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INTRODUCTION
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MOTIVATION

TYPICAL PROBLEM

e Given: observations Z(s;, t;) at a finite number locations
s;, ©=1,..., I and time points ¢;, j =1,...,J.

@ Desired: predictive distribution for the unknown value Z (s, to)
at the space-time coordinate (g, to).

@ Focus: continuous space and continuous time which allow for
prediction and interpolation at any location and any time.

Z(s,t), (s,t) € D x T, where D CR¢ T C R
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MOTIVATION

SPATIOTEMPORAL DATA

Maximum temperature data - Spanish Basque Country (67 stations)
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MOTIVATION

GENERAL MODELING FORMULATION

@ The uncertainty of the unobserved parts of the process can be
expressed probabilistically by a random function in space and
time:

{Z(s,t);(s,t) € D x T'}.

@ We need to specify a valid covariance structure for the process.
C(Sl, S92, tl, tg) = COV(Z(Sl, tl), Z(SQ, tg))

e Positive definiteness: C has to imply that Y ;" | a; Z(s;, t;) has
positive variance for any (s1,t1), ..., (Sn, t,), any real
ai, ..., Gn, and any positive integer n.

o It is quite difficult to check whether a function is positive
definite.
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MOTIVATION

NON-GAUSSIAN SPATIOTEMPORAL MODELS

o Simplifying assumptions:
o Stationarity: Cov(Z(s1,t1), Z(s2,t2)) = C(s1 — S2,t1 — t2)
o Isotropy: Cov(Z(s1,t1), Z(s2,t2)) = C(||s1 — s2||, [t1 — t2|)
o Separability: Cov(Z(s1,t1), Z(s2,t2)) = Cs(s1, $2)Ct(t1, t2)
o Gaussianity: The process has finite dimensional Gaussian
distribution.
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MOTIVATION

NON-GAUSSIAN SPATIOTEMPORAL MODELS

o Simplifying assumptions:
o Stationarity: Cov(Z(s1,t1), Z(s2,t2)) = C(s1 — S2,t1 — t2)
o Isotropy: Cov(Z(s1,t1), Z(s2,t2)) = C(||s1 — s2||, [t1 — t2|)
o Separability: Cov(Z(s1,t1), Z(s2,t2)) = Cs(s1, $2)Ct(t1, t2)

o Gaussianity: The process has finite dimensional Gaussian
distribution.

@ Models based on Gaussianity will not perform well (poor
predictions) if
o the data are contaminated by outliers;

o there are regions with larger observational variance;
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MOTIVATION

EXAMPLE

e Maximum temperature data - Spanish Basque Country

empirical variance
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SPATIOTEMPORAL MODELING

We will consider processes that are
@ nonseparable in space and time;

@ non-Gaussian;
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SPATIOTEMPORAL MODELING

[ Jele}
NONSEPARABLE MODELS

CONTINUOUS MIXTURE

@ Some nonseparable models: [Cressie and Huang, 1999],
[Gneiting, 2002] and [Ma, 2002].

MIXTURE MODELS [MA, 2002]

C(s,t) = / Ci(5: 1) Ca (£ v)dF (u, v) )

o Idea: convex combinations of valid separable covariance
functions are valid and nonseparable functions.

e (U,V) is a bivariate nonnegative random vector with cumulative
distribution function F'.
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NONSEPARABLE MODELS

MAIN ADVANTAGES

@ One may take advantage of the whole available literature of
spatial statistics and time series; C' is the unconditional
covariance of

Z(87 t; U7 V) = Zl(s; U)ZQ(ta V)

© It is natural to make separate modeling decisions regarding the
spatial and temporal components, eg. smoothness and long range
dependence can be different across space and time.
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NONSEPARABLE MODELS

In particular, if

o C1(s;u) = oy exp{—1(s)u}, Ca(t;v) = o9 exp{—r2(t)v}
o U=Xp+ X;and V = Xy + X, where X; has finite moment
generating function M;, then

PROPOSITION

C(s,t) = 0" Mo(—(m(s) +72(t))) Mi(—m(s)) Ma(—72(t)), (s,t) € D x T,
2
e.g. 71(s) = ||s/al|* and yo(t) = |¢/b]°.

Notice that ¢ = corr(U, V') measures separability and ¢ € [0, 1].

See [Fonseca and Steel, 2011] for more details.

