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Extreme value copulas and max-stable processes

Titre: Copules des valeurs extrêmes et processus max-stables

Ribatet Mathieu1 and Sedki Mohammed2

Abstract: During the last decades, copulas have been increasingly used to model the dependence across several
random variables such as the joint modelling of the intensity and the duration of rainfall storms. When the problem
consists in modelling extreme values, i.e., only the tails of the distribution, the extreme value theory tells us that
one should consider max-stable distributions and put some restrictions on the copulas to be used. Although
the theory for multivariate extremes is well established, its foundation is usually introduced outside the copula
framework. This paper tries to unify these two frameworks in a single view. Moreover the latest developments
on spatial extremes and max-stable processes will be introduced. At first glance the use of copulas for spatial
problems sounds a bit odd but since usually stochastic processes are observed at a finite number of locations, the
inferential procedure is intrinsically multivariate. An application on the spatial modelling of extreme temperatures
in Switzerland is given. Results show that the use of non extreme value based models can largely underestimate the
spatial dependence and the assumptions made on the spatial dependence structure should be chosen with care.

Résumé : Les dernières décennies ont vues une utilisation des copules de plus en plus fréquente afin de modéliser
la dépendance présente au sein d’un groupe de plusieurs variable aléatoire ; par exemple afin de modéliser
simultanément l’intensité et la durée d’un événement pluvieux. Lorsque l’intérêt porte sur la modélisation des
valeurs extrêmes, i.e., seulement les queues de la distribution, la théorie des valeurs extrêmes nous dicte quelles
distributions considérer. Ces dernières doivent être max-stables et imposent donc des contraintes sur les copules
adéquates. Bien que la théorie pour les extrêmes multivariées soit bien établie, elle est généralement introduite
en dehors du cadre des copules. Ce papier essaye de présenter la théorie des valeurs extrêmes par le monde des
copules. Les derniers développements sur les extrêmes spatiaux et les processus max-stables seront également
évoqués. Bien qu’il paraisse étrange aux premiers abords de parler de copules pour les processus stochastiques,
leur utilisation peut-être adéquate puisque les processus sont souvent observés en un nombre fini de positions et
la procédure d’estimation est alors intrinsèquement multivariée. Une application sur la modélisation spatiale des
températures extrêmes en Suisse est donnée. Les résultats montrent que l’utilisation de modèles non extrêmes
peut largement sous estimer la dépendance spatiale et que le choix fait sur la structure de dépendance spatiale est
primordial.
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1. Introduction

During the last decades, copulas have been increasingly used as a convenient tool to model
dependence across several random variables. A particular area of interest is finance where
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the joint modelling of (large) portfolios is crucial [11, 14]. Clearly for financial applications
one is mainly interested in modelling the largest expected losses and therefore one might
use suitable models for the tails of the distribution. In the meantime, many advances have
been made towards a statistical modelling of multivariate extremes using an extreme value
paradigm. Although these two frameworks share some connections, only a few authors from
the extreme value community adopt the copula framework for multivariate extremes [2, 9, 16]
and the use of copulas has been criticized [22].

This work is organized as follows. Section 2 introduces the copula framework with a par-
ticular emphasis on extreme value copulas and tail dependence. Section 3 gives a spatial
extension of the copula framework and makes some connections with max-stable processes.
An application on the spatial modelling of extreme temperatures in Switzerland is given in
Section 4.

2. Multivariate extremes and copulas

2.1. Generalities

The starting point for using copulas in multivariate problems is Sklar’s theorem [23, pages
17–24] that states that the cumulative distribution function of a k -variate random vector
Z=(Z1,...,Zk )may be written as

Pr(Z1≤ z 1,...,Zk ≤ z k )=C (u 1,...,u k ), (1)

where u j =Pr(Z j ≤z j ), j =1,...,k . The k -dimensional distribution C defined on [0,1]k is known
as the copula and is unique when Z has continuous margins.

One common choice is the Gaussian copula

C (u 1,...,u k )=Φ
¦

Φ−1(u 1),...,Φ−1(u k );Σ
©

,

whereΦ is the standard cumulative distribution function of a standard normal random variable
and Φ(·;Σ) is the joint distribution function of a k -variate standard Gaussian random vector
with correlation matrix Σ. Similarly one can consider the Student copula

C (u 1,...,u k )=Tν
¦

T−1
ν (u 1),...,T−1

ν (u k );Σ
©

,

where Tν denotes the cumulative distribution function of a Student random variable with ν
degrees of freedom and Tν (·;Σ) is the joint distribution of a k -variate standard Student random
vector with ν degrees of freedom and dispersion matrix Σ.

