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1. Non-spatial summaries

Numerical summaries: Mean, median, standard
deviation, range, etc.
Not useful for spatial data, as they ignore the
location information. Notice that in spatial statistics
data should not be regarded as having come from a
single population, usually they are NOT i.i.d.
Stem-and-leaf display:
Better than a numerical summary as gives a
complete picture of the data. Again, the location is
ignored, it gives no indication of the data’s spatial
structure.
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2. Methods used to explore large-scale spatial variation

3-D scatter plot: a plot of Yi versus location
(d = 2);
Plot of Yi versus each marginal coordinate (latitude
and longitude);
Contour plot of Yi (assuming d = 2). Requires some
kind of smoothing operation.
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3. Methods to explore small-scale variation:
(a) dependence

Variogram cloud

Plot (Z(si)− Z(sj))2 versus (si − sj)
1/2 for all

possible pairs of observations;
The plot is often an unintelligible mess, hence it
may often be advisable to bin the lags and plot a
boxplot for each bin;
Note that this implicitly assumes isotropy (does not
differentiate any directions).
The square-root differences are more resistant to
outliers.
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Empirical semivariogram (or variogram)
Plot one-half the average squared difference (or, for
the variogram, merely the average squared
difference) of observations lagged the same
distance and direction apart, versus the lag
Assume here that the data are regularly spaced
Formally we plot γ̂(hu) versus hu, where

γ̂(hu) =
1

2N(hu)

∑
si−sj=hu

{Z(si)− Z(sj)}2,

(u = 1, · · · , k),

h1, · · · ,hk are the distinct values of h represented
in the data set, and N(hu) is the number of times
that lag hu occurs in the data set
Note that this implicitly assumes stationarity of
some kind
If d = 2, you can display as a 3-D plot or you can
superimpose a few selected directions (e.g.:
N-S,NW-SE, E-W, and NE-SW) on the same 2-D
graph
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- Sample autocovariance function

Similar in many ways to the sample semivariogram
Plot of Ĉ(hu) versus hu, where

Ĉ(hu) =
1

N(hu)

∑
si−sj=hu

(Z(si)− Z)(Z(sj)− Z)

This is a spatial generalization of an important tool
used by time series analysts

- 3-D plot of correlation range versus spatial location,
computed from a moving window. This method can
detect nonstationarity in dependence
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4. Methods used mainly to explore small-scale
variation: (b) variability

3-D plot of standard deviation versus spatial
location, computed from a moving window. May
reveal nonstationarity in variability, and indicate
which portion(s) of A is (are) different from the rest
Scatterplot of standard deviation versus mean,
computed from a moving window. May also reveal
nonstationarity in variability, but differently from the
previous method. Strictly this method is non-spatial



require("geoR")

prices=read.table("house_prices.txt",header=TRUE)

prices1=prices[1:500,]

names(prices1)

prices=na.exclude(prices1)

names(prices)

#standardizing covariates

stdsqft=as.numeric(scale(prices$sqft,scale=TRUE))

stdage=as.numeric(scale(prices$age,scale=TRUE))

stddistfree=as.numeric(scale(prices$dist_freeway,scale=TRUE))

#using the standardizing variables

prices$sqft=stdsqft

prices$age=stdage

prices$dist_freeway=stddistfree

#transforming into a geoR object

geoprices=as.geodata(prices2,coords.col=c(8,9),covar.col=2:7,

data.col=1)

plot(geoprices)

plot(geoprices,scatter3d=TRUE)



#transforming into a geoR object

geoprices=as.geodata(prices2,coords.col=c(8,9),covar.col=2:7,data.col=1)

plot(geoprices)

plot(geoprices,scatter3d=TRUE)

#checking for duplicated coordinates

dup.coords(geoprices)

#jittering the duplicated locations

coord=geoprices$coords

coordjitter=jitter2d(geoprices$coords,max=0.001)

dup.coords(coordjitter)

cbind(geoprices$coords,coordjitter)

geoprices$coords=coordjitter

plot(geoprices)
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Introduction

Basic Model: Data (Y) are a (partial) realization of a
random process (stochastic process or random field)

{Y (s) : s ∈ D}

where D is a fixed subset of Rd with positive
d-dimensional volume. In other words, the spatial index s
varies continously throughout the region D.
NOTE:
A stochastic process is a collection of random variables
X(t), t ∈ T defined on a common probability space
indexed by t which is in the index set T which describes
the evolution of some system. For example, X(t) could
be the number of people in line at time t, or Y (s) the
amount of rainfall at location s.
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GOAL:

Want a method of predicting Y (s0) for any s0 in D.

