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Geostatistics

Rainfall monitoring stations of Rio de Janeiro
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Basic Model: Data (Y) are a (partial) realization of a
random process (stochastic process or random field)

{Y (s) : s ∈ G}

where G is a fixed subset of Rd with positive
d-dimensional volume. In other words, the spatial index s
varies continously throughout the region G.
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GOAL:

Want a method of predicting Y (s0) for any s0 in G.

Want this method to be optimal (in some sense).

What do we need?

Want Y (s) : s ∈ G to be continuous and ”smooth
enough” (local stationarity)

description of spatial covariation

once we obtain the spatial covariation how to get
predicted values

Basic Approach: given covariance structure, predict.
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Gaussian Processes

Definition:
A function Y (.) taking values y(s) for s ∈ G has a
Gaussian process distribution with mean function m(.)
and covariance function c(., .), denoted by

Y (.) ∼ GP (m(.), c(., .))

if for any s1, · · · , sn ∈ G, and any n = 1, 2, · · · , the joint
distribution of Y (s1), · · · , Y (sn) is multivariate Normal
with parameters given by

E{Y (sj)} = m(sj) and
Cov(Y (si), Y (sj)) = c(si, sj).
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Stationarity and isotropy

In spatial statistics one usually assumes the spatial
process to be stationary and isotropic → distribution
is unchanged when the origin of the index set is
translated, and the process is invariant under
rotation about the origin

For any two locations s and s′, the spatial
correlation is usually modelled as
Corr(Y (s), Y (s′)) = c(s, s′) = ρ(||s− s′||, φ), where
ρ(.) must be a positive definite function ⇒
important for spatial interpolations
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Visualizing the assumption of isotropy
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In practice, the hypothesis of isotropy is usually
violated due to local effects in the correlation
structure of the spatial process

E.g. dispersion of particulate matters, wind speed,
ocean temperature, solar radiation, among others
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Modelling anisotropy

Correlation structure could be different in different
directions.

Geometrical Anisotropy
It can be corrected by a linear transformation. One
possibility is to assume

c(s, s′) = ρ(|| As−As′ ||), h ∈ Rd

where A is a unknown d× d matrix with ρ(.) being a
valid correlation function.
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Visualizing the assumption of geometrical
anisotropy
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Spatial deformation

Sampson & Guttorp (JASA, 1992) pioneered an
approach to modelling nonstationarity and
anisotropy;

Main idea: nonlinear transformation of the G
(Geographical) space, into D space, within which
the spatial structure is stationary and isotropic

In this case, c(s, s′) = ρ(||d(s)− d(s′)||)
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Spatial deformation

Schmidt & O’Hagan (JRSS B, 2003) proposed a
Bayesian approach and assigned a GP prior to the
mapping function d(.).

The mapping might result in some folding of the original
configuration.
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Site 1 has a very different

altitude when compared to

the others.
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There are many alternatives to the latent space idea

Higdon, Swall and Kern (Bayesian Statistics 6 1999)

Fuentes and Smith (Technical Report NCSU, 2002)

Fuentes (Biometrika, 2002)

Kim, Mallick and Holmes (JASA, 2005)

Pacioreck and Shervish (Environmetrics, 2006)

to mention just a few...

All of them make use of highly structured models.
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Using information about covariates to learn about anisotropy

Anisotropy ⇔ local effects from other variables →
inclusion of covariates in the covariance structure of the
spatial process → parsimonious model.
Covariance function must be valid (positive definite)!

Alternatives:

Schmidt, Guttorp & O’Hagan, Environmetrics, 2011

Reich, Eidvisk, Guindani, Nail & Schmidt, Annals of
Applied Statistics, 2012

Vianna Neto, Schmidt & Guttorp (JRSS, Series C,
2014)
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Schmidt, Guttorp & O’Hagan
(Environmetrics, 2011)

One way to use covariate information is by allowing
the mapping function of Sampson and Guttorp
(1992) to be of dimension greater than 2.
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The d(.) process in RC

In the general case of D being of dimension C > 2, we
have that d(.) ∈ RC . Following Schmidt (2001)

d(.) ∼ GP (m(.),σ2
dRd(., .)),

where

Rd(si, sj) = exp
{
−(si − sj)

′Bd(si − sj)
}
,

where

Bd is a C × C diagonal matrix with
Bd = diag (bd, bd, b3, · · · , bC).