2.2. Extreme value copulas

Although there exist several copula families such as the Archimedean or the harmonic ones
[23], in this paper we restrict our attention to extreme value copulas, i.e., copulas C∗ such that
there exists a copula C satisfying [13]

C
�

u 1/n
1 ,...,u 1/n

k

�n
−→C∗(u 1,...,u k ), n→∞, (2)
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for all (u 1,...,u k )∈ [0,1]k . Equation (2) is an asymptotic justification for using an extreme
value copula to model componentwise maxima. To see this let Ui = (Ui ,1,...,Ui ,k ), i ≥ 1, be
independent copies of a random vector U=(U1,...,Uk )whose joint distribution is C . Hence (2)
may be rewritten as

Pr

�

max
i=1,...,n

U n
i ,1≤u 1,..., max

i=1,...,n
U n

i ,k ≤u k

�

−→C∗(u 1,...,u k ), n→∞,

and justifies the use of C∗ when modelling pointwise maxima over n appropriately rescaled
independent realizations, n large enough.

It can be shown using standard extreme value arguments that the class of extreme value
copulas corresponds to that of max-stable copulas, i.e., copulas such that

C∗ (u 1,...,u k )n =C∗
�

u n
1 ,...,u n

k

�

, n >0. (3)

In [7], de Haan and Resnick derive a characterization for the distribution function of any
max-stable random vector which writes in terms of extreme value copulas as

C∗(u 1,...,u k )=exp

�

−V

�

−
1

logu 1
,...,−

1

logu k

��

, (4)

where the function V is a homogeneous function of order−1, i.e., V (nu 1,...,nu k )=n−1V (u 1,...,u k )
for all n >0, and is known as the exponent function.

Two examples of well known extreme value copulas are the Gumbel–Hougaard copula, also
known as the logistic family [17],

C∗(u 1,...,u k )=exp











−







k
∑

j=1

�

−logu j

�1/α







α










, 0<α≤1,

which is the only extreme value copula that belongs to the archimedean family [15] and the
Galambos copula, also known as the negative logistic family [12],

C∗(u 1,...,u k )=exp











−
∑

J⊂{1,...,k }
|J |≥2

(−1)|J |







∑

j∈J

�

−logu j

�−α







−1/α










k
∏

j=1

u j , α>0,

where the outer sum is over all subsets J of {1,...,k }whose cardinality |J | is greater than 2.
The two models above are likely to be too limited for medium to large dimensional prob-

lems since the dependence is driven by a single parameter α. Although some authors derive
asymmetric versions of these copulas [19, 31], these asymmetric versions are still too restrictive
or induce a too large number of parameters.

Two other parametric extreme value copulas that do not suffer from this drawback are the
extremal-t and Hüsler–Reiss copulas [18, 9]. Although closed forms exist for these two latter
copulas in the general k -variate setting [24], we restrict our attention to the bivariate case only
to ease the notations.
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It is well known that if in (2) C is the copula related to (appropriately rescaled) bivariate
normal random vectors with correlation ρ<1, then

C
�

u 1/n
1 ,u 1/n

2

�n
−→u 1u 2, n→∞, (5)

i.e., the extreme value copula is the independence copula. To obtain a non trivial extreme value
copula, it can be shown [18] that if the correlation increases at the right speed as n gets large,
i.e., {1−ρn}logn→ a 2 as n→∞ for some a ∈ [0,∞], then the corresponding extreme value
copula, known as the Hüsler–Reiss copula, is

C∗(u 1,u 2)=exp

�

Φ
�

a

2
+

1

a
log

�

logu 2

logu 1

��

logu 1+Φ
�

a

2
+

1

a
log

�

logu 1

logu 2

��

logu 2

�

, (6)

where Φ denotes the standard normal cumulative distribution function.
More recently [9] consider the case where Z is a standard bivariate Student random vector

with ν degrees of freedom and dispersion matrix whose off–diagonal elements are ρ ∈ (−1,1).
It can be shown that the corresponding extreme value copula, known as the extremal-t copula,
is

C∗(u 1,u 2)=exp

�

Tν+1

¨

−
ρ

b
+

1

b

�

logu 2

logu 1

�1/ν
«

logu 1+Tν+1

¨

−
ρ

b
+

1

b

�

logu 1

logu 2

�1/ν
«

logu 2

�

,

(7)
where Tν is the cumulative distribution function of a Student random variable with ν degrees
of freedom and b 2=(1−ρ2)/(ν+1).

