Non-Gaussian Spatiotemporal Modeling Through Scale Mixing

Thais C O Fonseca - Universidade Federal do Rio de Janeiro Joint work with Mark F J Steel - Warwick University

PASI, 2014

PASI, 2014

/∰ ► < ∃ ►

PASI, 2014

2/37

INTRODUCTION

- Motivation
- 2 Spatiotemporal modeling
 - Nonseparable models
 - Heavy tailed processes
- **3** SIMULATION RESULTS
 - Data 1
 - Data 2
- 4 TEMPERATURE DATA
 - Non-gaussian spatiotemporal modeling
 - Results

TYPICAL PROBLEM

- Given: observations $Z(s_i, t_j)$ at a finite number locations $s_i, i = 1, ..., I$ and time points $t_j, j = 1, ..., J$.
- Desired: predictive distribution for the unknown value $Z(s_0, t_0)$ at the space-time coordinate (s_0, t_0) .
- Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

 $Z(s,t), \ (s,t) \in D \times T$, where $D \subseteq \Re^d, \ T \subseteq \Re$

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA
MOTIVATION				

Spatiotemporal data

Maximum temperature data - Spanish Basque Country (67 stations)

GENERAL MODELING FORMULATION

• The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$$\{Z(s,t); (s,t) \in D \times T\}.$$

• We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = \operatorname{Cov}(Z(s_1, t_1), Z(s_2, t_2))$$

- Positive definiteness: C has to imply that $\sum_{i=1}^{n} a_i Z(s_i, t_i)$ has positive variance for any $(s_1, t_1), \ldots, (s_n, t_n)$, any real a_1, \ldots, a_n , and any positive integer n.
- It is quite difficult to check whether a function is positive definite.

OUTLINE	INTRODUCTION	SPATIOTEMPORAL MODELING	SIMULATION RESULTS	TEMPERATURE DATA
MOTIVATION				

NON-GAUSSIAN SPATIOTEMPORAL MODELS

- Simplifying assumptions:
 - Stationarity: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2)$
 - Isotropy: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|)$
 - Separability: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_s(s_1, s_2)C_t(t_1, t_2)$
 - Gaussianity: The process has finite dimensional Gaussian distribution.
- Models based on Gaussianity will not perform well (poor predictions) if
 - the data are contaminated by outliers;
 - there are regions with larger observational variance;

OUTLINE	INTRODUCTION	SPATIOTEMPORAL MODELING	SIMULATION RESULTS	TEMPERATURE DATA
MOTIVATION				

NON-GAUSSIAN SPATIOTEMPORAL MODELS

- Simplifying assumptions:
 - Stationarity: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2)$
 - Isotropy: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|)$
 - Separability: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_s(s_1, s_2)C_t(t_1, t_2)$
 - Gaussianity: The process has finite dimensional Gaussian distribution.
- Models based on Gaussianity will not perform well (poor predictions) if
 - the data are contaminated by outliers;
 - there are regions with larger observational variance;

OUTLINE	INTRODUCTION 0000●	Spatiotemporal modeling	SIMULATION RESULTS	Temperature data 0000000
MOTIVATION				
EXAM	PLE			

• Maximum temperature data - Spanish Basque Country

OUTLINE	INTRODUCTION	SPATIOTEMPORAL MODELING	SIMULATION RESULTS	TEMPERATURE DATA

PASI, 2014

8/37

We will consider processes that are

- nonseparable in space and time;
- non-Gaussian;

CONTINUOUS MIXTURE

• Some nonseparable models: [Cressie and Huang, 1999], [Gneiting, 2002] and [Ma, 2002].

MIXTURE MODELS [MA, 2002]

$$C(s,t) = \int C_1(s;u) C_2(t;v) dF(u,v)$$
(1)

- Idea: convex combinations of valid separable covariance functions are valid and nonseparable functions.
- (U, V) is a bivariate nonnegative random vector with cumulative distribution function F.

• One may take advantage of the whole available literature of spatial statistics and time series; *C* is the unconditional covariance of

$$Z(s,t;U,V) = Z_1(s;U)Z_2(t;V)$$

It is natural to make separate modeling decisions regarding the spatial and temporal components, eg. smoothness and long range dependence can be different across space and time.