σ2
d = diag (σ2

d11
, σ2

d22
, · · · , σ2

dCC
)

Possibilities for the mean include:
mi = (lati, longi, 0, · · · , 0)′ or
mi = (lati, longi, stalti, stcov1, · · · , stcovC−2)′
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A deterministic mapping

Define

d(s, s′) =
√

(s− s′)T Φ−1 (s− s′), (1)

as the Mahalanobis distance between s and s′, which is a
function of the arbitrary positive definite matrix Φ. A
valid covariance function might assume, e.g.

S(s, s′; Φ, σ2) = σ2 exp
(
−d(s, s′)

)
. (2)

Notice that we can rewrite equation (1) as

d(s, s′) =
√

(d(s)− d(s′))T (d(s)− d(s′)), (3)

where d(s) = As, and Φ = ATA.
This can be seen as a transformation of the original R2

space made through the use of covariates.
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Example of a covariate dependent correlation
structure
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Revisiting the solar radiation dataset
(Schmidt, Guttorp & O’Hagan, Environmetrics, 2011)
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Spatial Convolutions with Covariates

Reich, Eidvisk, Guindani, Nail and Schmidt, Annals of
Applied Statistics, 2011

Allow for covariate effects when modelling ozone
levels in the East coast of the US

S(s, t) =
M∑
j=1

wj [x(s, t)]θj(s, t)

where

wj [x(s, t)]2 =
exp(x(s, t)Tαj)∑M
l=1 exp(x(s, t)Tαl)

and

θj(s, t) = γjθj(s, t− 1) + ej(s, t) ejt ∼ GP (0,Kj)

x(s, t)=(mean temperature, max. temp., wind speed, cloud cover)
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Accounting for spatially varying directional effects
in spatial covariance structures

J.H. Vianna Neto, A. M. Schmidt and P. Guttorp

JRSS, Series C, 2014, 63, 1, 102-122
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Motivation
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Figure : Observed values of ozone (solid squares in grayscale),
and respective wind direction (arrows) for December, 11th,
2008, 3pm.
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Process convolution

A stochastic process can be constructed by convolving a
latent process W (·) with a smoothing kernel k(·), i.e.,

S(s) =

∫
G

k (s− h)W (h) dh. (4)

Higdon et al. (1999) propose a Gaussian kernel such that

k(s, s−h) = (2π)
−1 | Σ (s) |−0.5 exp

{
−1

2
(s− h)T Σ(s)−1(s− h)

}
.

Σ(s) is modelled through the connection between a
bivariate normal distribution and its one standard
deviation ellipse.
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Paciorek and Shervish (2006) generalize the kernel
convolution approach.
They obtain a nonstationary version of the Matérn
covariance function,

C(si, sj) = σ2 1
Γ(ν)2ν−1 |Σ(si)|−1/4|Σ(sj)|−1/4

∣∣∣Σ(si)+Σ(sj)

2

∣∣∣−1/2

(
2
√
νQij

)ν
κν
(
2
√
νQij

)
,

where Qij = (si − sj)T
(

Σ(si)+Σ(sj)
2

)−1
(si − sj),

ν > 0 is the shape parameter, and κν(.) is the
modified Bessel function of the second kind of order
ν.

They propose to model Σ(si) = ΓiΛiΓ
T
i , where Λi is

a diagonal matrix of eigenvalues, λ1(si) and λ2(si),
and Γi is an eigenvector matrix.
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A covariate dependent kernel (LGA)

Following Higdon

S(s) =

∫
G

ks,x(h)W (h)dh, for s, h ∈ G ⊂ R2, (5)

Let x(s) = (u(s), v(s))′ be a directional covariate
observed at location s, we first propose

Σ(s, x) = Γ(s, x)TΛΓ(s, x)

where Γ(s, x)T =

[
cos ω(x(s)) − sin ω(x(s))
sin ω(x(s)) cos ω(x(s))

]
and Λ =

[
λ2

1 0
0 λ2

2

]
,

and ω(x(s)) = arctan
(
v(s)
u(s)

)
.
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Drawback of the locally Geometric Anisotropic
model

(a) Wind vectors blowing at the same
direction

(b) Wind vector blowing at opposite di-
rections

Figure : Illustration of the contours of the kernel matrix based
on locations with contrasting wind information (black arrows).
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Non-Gaussian kernel based on a projection

Projection of the mean direction as a measure of
alignment

Let x(s) represent the directional information at location
s ∈ G, with ||x(s)|| = 1. Now, let

r(x(s), x(s∗)) = (x(s) + x(s∗))/2

be the mean vector considering locations s and s∗ in G.