Although the Hüsler–Reiss copula is not a special case of the extremal-t , the former can be
derived from the latter [24, 5] since by letting ρ=exp{−a 2/(2ν )} in (7), we have b ∼a/ν for ν
large enough and

b−1

¨

�

logu 2

logu 1

�1/ν

−ρ
«

∼
ν

a

¨

�

logu 2

logu 1

�1/ν

−1+
a 2

2ν

«

−→
a

2
+ log

logu 2

logu 1
, ν→∞.

2.3. Tail dependence and extremal coefficients

When the interest is in modelling extremes, the tail dependence coefficient is a useful statistic
that summarizes how extremes events tend to occur simultaneously. To ease the notations
we restrict our attention throughout this section to the bivariate case but extension to higher
dimensions is straightforward. Provided the limit exists, the upper tail dependence coefficient
is

χup= lim
u→1−

Pr(U2>u |U1>u )= lim
u→1−

1−2u +C (u ,u )
1−u

,

and indicates dependence in the upper tail when positive and independence otherwise. The
upper tail dependence coefficient of a copula and its related extreme value copula, i.e., C∗ and
C in (2), are the same [20]; for instance the Student copula and the extremal-t both satisfy

χup=2−2Tν+1

�

�

(1−ρ)(ν+1)
1+ρ

�1/2
�

.
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Due to (5) and provided |ρ|<1, the Gaussian copula has χup=0 while as expected the Hüsler–
Reiss copula allows dependence in the upper tail and has χup=2−2Φ(a/2).

Similarly one can define a lower tail dependence coefficient

χlow= lim
u→0+

Pr(U2≤u |U1≤u )= lim
u→0+

C (u ,u )
u

,

that indicates dependence in the lower tail when positive and independence otherwise. By
symmetry of the Gaussian and Student densities, it is clear that the Gaussian and Student
copulas have χlow=χup. Further the lower tail dependence coefficient for any extreme value
copula is χlow=0 since the homogeneity property of V in (4) implies

lim
u→0+

C∗(u ,u )
u

= lim
u→0+

u V (1,1)−1=0,

provided V (1,1) 6=1.
When focusing on extreme value copulas, a convenient statistic to summarize the depen-

dence is the extremal coefficient[28, 3]. Let C∗ be an extreme value copula, then due to the
homogeneity property of V in (4) we have

C∗(u ,u )=u V (1,1), (8)

and the quantity θ =V (1,1) is the (pairwise) extremal coefficient. It takes values in the interval
[1,2]; the lower bound indicates complete dependence, and the upper one independence. The
extremal coefficient θ is strongly connected to χup since by using (8) and l’Hôspital’s rule we
have

χup= lim
u→1−

1−2u +C∗(u ,u )
1−u

= lim
u→1−

1−2u +u θ

1−u
= lim

u→1−

2−θu θ−1

u
=2−θ .

3. Spatial extension

At first glance the use of copulas for spatial problems seems odd since spatial problems
are often related to stochastic processes while copulas are essentially multivariate models.
However most often stochastic processes are observed at a finite number of locations and
the inferential procedure is therefore intrinsically multivariate. Further having resort to the
Kolmogorov’s extension theorem, one can extend any suitable copula to stochastic processes.

Throughout this section we will consider a stochastic process Z defined on a spatial domain
X ⊂Rd and suppose that Z has been observed at a finite number of locations x1,...,xk ∈X .

3.1. Two simple models

Not every copula would extend naturally to the infinite dimensional setting, e.g., the logistic
and negative logistic families, and even if they do, the copulas should be flexible enough
to capture the observed spatial dependence. Clearly the Gaussian and Student copulas are
appealing since the generalization to the infinite dimensional setting is just matter of taste by
using in place of Gaussian or Student random vectors, Gaussian or Student processes with
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TABLE 1. Parametric families of isotropic correlation functions or semi variograms. Here Kκ denotes the modified
Bessel function of order κ, Γ(u ) denotes the gamma function and Jκ denotes the Bessel function of order κ. In each
case λ>0.

