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Perspective:  1st and 2nd order stationarity is almost never a 
realistic assumption for any environmental monitoring data, 
except at small spatial scales. 

Objectives for approaches to nonstationary spatial covariance 
modeling. 

Ø  Characterizing spatially varying, locally (stationary) 
anisotropic structure. 

Ø  Scientific understanding/representation of covariance 
structure—not just a method of providing covariances for 
kriging. 

Capable of:  

v  reflecting effects of known explanatory environmental 
processes such as transport/wind, topography, point sources  

v  modeling effects of known explanatory environmental 
processes  

 



Objectives (cont.) 

Ø  Application to purely spatial problems and/or problems with data 
sampled irregularly in space and time 

Ø  Application in context of dynamic models for space-time structure 

Ø  Application to “large” problems/data sets 

 

v  Diagnostics for local and large-scale correlation structure: 

o   is the spatial structure “right” 

o   is the nature/degree of nonstationarity (smoothness) right? 

v   Evaluation of uncertainty in estimation (interpolation) of 
spatial covariance structure  

v   Incorporation in an approach to spatial estimation accounting 
for uncertainty in estimation of (parameters of) spatial covariance 
structure 



Selected classes of methods:  
•  Spatial deformation models (Sampson & Guttorp, Damian, 

Perrin, Meiring, Monestiez, Schmidt & O’Hagan, Fouedjio, …) 

•  Process convolution models (Higdon, Swall & Kern, Calder, …; 
Paciorek & Schervish) 

•  Kernel/smoothing methods (Fuentes, …) 

•  Models with covariates (Reich et al., Schmidt et al.) 

•  Basis function methods, including EOF, Karhunen-Loeve, and 
wavelets  (Nychka, Wikle, Pintore & Holmes, …) 

•  MDS-related dimension expansion (Bornn et al.)  



The spherical correlation"
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Corresponding variogram"
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Review:  Descriptive characteristics of (stationary) spatial 
covariance expressed in a variogram"



Geometric anisotropy"

•  If " " " "             we have an isotropic 
covariance (circular isocorrelation curves). "

"
•  If " " " " "            for a linear 

transformation A, we have geometric anisotropy 
(elliptical isocorrelation curves)."

"
•  General nonstationary correlation structures are 

typically locally geometrically anisotropic."

( , ) ( )C x y C x y= −

( , ) ( )C x y C Ax Ay= −



Nonstationary spatial covariance:"

Basic idea:  the parameters of a local variogram 
model---nugget, range, sill, and anisotropy---vary 
spatially."
"
Look at some pictures of applications from 
methodology publications."



Swall & Higdon.  Process convolution approach,"
Soil contamination example --- Piazza Rd site."



Swall & Higdon.  Process convolution approach,"
Posterior mean and covariance kernel ellipses."



Paciorek & Schervish, 2006 –  
Colorado 1981 annual precip (log)"



Paciorek & Schervish, 2006 –  
kernels (ellipses of constant Gaussian density) representing 
estimated correlation structure"



The deformation idea"

In the geometric anisotropic case, write"
"

where  f(x) = Ax.  This suggests using a general 
nonlinear transformation " " " ""
                                   "

                                            “G-plane” →  “D-space”"

Usually d = 2 or 3."
We do not want f  to fold."
"
Remark:  Originally introduced as a multidimensional scaling 
problem:  find Euclidean representation with intersite distances 
monotone in spatial dispersion, D(x,y)"

( , ) ( ( ) ( ) )C x y C f x f y= −

2: df R R→



Space-time Model with Spatial Deformation 
Damian et al., 2000 (Environmetrics), 2003 (JGR) 

( ) ( ) ( ) ( ) ( )1 2, , ,tZ x t x t x H x x tµ ν ε= + +
( , ) spatio-temporal trend

parametric in time; mv spatial process
x tµ

( ) temporal variance at ,
log-normal spatial process
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Ht (x) mean 0, var 1, 2nd-order cont. spatial process
C(x, y)=Cov(Ht (x), Ht ( y)) x→ y⎯ →⎯⎯ 1.
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Ht (x) mean 0, var 1, 2nd-order cont. spatial process
Cov(Ht (x), Ht ( y)) x→ y⎯ →⎯⎯ 1.

   

Cor Ht (x), Ht ( y)( ) = ρθ f (x)− f ( y)( )
f :G → D  smooth, bijective

(Geographic →Deformed plane)

ρθ (d )  isotropic correlation function
in a specified parametric family
(exponential, power exp, Matern)

i.e.  The correlation structure of the spatial process is 
an (isotropic) function of Euclidean distances between 
site locations after a bijective transformation of the 
geographic coordinate system. 

Model (cont.) 













The spatial deformation  f  encodes the nonstationarity: 
spatially varying local anisotropy. 
We model this in terms of observation sites                          as a 
pair of thin-plate splines: 

Back to the model: 

  x1,x2 ,...,xN
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Linear part: global/large scale anisotropy 2 1 2 2,  c × ×A

Non-linear part, decomposable into 
components of varying spatial scale:  2 1, ( ) N Nxσ× ×W

    f :{c,A,W}, µ,θ ,σε
2 ,ν :{ µ, θ , σ 2} Lots of model parameters!  