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA	
NONSEPARABLE MODELS					

In particular, if

•
$$C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}, C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$$

• $U = X_0 + X_1$ and $V = X_0 + X_2$, where X_i has finite moment generating function M_i , then

PROPOSITION

$$C(s,t) = \sigma^2 M_0(-(\gamma_1(s) + \gamma_2(t))) \ M_1(-\gamma_1(s)) \ M_2(-\gamma_2(t)), \ (s,t) \in D \times T,$$
(2)
e.g. $\gamma_1(s) = ||s/a||^{\alpha} \text{ and } \gamma_2(t) = |t/b|^{\beta}.$

Notice that c = corr(U, V) measures separability and $c \in [0, 1]$. See [Fonseca and Steel, 2011] for more details.

OUTLINE	INTRODUCTION	SPATIOTEMPORAL MODELING	SIMULATION RESULTS	TEMPERATURE DATA		
		00000000				
HEAVY TAILED PROCESSES						

MIXING IN SPACE AND TIME

We consider the process

$$\tilde{Z}(s,t) = \tilde{Z}_1(s;U)\tilde{Z}_2(t;V), \qquad (3)$$

MIXING IN SPACE

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
(4)

MIXING IN TIME

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$
(5)

PASI, 2014

MIXING IN SPACE

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- λ₁(s) accounts for regions in space with larger observational variance.
- If λ₁(s) = λ, ∀s ⇒ student-t process. But is does not account for regions with larger variance.
- We consider the glg process where {ln(λ₁(s)); s ∈ D} is a gaussian process with mean -^ν/₂ and covariance structure νC₁(.). [Palacios and Steel, 2006]

イロト イロト イヨト イ

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA
HEAVY TAILE	D PROCESSES			
PROCI	$\operatorname{ESS} h(s)$			

MIXING IN SPACE

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable $h_i = h(s_i), i = 1, ..., I$ are considered latent variables
- Their posterior distribution indicate outlying observations (*h_i* close to 0).

- We consider
 - $log(h_i) \sim N(-\nu_h/2, \nu_h).$
 - $h_i \sim \text{Ga}(1/\nu_h, 1/\nu_h).$

MIXING IN TIME

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- λ₂(t) accounts for sections in time with larger observational variance.
- This can be seen as a way to adress the issue of volatility clustering, which is common in finantial time series data.
- We consider the log gaussian process where $\{ln(\lambda_2(t)); t \in T\}$ is a gaussian process with mean $-\frac{\nu_2}{2}$ and covariance structure $\nu_2 C_2(.)$.

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA		
HEAVY TALLED PROCESSES						

RESULTING CORRELATION

• Conditioning on the latent variables:

$$Cov(\tilde{Z}(s_{i},t_{j}),\tilde{Z}(s_{i'},t_{j'})) = \sigma^{2}M_{0}(-\gamma_{1}(s)-\gamma_{2}(t))\frac{M_{2}(-\gamma_{2}(t))}{\sqrt{\lambda_{2}(t_{j})\lambda_{2}(t'_{j})}} \times \left[(1-\tau^{2})\frac{M_{1}(-\gamma_{1}(s))}{\sqrt{\lambda_{1}(s_{i})\lambda_{1}(s_{i'})}} + \tau^{2}\frac{I_{s_{i}=s_{i'}}}{\sqrt{h(s_{i})h(s_{i'})}}\right]$$

$$i, i' = 1, \dots, I, j, j' = 1, \dots, J, s = s_i - s_{i'}, t = t_j - t_{j'}.$$

• Integrating latent variables out:

$$\tilde{\rho}(s,t) = \frac{\exp\left[\frac{\nu}{4} \{C_1^*(s) - 1\} + \nu\right]}{\exp(\nu) + \omega^2 E(h^{-1})} M_0\{-\gamma_1(s) - \gamma_2(t)\} M_1\{-\gamma_1(s)\} M_2\{-\gamma_2(t)\}$$
(7)

16/37

 $\omega = \tau^2/(1-\tau^2)$. Throughout, we will use $C_1^*(s) = M_1\{-\gamma_1(s)\}.$

- (λ_{1i}, h_i, λ_{2j}) are considered latent variables and sampled in our MCMC sampler.
- Given (λ_{1i}, h_i, λ_{2j}) the process is Gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
 - LPS(p, x) = -log(p(x))• $IS(q_1, q_2; x) = (q_2 - q_1) + \frac{2}{\xi}(q_1 - x)I(x < q_1) + \frac{2}{\xi}(x - q_2)I(x > q_2)$. We use $\xi = 0.05$ resulting in a 95% credible interval.