Family Correlation function Range of validity
Whittle–Matérn ρ(h)= {2κ−1Γ(κ)}−1(‖h‖/λ)κKκ(‖h‖/λ) κ>0
Cauchy ρ(h)=

�

1+(‖h‖/λ)2
	−κ κ>0

Powered exponential ρ(h)=exp{−(‖h‖/λ)κ} 0<κ≤2
Spherical ρ(h)=max{0,1−1.5‖h‖/λ+0.5(‖h‖/λ)3} ——

Family Semi variogram Range of validity
Fractional γ(h)= (‖h‖/λ)κ 0<κ≤2
Brownian γ(h)= ‖h‖/λ ——

prescribed correlation functions such as the Whittle-Matèrn, powered exponential or Cauchy
families—see Table 1.

For instance extending the Gaussian copula amounts to considering the process

Z (x )= F←x [Φ{ε(x )}], x ∈X , (9)

where ε is a standard Gaussian process and F←x is the generalized inverse function of the
marginal distribution of Z at location x while the Student copula extension considers the
process

Z (x )= F←x

h

Tν
n

ε(x )
p

ν/X
oi

, x ∈X ,

where X is a χ2 random variable with ν degrees of freedom.
Typically the data one want to model will drive the choice for F←. For instance if our interest

is in pointwise maxima, the univariate extreme value theory tells us that the margins should
behave as a generalized extreme value distribution [8], i.e., for all x ∈X we have

Fx (z )=







exp

�

−
n

1+ξ(x ) z−µ(x )
σ(x )

o−1/ξ(x )

+

�

, ξ(x ) 6=0,

exp
h

−exp
n

− z−µ(x )
σ(x )

oi

, ξ(x )=0,

where u+ denotes max(u ,0) and µ(x ),σ(x ),ξ(x ) are respectively a real location parameter, a
positive scale parameter and a real shape parameter. Typically to allow for prediction at some
unobserved locations and to have parsimonious models, one may define trend surfaces for the
marginal parameters {µ(x ),σ(x ),ξ(x )}. For instance one could consider the following trend
surface for the location parameter

µ(x )=β0,µ+β1,µlon(x )+β2,µlat(x ), x ∈X ,

where lon(x ) and lat(x ) are the longitude and latitude at location x .
Given data z 1,...,z k assumed to be a realization from the Gaussian copula process (9)

observed at locations x1,...,xk ∈X , the contribution to the likelihood is easily seen to be

ϕ
�

Φ←
�

Fx1 (z 1)
	

,...,Φ←
�

Fxk (z k )
	

;Σ
�

k
∏

j=1

ϕ
�

Φ←
¦

Fx j (z j )
©�

f x j (z j )
, (10)
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where ϕ(·;Σ) is the k -variate density of a standard multivariate normal distribution with corre-
lation matrix Σ= {ρ(x i −x j )}i ,j ,ϕ and Φ← are the probability density and quantile functions of
a standard normal random variable and f x j is the density related to the distribution Fx j . Similar
expressions to (9) and (10) hold for the Student copula. As a consequence of (10), the maximum
likelihood estimator for the Gaussian or the Student copula processes is easily obtained.

3.2. Extreme value copula based models

As stated in Section 3.1, the logistic and negative logistic families are likely to be too restrictive in
practice since the dependence is driven by a single parameter. The Hüsler–Reiss and extremal-
t copulas seems more appropriate since they are based on Gaussian or Student random
vectors and both generalize easily to stochastic processes. Since these copulas are extreme
value copulas, their extension to the infinite dimensional setting corresponds to max-stable
processes [8].

Although another characterization exists [6], [27, 29] show that a max-stable process Z with
unit Fréchet margins, i.e., Pr{Z (x )≤ z }=exp(−1/z ), z >0, x ∈X , can be represented as

Z (x )=max
i≥1
ζi Yi (x ), x ∈X , (11)

where {ζi }i≥1 are the points of a Poisson process on (0,∞) with intensity dΛ(ζ)=ζ−2dζ and
Yi are independent copies of a nonnegative stochastic process such that E{Y (x )}= 1 for all
x ∈X . It is not difficult to show [29, 5] that, for all z 1,...,z k >0, k ∈N, the finite dimensional
cumulative distribution functions of (11) are

Pr[Z (x1)≤ z 1,...,Z (xk )≤ z k ]=exp

�

−E
¨

max
j=1,...,k

Y (x j )
z j

«�

. (12)

with exponent function

V (z 1,...,z k )=E
¨

max
j=1,...,k

Y (x j )
z j

«

.