More on the equations of the thin-plate spline"

       

f (x) = f1(x), f2(x)( )T : R2 → R2

minimizing "bending energy" subject to interpolation constraints
f j (xi ) = ξij , 1≤ i ≤ N ; j = 1,2,

is an equation of the form

f (x) = c + Ax + WTσ (x)

where the coefficients W satisfy 1T W = 0, XT W = 0.
I.e. the columns W1 and W2  of W are vectors in the subspace 

spanned by 1, X1, X2{ } : V = v ∈RN :vT 1= 0, vT X1 = 0, vT X2 = 0{ }.

The system of equations for computation of a thin-plate spline is
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,  where !S  is N × N  with elements 

!Sij =σ (xi − x j ),   and the "bending energy" is J ( f ) = tr(WT !SW)



Theoretical properties of the deformation model"

Identifiability"
Perrin and Meiring (1999): Let "
"
"
If    (1)       and        are differentiable in Rn!

      (2)            is differentiable for u > 0"
then             is unique, up to a scaling for "
      and a homothetic transformation for  "
      (rotation, scaling, reflection)"
"

( )( , ) ( ) ( ) , ( , ) n nD x y f x f y x y R Rγ= − ∈ ×

1f − f
( )uγ

( , )f γ
f
γ



Implementation 1.  Weighted least squares"

Consider observations at sites  x1, ...,xn.  Let  "
be the empirical covariance between sites xi and xj.  
Minimize"
"
"

where  J(f)  is a penalty for non-smooth transformations, such as 
the bending energy"
"
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When f  is computed as a thin-plate spline, the minimization 
above can be considered in terms of the deformed 
coordinates,                   , or the parameters of the analytic 
representation of the thin-plate spline,"

( )i if xξ =



Implementation 2. Bayesian"

Likelihood:"
"
"
Nonlinear part: Bending energy Prior:"
"
"
Linear part: "

– fix two points in the G-D mapping "
– put a (proper) prior on the remaining two parameters"

"
Posterior computed using Metropolis-Hastings"
"
Can get idea of reasonable values for τ parameter for the 
prior by simulating random deformations from the prior."
"
"
"
"
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Computation"

Metropolis-Hastings algorithm for sampling from the highly 
multidimensional posterior.  (Naïve implementation not very well 
behaved due to correlation among a very large number of 
parameters.)"

Given estimates of D-plane locations, f(xi), the transformation is 
extrapolated to the whole domain using thin-plate splines.  
(Visualization and diagnostics.)"
Predictive distributions for "

"(a) temporal variance at unobserved sites, "
"(b) the spatial covariance for pairs of observed and/or 

unobserved sites, "

"(c) the observation process at unobserved sites."



Implementation 3.  Reduced rank thin-plate 
spline mappings via partial warps  

"
There are serious practical problems with the approaches to 
deformation mapping presented here."
•  They are computationally intensive, involving constrained 

or regularized optimization of approximately 2 parameters 
per spatial monitoring site.  Large problems are not 
practical."

•  Whether parameterized in terms of the coefficients W of the 
radial basis functions d2 log d, or the coordinates of the D-
plane representation, "
o  the WLS or likelihood objective functions are likely to 

have multiple local maxima, "
o  in the case of Bayesian estimation by MCMC, the 

parameters are highly correlated, making convergence of 
the Markov Chain problematic"

"



A more efficient and practical approach is to"
"
•  reparameterize the spline in terms of coefficients of a set 

of orthogonal spatial basis functions"
•  reduce the dimension of the problem by selecting/fitting a 

subset of the basis functions.  We do this using an L1 
penalty."

 "
Thin-plate spline deformations were introduced in 
morphometrics (shape analysis) by Bookstein (1986), where 
he also proposed the decomposition of deformations 
(warps) according to “principal warps” derived from 
eigenvectors of the bending energy matrix."
"









Recall the algebra of thin-plate splines, driven by the the matrix Stilde 
containing the terms sigma(xi-xy) = hij^2 log hij. "



Following are a series of plots to illustrate "

•  the definition of the eigenvectors of the bending energy 
matrix for a configuration of 7 points"

•  Affine and partial warps corresponding to the above 
eigenvectors, with each warp illustrated "

•  for deformations in the ‘x’ and ‘y’ directions separately, 
and "

•  for two different coefficient multipliers (‘scale’)"















Return to the application to PM2.5 data at 24 sites in the region of 
southern CA around Los Angeles and Riverside.  Analysis based 
on time series of about 150 2-week average concentrations from 
2000 through 2006."
"
We illustrate below the fitted deformation and spatial correlation 
function based on maximum likelihood with an L1 constraint 
chosen ‘by eye’.  First, the fit in the published paper computed 
(with great effort!) by the Bayesian algorithm"





Covariance (top) and 
Correlation (bottom) 
vs."
G-plane dist (left) and"
D-plane dist (right)"



Examine the decomposition of the fitted deformation in terms 
of partial warps and the effect of the L1 penalty in zeroing out 
any contributions from all the higher bending energy (smaller 
spatial scale) warps."





Among work to be considered:"
"
1.  Work to be done to facilitate choice of parameter for the L1  

penalty, possibly in a Bayesian framework."
2.  Incorporate this deformation model in a full spatio-temporal 

model with mean structure."
3.  Further investigate and demonstrate the application to 

spatial only problems."
4.  Incorporate covariate in the partial warp modeling."