Want this method to be optimal (in some sense).

What do we need?

Want Y (s) : s ∈ D to be continuous and ”smooth
enough” (local stationarity)

description of spatial covariation

once we obtain the spatial covariation how to get
predicted values

Basic Approach: given variance structure, predict.
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Gaussian Processes

Before we proceed let us define Gaussian Processes
Definition:
A function Y (.) taking values y(s) for s ∈ D has a
Gaussian process distribution with mean function m(.)
and covariance function c(., .), denoted by

Y (.) ∼ GP (m(.), c(., .))

if for any s1, · · · , sn ∈ D, and any n = 1, 2, · · · , the joint
distribution of Y (s1), · · · , Y (sn) is multivariate Normal
with parameters given by

E{Y (sj)} = m(sj) and
Cov(Y (si), Y (sj)) = c(si, sj).
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Intrinsic Stationarity

It is defined through first differences:

E(Y (s + h)− Y (s)) = 0,

Var(Y (s + h)− Y (s)) = 2γ(h)

The quantity 2γ(h) is known as the variogram.
γ(.) is known as the semi-variogram.
In geostatistics, 2γ(.) is treated as a parameter of the
random process {Y (s) : s ∈ D} (because it describes the
covariance structure).
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Second Order Stationarity

Statistically speaking, some further assumptions about Y
have to be made. Otherwise, the data represent an
incomplete sampling of a single realization, making
inference impossible.
A random function Y (.) satisfying:

E(Y (s)) = µ ∀s ∈ D
Cov(Y (s)− Y (s′)) = C(s− s′) ∀s, s′ ∈ D

is defined to be second-order stationary. Furthermore,
if C(s− s′) is a function only of || s− s′ || (it is not a
function of the locations), then C(.) is said to be
isotropic.
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Notice that a process which is second order stationary is
also intrinsic stationary, the inverse is not necessarily true.
There is a stronger type of stationarity which is called
strict stationarity (joint probability distribution of the
data depends only on the relative positions of the sites at
which the data were taken).
If the random process Y (.) is Gaussian, we need only to
specify its first-order and second-order properties, namely
its mean function and its covariance function.
In practice, an assumption of second-order stationarity is
often sufficient for inference purposes and it will be one
of our basic assumptions.
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Covariogram and Correlogram

Covariogram and Correlogram
If

Cov(Y (s), Y (s′)) = C(s− s′)

for all s, s′ ∈ D, C(.) is called the covariogram.
If C(0) > 0, we can define

ρ(h) = C(h)/C(0)

as the correlogram.
Properties:

C(h) = C(−h)

ρ(h) = ρ(−h)

ρ(0) = 1

C(0) = V ar(Y (s)) if Y (.) is second order stationary.
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Relationships between covariogram
and variogram

Consider

V ar(Y (s)− Y (s′)) = V ar(Y (s)) + V ar(Y (s′))

−2Cov(Y (s), Y (s′))

If Y (.) is second order stationary,

V ar(Y (s)− Y (s′)) = 2{C(0)− C(s− s′)}

If Y (.) is intrinsically stationary,

2γ(h) = 2{C(0)− C(h)}

If C(h)→ 0 as || h ||→ ∞ then 2γ(h)→ 2C(0). (C(0)
is the sill of the variogram).
The variogram estimation is to be preferred to
covariogram estimation. (See Cressie, p.70 for more
details)
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Features of the Variogram

γ(−h) = γ(h)

γ(0) = 0

If limh→0 γ(h) = c0 6= 0, then c0 is called the
nugget effect.