The corresponding extreme value copula, derived by letting u j =exp(−1/z j ), j =1,...,k , is

C∗(u 1,...,u k )=exp

�

E
�

max
j=1,...,k

Y (x j )logu j

��

, u 1,...,u k >0,

and is as expected an extreme value copula since

C∗(u n
1 ,...,u n

k )=exp

�

nE
�

max
j=1,...,k

Y (x j )logu j

��

=C∗(u 1,...,u k )n .

Based on (11), many parametric max-stable models have been proposed by making different
choices for the process Y [1, 30, 29, 21]. For instance the Brown–Resnick model [21, 1] takes

Y (x )=exp
�

ε(x )−γ(x )
	

,
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where ε is an intrinsically stationary Gaussian process with semi variogram γ and extends
the Hüsler–Reiss copula with a 2=2γ(x i −x j ), x i ,x j ∈X . The extremal-t process extends the
extremal-t copula by taking

Y (x )= cνmax{0,ε(x )}ν , cν =π1/22−(ν−2)/2Γ
�

ν+1

2

�−1

, ν ≥1,

where ε is a stationary Gaussian process and Γ is the Gamma function [25].
Another possibility, known as the Schlather model [29], takes

Y (x )=
p

2πmax{0,ε(x )}, x ∈X ,

where ε is a standard Gaussian process with correlation function ρ. Its bivariate distribution
function is

Pr{Z (x1)≤ z 1,Z (x2)≤ z 2}=exp



−
1

2

�

1

z 1
+

1

z 2

�

 

1+

r

1−
2{1+ρ(x1−x2)}z 1z 2

(z 1+z 2)2

!

,

where x1,x2 ∈X , and the associated extreme value copula is

C∗(u 1,u 2)=exp





logu 1+ logu 2

2

(

1+

È

1−
2(1+ρ)logu 1 logu 2
�

logu 1+ logu 2
�2

)

, −1≤ρ≤1.

As for non extreme value models, trend surfaces can be used to allow prediction at unob-
served locations. However as stated by [5, 26], making inferences from max-stable processes
is not as simple as for the Gaussian or Student copulas since (12) or equivalently (4) yields a
combinatorial explosion for the likelihood. Indeed since any max-stable distribution has a
joint cumulative distribution function

F (z 1,...,z k )=exp{−V (z 1,...,z k )},

and the associated may be written as

f (z 1,...,z k )= {sum of Bell(k ) terms}F (z 1,...,z k ),

where Bell(k ) is the k -th Bell number. Unfortunately, the sequence of Bell numbers increases
extremely fast. For example when k =10 one would need to sum up around 116000 terms to
compute the contribution of a single observation to the likelihood.

To bypass this computational burden, a strategy consists in maximizing the pairwise likeli-
hood in place of the full likelihood which gives an estimator that shares the same properties as
the maximum likelihood estimator, i.e., consistency and asymptotic normality, but yields to a
loss in efficiency [26].

For spatial problems, the (pairwise) extremal coefficient θ is extended to the spatial setting
as a function θ : Rd 7→ [1,2]

θ (x1−x2)=−z logPr{Z (x1)≤ z ,Z (x2)≤ z }, x1,x2 ∈Rd ,

and quantifies how the spatial dependence of extremes evolves as the distance between two
locations x1,x2 ∈Rd increases.
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FIGURE 1. Topographical map of Switzerland showing the sites and altitudes in metres above sea level of 15 weather
stations for which annual maxima temperature data are available.

4. Application

In this section we fit various extreme value and non extreme value models to extreme tem-
peratures. The data considered here were previously analyzed by [4] and consist in annual
maximum temperatures recorded at 15 sites in Switzerland during the period 1961–2005, see
Figure 1.

For each model and following the work of [4, 10], we consider the following trend surfaces

µ(x ,t )=β0,µ+β1,µalt(x )+β2,µ
t −1983

100
, (13)

σ(x ,t )=β0,σ, (14)

ξ(x ,t )=β0,ξ, (15)

where alt(x ) denotes the altitude above mean sea level in kilometres and {µ(x ,t ),σ(x ,t ),ξ(x ,t )}
are the location, scale and shape parameters of the generalized extreme value distribution at
location x and year t .

