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1 A Bayesian model for continuously-indexed Gaussian spatial
data

A simple Bayesian model for a univariate spatial Gaussian process can be defined as follows. The
quantity of interest will be denoted {Z(s), s ∈ G}, G ⊂ Rd (d is the dimension of the spatial
domain, here d = 2), which is the observed value of Y (s), a latent spatial process. Furthermore,
suppose we have observations which are a partial realization of this random process, taken at
a fixed, finite set of n spatial locations {s1, ..., sn} ∈ G, giving the random (observed) vector
Z = (Z(s1), ..., Z(sn))′, which will be assumed to have a multivariate Gaussian distribution,
conditional on the unobserved latent process. Specifically,

Z(si) = x′iβ + Y (si) + ε(si)

where E[Z(si)] = x′iβ (xi is a generic vector of observable covariate information for location si),
the ε(·) are iidN (0, τ 2), and Y (·)|Ξ ∼ GP(0,Ω(Ξ)); ε(·) and Y (·) are independent. The elements
of Ω(Ξ) are Ωij ≡ Cov(Y (si), Y (sj)), defined through a parametric covariance function

Cov(Y (si), Y (sj)) = C(si, sj|Ξ)

which depends on the generic parameter vector Ξ. The full parameter vector is θ = (β, τ 2,Ξ);
integrating out the process Y, we obtain the marginal likelihood of the observed data, given the
parameters:

Z|θ ∼ Nn(Xβ, τ 2In + Ω).

2 A nonstationary Matérn covariance function via kernel
convolution

A univariate spatial Gaussian process Y (s) can be defined by way of kernel convolution;
specifically, define

Y (s) =

∫
Rd
Ks(u)dW (u),
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where W (·) is a zero-mean white noise process with unit variance and Ks(·) is a spatially-varying
kernel function centered at s ∈ G. The kernel functions are particularly important because they
define the process covariance: for si, sj ∈ G,

C(si, sj) ≡ Cov
(
Y (si), Y (sj)

)
=

∫
Rd
Ksi(u)Ksj(u)du.

As in the original paper by Higdon et al. (1998), if d-variate Gaussian densities are used for the
kernel functions, a closed form can be obtained for C(si, sj), namely

C(si, sj) = (2
√
π)−d

∣∣∣∣Σi + Σj

2

∣∣∣∣−1/2 exp{−Qij} = (2
√
π)−d

∣∣∣∣Σi + Σj

2

∣∣∣∣−1/2 ρ(√Qij

)
, (1)

where Σi ≡ Σ(si) is the (d × d) covariance matrix for the Gaussian kernel function centered at

location si (henceforth called the kernel matrix), Qij = (si − sj)
′
(

Σi+Σj

2

)−1
(si − sj), and ρ(·)

is the standard Gaussian correlation function. The kernel matrices Σ(si) can be interpreted as a
locally varying geometric anisotropy matrix; i.e., Σ(si) controls the anisotropic behavior of the
process in a small neighborhood of each point si.

However, using a Gaussian correlation function as in (1) has the undesirable property of giving
process realizations which are infinitely differentiable. Building off the ideas in Paciorek (2003),
Stein (2005) proves that a generalization of (1) still gives a valid covariance function. Specifically,

C(si, sj) = σ(si)σ(sj)

∣∣∣∣Σi + Σj

2

∣∣∣∣−1/2M ν(si)+ν(sj)

2

(√
Qij

)
(2)

is a valid covariance function, where σ(si) is a locally varying “variance” parameter (σ(si) is
proportional to the actual process variance at si), ν(si) is a locally varying smoothness parameter,
and Mν(·) is a Matérn correlation function with smoothness ν. The model in (2) is extremely
flexible, as it allows the process variance, smoothness, and geometric anisotropy to vary over space;
furthermore, using the Matérn class of correlation functions avoids the undesirable smoothness
properties of (1).

The model to be used in the simulated dataset is a simplified version of (2) (due to Paciorek and
Schervish (2006)) which focuses on the spatially varying geometric anisotropy of a spatial process.
Specifically, we will set σ(si) ≡ σ|Σi|1/4 and ν(si) ≡ ν for all si ∈ G, and allow the Σ(si) to vary
in space. Formally, the covariance function we will use is

C(si, sj) = σ2|Σi|1/4|Σj|1/4
∣∣∣∣Σi + Σj

2

∣∣∣∣−1/2Mν

(√
Qij

)
, (3)

which is a valid covariance function on Rd, d ≥ 1. This choice of σ(si) gives a constant process
variance:

Var
(
Y (si)

)
≡ C(si, si) = σ2|Σi|1/4|Σi|1/4

∣∣∣∣Σi + Σi

2

∣∣∣∣−1/2Mν(0) = σ2.

Following the notation above, the parameter vector is now

θ = (β, τ 2, σ2, ν,Σ(·)).
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3 Kernel parameterization, specific values used, and data
dictionary

Given that the focus of the dataset is on the spatial dependence structure, the process mean will
be fixed to zero; i.e., β ≡ µ = 0. The default values used for other parameters in the simulated
data are τ 2 = 0.1 (nugget effect), σ2 = 1 (σ2 is proportional to the process variance), and ν = 0.5
(process smoothness; ν = 0.5 implies an exponential covariance structure). The dataset contains
n = 676 observations on a spatial region ofG = [0, 5]× [0, 5]; the gridded locations have a spacing
of 0.2.

The kernel matrices are parameterized as follows. Each 2× 2 kernel matrix Σi is

Σi =

[
σ2
1,i σ3,i
σ3,i σ2

2,i

]
,

although we could equivalently use the representation

Ψi =

 log(σ2
1,i)

log(σ2
2,i)

tan(π
2
ρi)

 ≡
 ψi1
ψi2
ψi3


(where ρi = σ3,i/(σ1,i · σ2,i) ∈ (−1, 1)), so that each element of Ψi has support R. Independent
Gaussian processes can be defined for each of these three components across the n locations, with
constant mean and exponential covariance structure. For example, define ψ1 = (ψ1

1, ψ
2
1, ..., ψ

n
1 )′;

then the values used for the dataset can be a draw from

ψ1 ∼ Nn(m11n,C1),

where C1 has ij element v21 · exp
{
− ||si−sj||

r1

}
, i, j = 1, ..., n. Thus, we require parameters for

the GP of the kernel matrices, namely three mean parameters m = (m1,m2,m3)
′, three variance

parameters v = (v1, v2, v3)
′, and three range parameters r = (r1, r2, r3)

′. These values were
chosen in an attempt to give something that resembles a reasonable kernel matrix process; the
specific values are m = (−2.3,−1.9, 1.0), v = (1, 1, 1), and r = (4, 4, 4).

3.1 Data dictionary
Two datasets are included: one with data on a grid, and one with data spaced irregularly over G.
Each dataset contains four variables: x, y, observed data, and a holdout indicator. Ten percent of
the data has been selected as a hold-out sample, and this final variable indicates if the observation
is to be held out (1) or not (0).
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