PASI, 20 1/ 37



SPATIOTEMPORAL MODELING
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HEAVY TAILED PROCESSES

MIXING IN SPACE AND TIME

We consider the process

Z(s,t) = Z\(s;U) Zo(t; V), 3)

MIXING IN SPACE

> Z1(s;U) €(s)
Z1(s; = — 72 4
1(s;U0)=V1—-71 D) + 7 0 4)
MIXING IN TIME
- Za(t; V)
Zo(t; =
2(t; V) W0 &)

v
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SPATIOTEMPORAL MODELING
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HEAVY TAILED PROCESSES

PROCESS \(s)

@ )\ (s) accounts for regions in space with larger observational
variance.

e If \i(s) = A, Vs = student-t process. But is does not account
for regions with larger variance.

e We consider the glg process where {In(Ai(s));s € D}isa
gaussian process with mean —§ and covariance structure vC1 (.).
[Palacios and Steel, 2006]
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HEAVY TAILED PROCESSES

PROCESS h(s)

5 (s U) — _TzZl(s,U i e(s)
25 U= vl G R

~—

@ h(s) accounts for traditional outliers (different nugget effects).

@ We consider the detection of outliers jointly in the estimation
procedure and the variable h; = h(s;),i = 1,...,I are
considered latent variables

@ Their posterior distribution indicate outlying observations (h;
close to 0).
@ We consider
o log(h;) ~ N(=vp/2,vp).
o h; ~ Ga(l/vy,1/vy).
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SPATIOTEMPORAL MODELING
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HEAVY TAILED PROCESSES

PROCESS (1)

bt v) = 25V

@ \o(t) accounts for sections in time with larger observational
variance.

@ This can be seen as a way to adress the issue of volatility
clustering, which is common in finantial time series data.

e We consider the log gaussian process where {in(\2(t));t € T'}
is a gaussian process with mean — % and covariance structure

VQCQ(.).
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HEAVY TAILED PROCESSES

RESULTING CORRELATION

o Conditioning on the latent variables:

Coo(Z(sirt3), Zsinty)) = 0*Mo(—i(s) — (1) 22220
A2(t;) A2 (t))

— 7—2 Ml( ( )) 2 ISZ:S/ y
* S )\/)\1 (si)A1(sir) + \/h (s)h }5)

iwi'=1,...,1,5,/ =1,...,J,s =s; — sy, t =t; — t;u.
o Integrating latent variables out:
Y {CF(s) — 1} +
s, 1) = QXZXE;*(;{) ;(ZZE(h},l)”] Mo{=1(s)=72(t)} Mi{—m()} Ma{—(0)
O]

w = 72/(1 — 7%). Throughout, we will use

Ci(s) = Mi{-m(s)}.
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HEAVY TAILED PROCESSES

PREDICTIONS

@ (A4, hi, Ag;) are considered latent variables and sampled in our
MCMC sampler.

@ Given (Ay;, hi, Ag;) the process is Gaussian and we can predict at
unobserved locations and time points.

@ We compare the predictive performance using proper scoring
rules [Gneiting and Raftery, 2008]:
o LPS(p,x) = —log(p(x))
o IS(q1,q237) = (g2 — 1) + §(n —2)I (2 <
q1) + %(x —q2)I(x > g2). We use £ = 0.05 resulting in a 95%
credible interval.
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SPATIOTEMPORAL MODELING

000000 e

HEAVY TAILED PROCESSES

PREDICTIONS

@ Note that the distribution of )\Il’md is

PO A, 2%%,0) = p(AT™™! | AP, )

which is a log-Gaussian multivariate distribution.
@ Prediction scheme:
o We sample log)\ll’md from a Multivariate Gaussian distribution;
o And X\$*¢ and 6 from their posterior distributions;

o Then 2P"¢? is sampled from a Gaussian distribution given
obs obs
A$P%. 0, 2°%%.
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SIMULATION RESULTS

DATA

@ This data set has I = 30 locations and J = 30 time points
generated from a Gaussian model with no nugget effect
(T2 = 0).

@ The covariance model is nonseparable Cauchy (X; ~ Ga(\;, 1),
1 = 0,1, 2) in space and time with ¢ = 0.5.

@ We contaminated this data set with different kinds of “outliers”
in order to see the performance of the proposed models in each
situation.
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SIMULATION RESULTS

SPATIAL DOMAIN
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@ The proposal for \y;, h;, ¢ = 1,..., 1 in the MCMC sampler is
constructed by dividing the observations in blocks defined by
position in the spatial domain.