Mathematically a nugget effect means:
If Y is L2 continuous(processes Y (.) for which
E(Y (s + h)− Y (s))2 → 0, as
|| h ||→ 0), nugget effects cannot happen!

- So if continuity is assumed at the microscale (very
small h) in the Y (.) process, the only possible
reason for c0 > 0 is measurement error. (Recall
2γ(0) is the variance of the difference between two
measurements taken at exactly the same place).

In practice we only have data {y(si) : i = 1, · · · , n}
so we can’t say much for lags
h < min{|| si − sj ||: 1 ≤ i < j ≤ n}
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Often in spatial prediction we assume nugget effect
is entirely due to measurement error. In other words,
it is reasonable to envisage that a measured value at
location x could be replicated, and that the resulting
multiple values would not be identical. In this case,
an alternative is to model a ”white noise” zero-mean
process that adds extra variation to each
observation, that is

Y (si) = S(si) + Zi,

where S(x) follows a Gaussian process with
covariance function γ(u) = σ2ρ(u) such that
ρ(0) = 1 and the Zi are mutually independent,
N(0, τ2) random variables. And the nuggect effect
would be

ρY (u) = σ2ρ(u)/(σ2 + τ2)→ σ2/(σ2 + τ2) < 1

as u→ 0
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Properties of the variogram

(i) 2γ(.) continuous at origin implies Y (.) is L2

continuous

(ii) 2γ(h) does not approach 0 as h→ origin implies
Y (.) is not L2 continuous and is highly irregular

(iii) 2γ(.) is a positive constant (except at the origin
where it is zero). Then Y (s) and Y (s′) are
uncorrelated for any s 6= s′, regardless of how close
they are; Y (.) is often called white noise.
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Properties of the variogram (continuing)

(iv) 2γ(.) must be conditionally negative-definite, i.e.

n∑
i=1

n∑
j=1

aiaj2γ(si − sj) ≤ 0

for any finite number of locations {si : i = 1, · · ·n}
and real numbers {a1, · · · , an} satisfying∑n

i=1 ai = 0.

(v) 2γ(h)/ || h ||2→ 0 as || h ||→ ∞, i.e. 2γ(h) can’t
increase too fast with || h ||2.
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Some Isotropic Parametric Covariance
Functions

Most parametric variogram models used in practice will
include a nugget effect, and in the stationary case will
therefore be of the form

2γ(h) = τ2 + σ2(1− ρ(h))

ρ(h) must be a positive definite function. Also we would
usually require the model for the correlation function ρ(h)
to incorporate the following features:

1. ρ(.) is monotone non-increasing in h;

2. ρ(h)→ 0 as h→∞;

3. at least one parameter in the model controls the rate
at which ρ(h) decays to zero.
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In addition we may wish to include in the model some
flexibility in the overall shape of the correlation function.
Hence, a parametric model for the correlation function
can be expected to have one or two parameters, and a
model for the variogram three or four (the two correlation
parameters plus the two variance components).
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How does a variogram usually look like?

nugget effect - represents micros-cale variation or
measurement error. It can be estimated from the
empirical variogram as the value of γ(h) for h = 0.

sill - the limh→∞ γ(h) representing the variance of
the random field.

range - the distance (if any) at which data are no
longer autocorrelated.
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The spherical family
This one parameter family of correlation function is
defined by

ρ(h;φ) =

{
1− 3

2(h/φ) + 1
2(h/φ)3 ; 0 ≤ h ≤ φ

0 ;h > φ

Because the family depends only on a scale
parameter φ, it gives no flexibility in shape.
The spherical correlation function is continuous and
twice-differentiable at the origin.
Therefore corresponds to a mean-square
differentiable process Y (s).
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The powered exponential family
This two parameter family is defined by

ρ(h) = exp{−(h/φ)κ},

with φ > 0 and 0 < κ ≤ 2.
The corresponding process Y (s) is mean-square
continuous (but non differentiable) if κ < 2, but
becomes mean-square infinitely differentiable if
κ = 2.
The exponential correlation function corresponds to
the case where κ = 1.
The case κ = 2 is called the Gaussian correlation
function.
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The Matérn family
It is defined by