イロト イポト イヨト イヨト

PASI, 2014

PREDICTIONS

• Note that the distribution of λ_1^{pred} is

$$p(\lambda_1^{pred} \mid \lambda_1^{obs}, z^{obs}, \theta) = p(\lambda_1^{pred} \mid \lambda_1^{obs}, \theta)$$

which is a log-Gaussian multivariate distribution.

- Prediction scheme:
 - We sample $log \lambda_1^{pred}$ from a Multivariate Gaussian distribution;

・ロト ・聞 ト ・ ヨト ・

PASI, 2014

- And λ_1^{obs} and θ from their posterior distributions;
- Then z^{pred} is sampled from a Gaussian distribution given $\lambda_1^{obs}, \theta, z^{obs}$.

OUTLINE	Introduction	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA	

DATA

- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect (τ² = 0).
- The covariance model is nonseparable Cauchy $(X_i \sim \text{Ga}(\lambda_i, 1), i = 0, 1, 2)$ in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

PASI, 2014

20/37

SPATIAL DOMAIN

• The proposal for $\lambda_{1i}, h_i, i = 1, ..., I$ in the MCMC sampler is constructed by dividing the observations in blocks defined by position in the spatial domain.

DESCRIPTION AND BF

- One location was selected at random (location 7) and a random increment from Unif(1.0, 1.5) times the standard deviation was added to each observation for this location for the first 20 time points.
- The logarithm of the BF using Shifted-Gamma (λ = 0.98) estimators:

 nug. h (lognormal)
 h (gamma)
 λ₁
 λ₁ & h (lognormal)

	1145.	n (logiloilliai)	no (guillina)	~1	$\mathcal{M}_1 \propto \mathcal{M}$ (logilolinal)
Gaussian	-1	101	98	78	109

21/37

PASI, 2014

Estimated correlation function - $t_0 = 1$

(c) Nongaussian with h and λ_1 (d) Gaussian (Uncontaminated data)

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	Temperature data
DATA 1				

Nongaussian model with λ_1

(a) Variance for each location. (b) Median of σ_i^2 vs. distance from obs. 7.

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA
DATA 1				

NONGAUSSIAN MODEL WITH h (LOGNORMAL)

(a) Variance for each location. (b) Nugget for each location.

(a) Variance for each location.

(b) Nugget for each location.

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA
DATA 1				
KURT	OSIS			

Marginal posterior distribution (full line) and prior distribution (dashed line) of the kurtosis coefficient.

DESCRIPTION AND BF

- The observations at time points 11 to 15 were contaminated by adding a random increment from Unif (0.5, 1.5) times the standard deviation to each observation for all spatial locations.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

	nug.	h (lognormal)	λ_1	λ_2	$\lambda_1 \& \lambda_2$	$\lambda_1 \& \lambda_2 \& h$
Gaussian	18	44	28	76	112	111

PASI, 2014

OUTLINE	Introduction	Spatiotemporal modeling	SIMULATION RESULTS	Temperature 0000000
DATA 2				

ESTIMATED CORRELATION FUNCTION - $t_0 = 1$

(c) Model with λ_1 , λ_2 , h. (d) Gaussian (Uncontaminated data).

PASI, 2014

OUTLINE	INTRODUCTION	SPATIOTEMPORAL MODELING	SIMULATION RESULTS	TEMPERATUR
DATA 2				

NONGAUSSIAN MODELS

(a) Model with lognormal h.

(b) Model with lognormal h and λ_1 .

