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PART I: Simulating Nonstationary Spatial Data

What do nonstationary spatial processes look like? How can we determine whether we need to fit a
nonstationary model to our data? To answer these questions, it can be helpful to examine synthetic
data generated from a nonstationary spatial statistical model, such as the one given below.

Let Z(·) be a mean-zero spatial process defined for all s ∈ G ⊂ R2, where

Z(s) = Y (s) + ε(s),

Y (·) ∼ GP(0,Ω(Ξ)), ε(s)
iid∼ N(0, τ2) for all s ∈ G, and Y (·) and ε(·) are independent.

The elements of Ω(Ξ) are Ωij ≡ Cov(Y (si), Y (sj)), which are given by a parametric
covariance function

Cov(Y (si), Y (sj)) = C(si, sj|Ξ),

which depends on the generic parameter vector Ξ. Following Paciorek and Schervish
(2006) and Stein (2005), we take

C(si, sj) = σ2|Σi|1/4|Σj|1/4
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whereMν(·) is the Matérn correlation function with smoothness parameter ν, Σi ≡ Σ(si)
is the (d× d) covariance matrix for the Gaussian kernel function centered at location si
(henceforth called the kernel matrix), and

Qij = (si − sj)
′
(

Σi + Σj
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)−1
(si − sj).

The kernel matrices are parameterized as follows. Each 2× 2 kernel matrix is

Σi =

[
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and we define
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(where ρi = σ3,i/(σ1,i · σ2,i) ∈ (−1, 1)), so that each element of Ψi has support on R
and can be modeled using a Gaussian process with an exponential covariance structure.
For example, E[ψi1] = m1 and

cov(ψi1, ψ
j
1) = v21 exp

{
−
||si − sj||

r1

}
for all si, sj ∈ G. Thus, the model for the kernel matrices has three mean parameters
m = (m1,m2,m3)

′, three spatial variance parameters v = (v1, v2, v3)
′, and three range

parameters r = (r1, r2, r3)
′.

The file part1.R contains R code to generate realizations from this model for a set values of
τ2, σ2, ν,m,v, and r. The kernel matrix parameters Ψi vary smoothly across space.

Some ideas:

1. Try generating data using different parameter values for the kernel matrix model parameters
(i.e., m,v, and r). How do the kernel ellipses change? Do the realizations of Z(·) look
noticeably different?

2. Using functions in the geoR library, use classical geostatistical tools to assess whether the
simulated data come from a stationarity process (e.g., empirical variograms of subsets of the
data) pretending that you do not know the true data generating model. Can you find values
of m,v, and r such that exploratory techniques such as variogram analyses clearly pick up
evidence of nonstationarity?

PART II: Data Challenge

The amount of annual precipitation across the state of Colorado (USA) is known to vary
considerably due in part to the state’s diverse topology. In particular, western Colorado is highly
mountainous (part of the Rocky Mountains) whereas eastern Colorado is fairly flat. See the
elevation map below.

Figure 1: Colorado elevation (in meters) map.
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The R data file precip.Rdata contains the geodata object precip.geo, which includes seven
years of annual precipitation anomalies1 at 202 locations (given by the longitude and latitude
coordinates) across Colorado. (The meteorological data are available online from the National
Center for Atmospheric Research at http://www.image.ucar.edu/GSP/Data/US.monthly.met/

CO.html) Also included are the elevation (in meters) of the meteorological station locations.

Some ideas:

1. Perform exploratory analyses of the data to determine whether the spatial dependence struc-
ture of precipitation varies across the state. Do mountainous areas exhibit shorter or longer
range spatial dependence than flatter regions?

2. Write down a spatial statistical model for these data. How can you include the elevation
information in the model?

References

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modeling using a new class of nonstationary
covariance functions. Environmetrics, 17:483–506.

Stein, M. L. (2005). Nonstationary spatial covariance functions. Unpublished technical report.

1in site-specific standard deviation units based on historical records
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