To assess the impact on the assumption of max-stability for modelling extremes, we consider
the Gaussian copula, the Student copula, the extremal-t and the Brown–Resnick processes.
The Brown–Resnick models take as semi variogram γ(h)= (h/λ)κ, 0<κ≤2. Each model is fitted
by maximizing the likelihood or the pairwise likelihood when the former was not tractable.

As one might expect, the marginal parameter estimates are consistent across all considered
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TABLE 2. Summary of the models fitted to the Swiss temperature data. Standard errors are in parentheses and (∗)
denotes that the parameter was held fixed. h− and h+ are, respectively, the distances for which θ (h) is equal to 1.3
and 1.7. DoF denotes the degrees of freedom when appropriate, ` is the maximized log-likelihood and `p the
maximized pairwise log-likelihood. TIC is an analogue of the Akaïke information criterion designed for misspecified
models.

Gaussian copula
Correlation λ (km) κ h− (km) h+ (km) ` AIC
Whittle–Matèrn 57 (17) 0.49 (0.13) — — -1295.6 2605
Stable 61 ( 9) 0.81 (0.14) — — -1294.9 2604
Stable 56 ( 6) 1.00 ( * ) — — -1295.7 2603

Student copula
Correlation DoF λ (km) κ h− (km) h+ (km) ` AIC
Whittle–Matèrn 36 (34) 49 (15) 0.54 (0.15) 0.55 3.54 -1294.8 2606
Powered Exponential 54 (72) 58 ( 9) 0.86 (0.17) 0.14 1.36 -1294.5 2605
Powered Exponential 38 (35) 53 ( 6) 1.00 ( * ) 0.41 3.02 -1294.8 2604

Extremal-t
Correlation DoF λ (km) κ h− (km) h+ (km) `p TIC
Whittle–Matèrn 8.5 (3.7) 3793 (7507) 0.18 (0.04) 0.36 70 -19482.7 39338
Powered Exponential 7.7 (2.9) 1296 (2366) 0.44 (0.11) 0.66 71 -19482.1 39337
Powered Exponential 6.9 (1.7) 734 ( 618) 0.50 ( * ) 1.21 73 -19482.4 39333

Brown–Resnick
Variogram λ (km) κ h− (km) h+ (km) `p TIC
Fractional 6.7 (5.5) 0.34 (0.08) 0.19 62 -19486.8 39357
Brownian 33.6 (7.4) 1.00 ( * ) 9.9 72 -19539.8 39447

models yielding to the estimated trend surfaces

µ̂(x ,t )=34.9(0.2)−7.35(0.06)alt(x )+2.48(1.07)
t −1983

100
,

σ̂(x ,t )=1.87(0.07),

ξ̂(x ,t )=−0.20(0.02),

where the standard errors are displayed as subscripts. The effect of elevation is physically
plausible since it is known that temperature decreases by an amount of around 7◦C for each
kilometer of climb. The estimated temporal trend leads to an increase of about 2.5◦C per
century and is consistent with the values given by the Intergovernmental Panel on Climate
Change in their 2007 Fourth Assessment Report (http://www.ipcc.ch).

The estimates of the spatial dependence parameters for various models is presented in
Table 2. The Gaussian copula model gives a practical range, i.e., the distance at which the
correlation function equals 0.05, around 170 km but the extremal practical range h+, i.e.,
the distance at which the extremal coefficient function equals 1.7 [4], does not exists since
its corresponding extreme value copula is the independence copula—see (5). Although the
Student copula is in the domain of attraction of the extremal-t copula, the Student copula
model gives similar results to the Gaussian one since the estimated degrees of freedom is
large and gives an extremal practical range h+ of around 3km which seems to be largely
underestimated as typically heat waves impact much larger areas. The max-stable models,
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TABLE 3. Frequencies (%) of the simulated annual maxima exceeding those observed for the year 2003 at k stations,
k =0,...,14, for the Gaussian copula, the Student copula and the extremal-t models, for the years 2003, 2010, 2020
and 2050. Frequencies smaller than 0.01% are omitted for clarity.