ρ(h;φ;κ) = {2κ−1Γ(κ)}−1(h/φ)κKκ(h/φ)

where (φ, κ) are parameters and Kκ(.) denotes the
modified Bessel function of the third kind of order κ.
This family is valid for any φ > 0 and κ > 0.
The case κ = 0.5 is the same as the exponential
correlation function,
ρ(h) = exp(−h/φ).
The Gaussian correlation function is the limiting case
as κ→∞.
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One attractive feature of this family is that the parameter
κ controls the differentiability of the underlying process
Y (s) in a very direct way; the integer part of κ gives the
number of times that Y (s) is mean-square differentiable.
The Matérn family is probably the best choice as a
flexible, yet simple (only two parameters) correlation
function for general case.
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Spatial Regression

Generalized least squares (GLS) with known covariance
matrix.

Model:
Y = Fβ + ε, E(ε) = 0, V ar(ε) = V,
where V is a completely specified positive definite
matrix. (e.g. Vij = σ2exp{−φdij}, exponential
family with φ and σ2 known).

GLS estimator of β:
β̂GLS = (F′V−1F)−1F′V−1Y.

But in practice φ is unknown and consequently V cannot
be completely specified. A natural solution is to replace φ
in the evaluation of V by an estimator φ, thereby
obtaining V̂ = V(φ̂) (Estimated GLS).
EGLS estimator of β:
β̂GLS = (X′V̂−1X)−1X′V̂−1Y
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Spatial Regression

Classical Procedure:

1. Estimate β using ordinary least squares;

2. Estimate residuals from this β estimate;

3. Calibrate the semi-variogram from the
residuals;

4. Use the calibration of the semi-variogram to
estimate V;

5. Re-estimate β using βGLS .



#removing some observed values for prediction

predloc=c(2,10,85,91,102)

prices2=prices[-predloc,]

#standard regression

reg=lm(prices2[,1]~prices2[,2]+prices2[,3]

+prices2[,4]+prices2[,6])

fitreg=summary(reg)

fitreg

#Residual Analysis

resid=matrix(c(prices2[,8],prices2[,9],fitreg$residuals),

ncol=3,byrow=FALSE)

georesid=as.geodata(resid,coords.col=c(1,2),data.col=3)

plot(georesid)



#variogram of the residuals

# binned variogram

vario.b <- variog(georesid, max.dist=1)

# variogram cloud

vario.c <- variog(georesid, max.dist=1, op="cloud")

#binned variogram and stores the cloud

vario.bc <- variog(georesid, max.dist=1, bin.cloud=TRUE)

# smoothed variogram

#vario.s <- variog(georesid, max.dist=1, op="sm", band=0.2)

# plotting the variograms:

par(mfrow=c(2,2))

plot(vario.c, main="variogram cloud")

plot(vario.bc, bin.cloud=TRUE,

main="clouds for binned variogram")

plot(vario.b, main="binned variogram")

#plot(vario.s, main="smoothed variogram")



#OLS estimate of the variogram

varioresid=variog(georesid,max.dist=0.08)

#ols estimates of the variogram parameters

olsvari=variofit(varioresid,ini=c(0.02,0.1))

summary(olsvari)

par(mfrow=c(1,1))

plot(variog(georesid,max.dist=0.10))

lines(olsvari)



#Envelopes for an empirical variogram by simulating

#data for given model parameters.

#Computes bootstrap paremeter estimates

resid.mc.env <- variog.mc.env(georesid, obj.variog

= varioresid)

plot(varioresid,ylim=c(0,0.1))

lines(resid.mc.env)

#fitting the parameters of a variogram "by eye"

eyefit(varioresid)



#fitting a spatial regression model

meantrend=trend.spatial(~sqft+age+bedrooms+dist_freeway,

geoprices)

#a set of initial values

#spatialreg1=likfit(geoprices,trend=meantrend,

ini.cov.pars=c(0.15,0.1),nospatial=TRUE)

load(file="spatialreg1.RData")