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DATA
DATA 2				
Nonc	GAUSSIAN	MODEL WITH λ_1	and λ_2	

(a) Variance for each time. (b) Variance for each time.

(d)
$$\lambda_{2j}, j = 1, j, j, J$$

OUTLINE INTRODUCTION 00000

SIMULATION RESULTS

NON-GAUSSIAN SPATIOTEMPORAL MODELING

DATA

(a) Spain and France Map.

(b) Basque Country (Zoom).

(日)

PASI, 2014

MODEL

• Mean function:

$$\mu(s,t) = \delta_0 + \delta_1 s_1 + \delta_2 s_2 + \delta_3 h + \delta_4 t + \delta_5 t^2$$

• Cauchy covariance function: $X_i \sim Ga(\eta_i, 1)$

$$C(s_i, s_j, t_i, t_j) = \frac{(1+||s/a||^{\alpha})^{-\eta_1}}{\sqrt{\lambda_1(s_i)\lambda_1(s_j)}} \frac{(1+|t/b|^{\beta})^{-\eta_2}}{\sqrt{\lambda_2(t_i)\lambda_2(t_j)}} (1+||s/a||^{\alpha}+|t/b|^{\beta})^{-\eta_0},$$

$$s = s_i - s_j, t = t_i - t_j \text{ and } c = \eta_0/(1+\eta_0).$$

イロト イ理ト イヨト イヨト

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	Temperature data
RESULTS				

BAYES FACTOR

	h	λ_1	$\lambda_1 \& h$	λ_2	$\lambda_2 \& h$	$\lambda_1 \& \lambda_2$	$\lambda_1, h \& \lambda_2$
Shifted gamma	172	148	345	138	279	417	547

PASI, 2014

33/ 37

TABLE : The natural logarithm of the Bayes factor in favor of the model in the column versus Gaussian model using Shifted-Gamma ($\lambda = 0.98$) estimator for the predictive density of z.

OUTLINE	INTRODUCTION	Spatiotemporal modeling	SIMULATION RESULTS	TEMPERATURE DAT
RESULTS				

Model with h and λ_2

PASI, 2014 34/ 37

(d) Model with $\lambda_2 \& h$. (e) Model with $\lambda_2 \& h$. (f) Model with $\lambda_2 \& h$

35/ 37

PASI, 2014

OUTLINE	INTRODUCTION	Spatiotemporal modeling 0000000000	SIMULATION RESULTS	TEMPERATURE DATA
RESULTS				

MODEL COMPARISON

model	Average width	\bar{IS}	LPS
Gaussian	3.78	4.35	97.25
h	3.83	4.34	112.56
λ_1	3.74	4.36	107.43
$\lambda_1 \& h$	3.75	4.48	117.20
λ_2	3.73	3.94	76.73
$\lambda_2 \& h$	3.73	3.87	77.60
$\lambda_1 \ \& \ \lambda_2$	4.51	4.65	96.35
$\lambda_1, h \& \lambda_2$	3.84	4.02	90.30

(日)

PASI, 2014

(日)

PASI, 2014

37/37

RESULTS

REFERENCES

N Cressie and H-C Huang

Classes of Nonseparable, Spatio-Temporal Stationary Covariance Functions

Journal of the American Statistical Association. (94) 1330–1340, 1999.

T Fonseca and M F J Steel

A General Class of Nonseparable Space-time Covariance Models Environmetrics, vol 22 issue 2, pages 224-242, 2011.

T Fonseca and M F J Steel

Non-Gaussian Spatiotemporal Modelling through Scale Mixing *Biometrika*. vol 98 issue 4, pages 761-774, 2011.

T Gneiting

Nonseparable, Stationary Covariance Functions for Space-Time Data

Journal of the American Statistical Association. (97) 590–600, 2002.

T Gneiting and A E Raftery

Strictly proper scoring rules, prediction and estimation *JASA*. (102) 360–378, 2007.

📔 C Ma

Spatio-temporal covariance functions generated by mixtures *Mathematical geology*. (34) 965–975, 2002.

M B Palacios and M F J Steel Non-Gaussian Bayesian Geostatistical Modeling JASA. (101) 604–618, 2006.