Gaussian copula
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 44.3 31.2 14.6 5.9 2.6 1.0 0.3 0.1
2010 39.1 32.1 16.2 7.3 3.3 1.3 0.5 0.2
2020 32.7 31.7 18.3 9.5 4.7 1.9 0.8 0.3 0.1 0.1
2050 16.2 25.4 22.0 15.7 9.9 5.5 3.2 1.4 0.5 0.3 0.1

Student copula
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 56.8 24.0 9.5 3.7 2.0 1.3 0.8 0.5 0.5 0.3 0.3 0.1 0.1 0.1
2010 52.5 25.8 10.4 4.4 2.2 1.6 1.0 0.6 0.6 0.3 0.3 0.2 0.1 0.1
2020 45.8 28.0 12.1 5.7 2.5 1.9 1.3 0.8 0.7 0.4 0.5 0.2 0.1 0.1
2050 26.0 30.8 18.2 9.2 5.1 3.1 2.4 1.6 1.1 0.8 0.7 0.4 0.3 0.2 0.1

Extremal-t
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 42.3 28.3 13.9 6.7 3.3 2.2 1.1 0.7 0.4 0.5 0.2 0.1 0.2 0.1 0.1 0.1
2010 37.1 28.6 15.6 7.8 4.0 2.7 1.4 0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1 0.1
2020 30.7 27.9 17.4 9.6 5.2 3.1 2.1 1.5 0.7 0.6 0.4 0.3 0.3 0.2 0.1 0.1
2050 13.1 21.3 20.7 14.7 9.2 6.8 4.3 3.1 2.1 1.5 0.9 0.8 0.7 0.5 0.2 0.2

i.e., the Hüsler–Reiss and the extremal-t models, give consistent and much more plausible
estimates for the extremal practical range h+. Possibly due to the strong non orthogonality of
its dependence parameters, the extremal-t model has unreasonably large standard errors; the
Brown–Resnick model seems to be less impacted since it has a fewer number of parameters.

Following the lines of [5], Table 3 shows estimates of the probabilities that the temperatures
observed in year 2003, i.e., during the 2003 European heat wave, would be exceeded in the
years 2003, 2010, 2020 and 2050—under the model of linear trend in time. These estimates
were obtained from 10000 independent realizations from each model. Results corroborate the
ones displayed in Table 2 since the Gaussian copula model shows the weaker spatial depen-
dence structure, followed by the Student copula. The only max-stable model, the extremal-t
model, has the strongest spatial dependence structure and is the only one that gives a positive
probability that the 2003 temperatures were exceeded for all available weather stations.

Figure 2 shows one realization from each fitted model using the trend surfaces (13)–(15)
and extrapolated to the year 2020. These realizations were obtained by taking the 0.99 sample
quantile of the temperature average over Switzerland from 10000 independent realizations
from each model. Although the estimated trend surfaces are similar for each model, the
distribution of the overall overage temperature differs appreciably from one model to another—
see the top panel of Figure 2. Due to a stronger spatial dependence structure, the extremal-t
model shows the largest variability. The 0.99 sample quantiles for the temperature average
over Switzerland are respectively 29.1◦C, 29.2◦C and 30.6◦C for the Gaussian copula, Student
copula and extremal-t models. Although the differences across the different models appear to
be limited, an increase of around 1.5◦C might have a considerable impact on the survival of
species and the model driving the spatial dependence should be considered with care.
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FIGURE 2. One realization from the fitted Gaussian copula, Student copula and extremal-t models. Each simulation
corresponds to a situation where the mean temperature over Switzerland for the simulated field is expected to be
exceeded once every 100 year—for the year 2020. The top row shows histograms of the mean temperature values
obtained from 10000 simulations from each model. The vertical lines denotes the mean temperature corresponding
to the simulated field.

5. Discussion

In this paper we tried to make connections between copulas and the extreme value theory. The
modelling of multivariate extremes was known to be a difficult task due to the unavailability of
flexible yet parsimonious parametric extreme value copulas. The last decade has seen many
advances towards a geostatistic of extremes using max-stable processes. Although the connec-
tion between stochastic processes and copulas seems odd at first glance, it is straightforward
to extend suitable copulas to stochastic processes and we make the connection between some
well-known extreme value copulas and their spectral characterization. An application to the
modelling of extreme temperature was given and we show that the choice of a non extreme
value model might underestimate the spatial dependence.
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