#save("spatialreg1", file="spatialreg1.RData")

summary(spatialreg1)



#spatial interpolation for locations left out from inference

names(prices)

xp=prices[predloc,c(2:4,7)]

meantrend.loc <- trend.spatial(~sqft+age+bedrooms+

dist_freeway, xp)

kc <- krige.conv(geoprices, loc=locationpred,

krige=krige.control(trend.d=meantrend,

trend.l=meantrend.loc,

obj.model=spatialreg1),

output=output.control(n.pred=1000))

names(kc)

dim(kc$simul)

par(mfrow=c(3,2), mar=c(3,3,0.5,0.5))

for(i in 1:5){

hist(kc$simul[i,], main="", prob=T)

lines(density(kc$simul[i,]))

abline(v=prices[predloc,1][i], col=2)

}
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Review of Kriging

Recall that

1. S(.) is a stationary Gaussian process with
E[S(s)] = 0, V ar(S(s)) = σ2 and correlation
function
ρ(φ;h) = Corr(S(s), S(s− h));

2. The conditional distribution of Yi given S(.) is
Gaussian with mean µ(xi) + S(xi) and variance τ2;

3. µ(s) =
∑p

j=1 βjfj(s) for known explanatory
variables fj(.);

4. Yi : i = 1, 2, · · · , n are mutually independent,
conditional on S(.).
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These assumptions imply that the joint distribution of Y
is multivariate Normal,

Y | θ ∼ Nn(Fβ, σ2R + τ2I)

where:

θ = (β, σ2,γ, τ2),

β = (β1, · · · , βp),

F is the n× p matrix with jth

column fj(x1), · · · , fj(x),

I is the n× n identity matrix,

R is the n× n matrix with (i, j)th element ρ(uij ;γ),
where uij =|| xi − xj ||, the Euclidean distance between
xi and xj , and γ are the parameters in the chosen
parametric correlation function.
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Parameter Estimation

In our model the vector of parameters is given by
θ = (β, σ2,γ, τ2).
From Bayes’ Theorem,

π(θ) ∝ p(θ) l(θ)

It follows that

π(β, σ2,γ, τ2) ∝ p(β, σ2,γ, τ2) | V |−1/2

exp

{
−1

2
(y − Fβ)′V−1(y − Fβ)

}
(1)

where V = σ2R + τ2I. Usually we assume that the
parameters are independent a priori, then

p(β, σ2, τ2,γ) = p(β) p(σ2) p(τ2) p(γ)
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Predictive Inference

Notice that

p(S | Y) =

∫
p(S | Y,θ) p(θ | Y)dθ

The Bayesian predictive distribution is an average of
classical predictive distributions for particular values of θ,
weighted according to the posterior distribution of θ.
The effect of the above averaging is typically to make the
predictions more conservative, in the sense that the
variance of the predictive distribution is usually expected
to be larger than the variance of the distribution
(S | Y, θ̂), obtained by plugging an estimate of θ into
the classical predictive distribution.
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Prediction with uncertainty only in the mean
parameter

Assume σ2 and φ are known and τ2 = 0.
Assume a Gaussian prior mean for the parameter
β ∼ N(mβ, σ

2Vβ), where σ2 is the (assumed known)

variance of S(x), the posterior is given by

β | Y ∼ N(β̂; V̂β)

where
β̂ = (V−1

β
+ F′R−1F)−1(V−1

β
mβ + F′R−1y)

and
V̂β = σ2(V−1

β
+ F′R−1F)−1
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Prediction of Y0 = S(x0) at an arbitrary location x0,

p(Y0 | Y, σ2, φ) =∫
p(Y0 | Y,β, σ2, φ)p(β | Y, σ2, φ)dβ

This predictive distribution is Gaussian with mean and
variance given by

E[Y0 | Y] = (F0 − r′R−1F)(V−1
β

+ F′R−1F)−1

V−1
β

mβ +

[r′R−1 + (F0 − r′R−1F)

(V−1
β

F′R−1F)−1F′R−1]Y

V [Y0 | Y] = σ2[R0 − r′R−1r +

(F0 − r′R−1F)(V−1
β

+ F′R−1F)−1

(F0 − r′R−1F].

