases and even then, they
depend on a number of issues.

• Some of these issues are associated with the dimension of the number of
occurrences, which is usually very large.
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Discretizing log-Gaussian Cox processes

Reasonable option: approximations at the modeling level

Beněs et al (2002):

• S is partitioned into sub-regions {S1, . . . ,SN}.

• r(s, t, v) = rk,t,v , α(s, t) = α[k,t] and w(s, t) = w[k,t],∀s ∈ Sk .

• enforces homogeneity of the intensity rate within the sub-regions in time t →
λ(s, t, v) = λk,t,v = exp{v′jα[k,t] + z′[k,t]βt + w[k,t]}

• The integral in (3) becomes

T∑
t=1

∫
S

r(s, t, v)λ(s, t, v)ds =
T∑
t=1

N∑
k=1

rk,t,vλk,t,v |Sk | (4)

|Sk | is the volume of the kth sub-region, for k = 1, . . . ,N.

Intensity discretization also found in Møller et al (1998), Brix and Møller (2001)
and Gamerman (1992), ...
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Discretizing log-Gaussian Cox processes

• Waagepetersen (2004): posterior distributions of the intensities converge to the
posterior distribution of the continuously-varying intensity when the volumes
of the sub-regions tend to 0.

• If interest lies in the effect of a covariate at the region level rather than at a
specific location, the discretization does not cause any limitation in the results.

• Number and sizes of the sub-regions must be appropriately chosen.
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Data details - covariate information

• Data: The zip codes where cars covered by insurance have been stolen in Rio
de Janeiro.

• 23,810 cars were stolen between 2009 and 2011.

• The time was discretized by semester (6 semesters).

• Unit-specific covariates v are:
• v1, manufacturing year;
• v2, car type (1, for private car and 0, commercial);

• v = (v1, v2)′ is the vector of non-spatial covariates and the number of different
configurations of these variables.

• #V = 22.
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Discretized space
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Effects varying over space and time

• Locations in Rio de Janeiro reflect different socioeconomic backgrounds.

• Great incentives to buy cars were experienced by the population in recent years.

• Theft pattern may be affected by this variation → effects should be as flexible
as possible.

• Example: is passenger car thefts decreasing in the wealthiest areas of Rio de
Janeiro over the last semesters?

• This question, for example, can only be answered by allowing interaction among
the effects of covariates, space and time.
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Prior distributions

• Mean and precision:
• µx ∼ N(0, 100), x = α1, α2,w ;
• τx ∼ G(1, 0.01), x = α1, α2,w ;

• GP correlation functions ρ(||si − sj ||; γ) = exp{−||si − sj ||/γ}.

• Fonseca and Steel (2011): γx ∼ G (1, 0.3/med(ds)),
med(ds) = median of the distances among the 21 regions.

→ weak identification of the range parameters γ.

• This well-known difficulty of spatial models, more pronounced here.

• Liang et al. (2009): fix the ranges at the median of the observed distances

• No significant changes for likelihood parameters but stabilized results for the
hyperparameters.
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Offsets

• The offsets rk,t,v were taken as populational size

rk,t,v =

Nk,v∑
i=1

#days of annual policy iv ,k,t
#days of the year

(5)

• Nk,v is the number of cars with configuration v in region k.

• Requires knowledge of the population sizes of all configurations in each
region for all periods of time.
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Results

• Results below based on the 21 regions partition.

• Results were obtained via MCMC methods, with Winbugs.

• Convergence was ascertained by using 2 chains with different starting values.

• Correlation between successive chain draws was alleviate by thinning at every
100 iterations, after a burn-in period of 5,000 draws.

• The resulting sample consisted of 2,000 draws.
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Manufacturing year effect: posterior median and CI(95%)
of coefficient in t = 4
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• Positive coefficients indicate a greater intensity of thefts of new cars.

• Negative coefficients are associated with the western region of Rio de Janeiro.

• The largest range of the CI is observed at region 3 (scarcity of information -
small island).
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Manufacturing year effect over time for some regions
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• In general, there is an increase of coefficients over time.
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Type car effect: posterior median and CI(95%) of
coefficient in t = 4
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• Positive coefficients indicate a greater intensity of thefts of private cars.

• Largest coefficient: downtown.

• Negative coefficients: islands (3 and 14).
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Type car effect over time for some regions
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• For some regions, there is a significant growth in earlier periods, and a decrease
in the final period.
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Random intercept: posterior median and CI(95%) of
coefficient in t = 4
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• w is responsible for capturing remaining spatio-temporal variation, not captured
by the covariates.

• w has to compete with covariates for spatial and time variation in the model.

• Spatial variation of w is still significant.
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Random intercept over time for some regions
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• Temporal variation of w is still significant.
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Posterior histograms for the GP means e precisions
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• Top row - µ: year of manufacture, car type and w ;

• Bottom row - τ : year of manufacture, car type and w ;

• The dashed lines indicate the vague prior densities used.
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Conclusions

• This work: hierarchical formulation to handle point patterns subject to the
effect of covariates with large spatio-temporal heterogeneity.

• Heterogeneity spatio-temporal: state space and isotropic GP’s tools→ smooth
variation of coefficients.

• Covariates have a strong spatio-temporal variation.

• Results showed the model can capture the spatial and time trend of the effects.

• Meaningful, concentrated posteriors were obtained with vague priors (exception
range parameter).

• Finally, analysis of point patterns could benefit from a model without
discretization.

• This is currently an active area of research (eg, Goncalves et al (2014)).
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Thank you!

jarrais@est.uff.br
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