PASI, 20 20/ 37



SIMULATION RESULTS
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DATA 1

DESCRIPTION AND BF

@ One location was selected at random (location 7) and a random
increment from Unif(1.0, 1.5) times the standard deviation was
added to each observation for this location for the first 20 time
points.

@ The logarithm of the BF using Shifted-Gamma (A = 0.98)

estimators:
\nug. h (lognormal) h (gamma) A; A1 & h (lognormal)

Gaussian | -1 101 93 78 109
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SIMULATION RESULTS
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DATA 1

ESTIMATED CORRELATION FUNCTION - t5 = 1

Correlation
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(c) Nongaussian with h and A\; (d) Gaussian (Uncontaminated data)
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SIMULATION RESULTS
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DATA 1

NONGAUSSIAN MODEL WITH )\

~
2] of
: o |
w -
-
Q
c
S J g
83 3
g =
©
0 S
@
< ‘e W Wt e
o ° N
=
R R R e R S R E T T T T T
1 4 7 10 13 16 19 22 25 28 0.0 0.1 0.2 0.3 0.4
Observation indexes Distance from observation 07
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SIMULATION RESULTS
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NONGAUSSIAN MODEL WITH h (LOGNORMAL)
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(a) Variance for each location.  (b) Nugget for each location.
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SIMULATION RESULTS
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DATA 1

NONGAUSSIAN MODEL WITH A; AND h
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SIMULATION RESULTS
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DATA 1

KURTOSIS
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(a) Model with \;. (b) Model with A\ and h.

Marginal posterior distribution (full line) and prior distribution
(dashed line) of the kurtosis coefficient.
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SIMULATION RESULTS
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DATA 2

DESCRIPTION AND BF

@ The observations at time points 11 to 15 were contaminated by
adding a random increment from Unif(0.5, 1.5) times the
standard deviation to each observation for all spatial locations.

@ The logarithm of the BF using Shifted-Gamma (A = 0.98)

estimators:
‘nug. h (lognormal) A1 Ao AM&Ao  M&A&h

Gaussian ‘ 18 44 28 76 112 111
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SIMULATION RESULTS

DATA 2
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ESTIMATED CORRELATION FUNCTION - t5 = 1
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SIMULATION RESULTS
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NONGAUSSIAN MODELS
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(a) Model with lognormal h. (b) Model with lognormal A and A;.
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NONGAUSSIAN MODEL WITH A AND A9
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DATA

GAUSSIAN SPATIOTEMPORAL MODELING
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(b) Basque Country (Zoom).
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NON-GAUSSIAN SPATIOTEMPORAL MODELING

MODEL

@ Mean function:

p(s,t) = 8o + 0151 + 082 + d3h + Syt + O5t°
e Cauchy covariance function: X; ~ Ga(n;,1)

(1+|IS/aH°‘)’ (1 +[¢/b]") "
\/)\1 87, Al \/)\2 AQ t]

5:Si—Sj,t:tl'—tjandC:ﬁo/(l-f—ﬁo).

Clsi, s5,ti,t5) = (1+]s/al|+]t/b]7) 7"
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TEMPERATURE DATA
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RESULTS

BAYES FACTOR

‘ h M M&R A X&h A&A ALh& A
Shifted gamma ‘ 172 148 345 138 279 417 547

TABLE : The natural logarithm of the Bayes factor in favor of the model in
the column versus Gaussian model using Shifted-Gamma (A = 0.98)
estimator for the predictive density of z.
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TEMPERATURE DATA
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RESULTS

MODEL WITH h AND A,
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RESULTS

PREDICTED TEMPERATURE AT THE OUT-OF-SAMPLE
STATIONS

Station 1* Station 2* Station 3*
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(a) Gaussian Model. (b) Gaussian Model. (c) Gaussian Model.
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(d) Model with Ay & h. (e) Model with Ay & h.  (f) Model with Ay & h
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RESULTS

MODEL COMPARISON

model Average width IS LPS

Gaussian 3.78 435 97.25
h 3.83 434 112.56

Al 3.74 436 107.43

M &h 3.75 448 117.20
Ao 3.73 394 76.73

X & h 3.73 3.87 77.60
A& Ao 4.51 4.65 96.35
AL, h & Ao 3.84 4.02  90.30
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