where r is the vector of correlations between S(x0) and

S(xi) : i = 1, · · · , n.
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The predictive variance has 3 components: the first and
second components represent the marginal variance for
Y0 and the variance reduction after observing Y, whilst
the third component accounts for the additional
uncertainty due to the unknown value of β. This last
component reduces to zero if Vβ = 0, since this formally
corresponds to β being known beforehand.
In the limit as all diagonal elements of
Vβ →∞, these formulae for the predictive mean and
variance correspond exactly to the universal kriging
predictor and its associated kriging variance, which in
turn reduce to the formulae for ordinary kriging if the
mean value surface is assumed constant.
⇒ ordinary and universal kriging can be interpreted as
Bayesian prediction under prior ignorance about the mean
(and known σ2).
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Prediction with uncertainty in all model
parameters

In this case all the quantities in the model are considered
unknown ⇒ need to specify their prior distribution.

Likelihood is like in equation (1);

Bayesian Model completed with prior distribution for
θ = (β, σ2,γ, τ2) and assume, for example,
Vij = σ2exp(−φ(dij)

κ); in this case γ = (φ, κ);

p(β) ∼ Np(0, σ2Vβ), for some fixed diagonal matrix

Vβ ;

φ must be positive, then one possibility is
p(φ) ∼ Ga(a2, b2);

κ could have an uniform prior on the interval [0.05, 2].

Usually we use p(σ2) ∼ IG(a1, b1) and
p(τ2) ∼ IG(a3, b3) (conjugacy of the normal-gamma) .
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Posterior distribution

Assume θ = (β, σ2, φ, τ2, κ) then

π(θ) ∝ | V(γ) |−1/2 exp

{
−1

2
(y −Xβ)′V(γ)−1

(y −Xβ)
}

×(σ2)−n/2 exp

{
− 1

2σ2

p∑
i=1

(βi − µi)2
}

×(φ)(a2−1) exp {−b2φ}
×(σ2)−(a1+1) exp

{
−b1/σ2

}
×(τ2)−(a3+1) exp

{
−b3/τ2

}
⇒ Unknown distribution ⇒ need of approximation.
Usually, we use MCMC methods.
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Predictive Inference

Recall that

p(S | Y) =

∫
p(S | Y,θ) p(θ | Y)dθ

Suppose we can draw samples from the joint
posterior distribution for θ, i.e

θ(1),θ(2), · · · ,θ(L) ∼ π(θ)

Then

p(S | Y) =

∫
p(S | Y,θ) p(θ | Y)dθ

≈ 1

L

L∑
i=1

p(S | Y,θ(i))

↓
This is Monte Carlo integration
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Predictive Inference (Bayesian kriging)

Prediction of Y (s0) at a new site s0 associated
covariates x0 = x(s0)

Predictive distribution:

p(y(s0) | y,X,X0) =

∫
p(y(s0,θ | y,X,X0)dθ

=

∫
p(y(s0) | y,θ,X,X0)p(θ | y,X)dθ

p(y(s0) | y,θ,X,X0) is normal since
p(y(s0),y | θ,X,X0) is!

⇒ easy Monte Carlo estimate using composition
with Gibbs draws θ(1), · · · ,θ(L): for each θ(l) drawn
from p(θ | y,X), draw Y (s0)

(l) from
p(y(s0) | y,θ(l),X,X0)
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Predictive Inference

Suppose we want to predict at a set of m sites, say
S0 = {s01, · · · , s0m}
We could individually predict each site
“independently” using method of the previous slide

BUT joint prediction may be of interest, e.g.,
bivariate predictive distributions to reveal pairwise
dependence, to reflect posterior associations in the
realized surface

Form the unobserved vector
Y0 = (Y (s01, · · · , Y (s0m)), with X0 as covariate
matrix for S0, and compute

p(y0 | y,X,X0) =

∫
p(y0 | y,θ,X,X0)p(θ | y,X)dθ

Again, posterior sampling using composition
sampling
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