The projection of the mean vector over the set
{b× (s− s∗) + s∗ : b ∈ R} (straight line that passes
through s and s∗) is

projx(s, s∗) =
〈r (x(s), x(s∗)) , (s− s∗)〉
〈(s− s∗), (s− s∗)〉

× (s− s∗).

We consider ||projx(s, s∗)||.
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Illustration
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Figure : Diagram with directions (black arrows), mean
direction (r) and projection (gray arrows).

The bigger (smaller) the angle between the mean vector and

the direction between the two locations, the smaller (bigger) is

||projx(s, s∗)||.
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Modelling ks,x(.)

Here, the kernel function is modelled as

ks,x (h) =
σαs,x (h)√∫

G

αs,x (h)2 dh
, (6)

We assume

αs,x(h) =

{
exp

(
− ‖s−h‖
φ1+φ2‖projx(h)‖

)
, if s 6= h

1, if s = h.
(7)

Here H = {h1, · · · , hm} is a regular grid of points in G.
We denote this as the projection model.
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How does this process behave?

Joaquim has written R-TclTk softwares that produce
graphical correlations, covariances and simulations from
the proposed models for different values of the
parameters.
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Model

We assume

Y (s) = µ(s) + S(s) + ε(s), ε(s) ∼ N(0, τ2),

µ(s) = W (s)β, W (s) vector of possible covariates

S(.) and ε(.) are independent

τ2 is nugget effect
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Inference Procedure

Let y = (y(s1), · · · , y(sn))′ be a partial realization from
a Gaussian process with mean vector µ and covariance
matrix Σ, the likelihood function is given by

L(y;θ) = (2π)−n/2 | Σ |−1/2 exp

{
−1

2
(y − µ)T Σ−1(y − µ)

}
.

where Σ = τ2(In + η−1 Ω(δ)), and η = τ2/σ2,
δ = (δ1, δ2, · · · , δk) be the parameter vector of the kernel
function, and
Ω(δ) is the associated resultant covariance matrix.

The parameter vector to be estimated is θ = (µ, τ2, η, δ).

Bayesian paradigm ⇒ MCMC to obtain samples from
the resultant posterior distribution.
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Ozone levels in the Eastern USA

Measurements of ozone observed at 3pm, on November,
11th, 2008.
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Figure : Observed values of ozone (solid squares in grayscale),
and respective wind direction (arrows) for December, 11th,
2008, 3pm.
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Ozone levels in the eastern USA

M1 Isotropic model with Matérn covariance function

M2 Elliptical anisotropic model with Matérn covariance function,
that is

Cov(Y (si), Y (sj)) = σ
2
(
2
ν−1

Γ (ν)
)−1


√
‖u‖T Λ ‖u‖

ϕ


ν

κν


√
‖u‖T Λ ‖u‖

ϕ

 ,
where

Λ =

[
cos θ − sin θ
sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ sin θ
− sin θ cos θ

]
,

M3 Nonstationary Matérn covariance function with Σ(s, x)

M4 Covariance function based on the Projection model

M5 Nonstationary Matérn covariance function with Σ(s) as in
Paciorek and Shervish (2006)
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Results - Computational Time

Computational No. Iterations
Model time minute

M1 7 min 7142.85
M2 1 h 26 min 581.39
M3 1 h 55 min 434.78
M4 21 min 2380.95
M5 144 h 30 min 80.73

Table : Computational time, and number of iterations per
minute, to run the MCMC algorithm for 50,000 iterations for
models M1, M2, M3, M4, and 700,000 iterations for model M5
in an Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz
computer with 4 GB of RAM.
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Results - Model comparison

Model
PPL DIC Predictive

G P D1 D pD DIC likelihood

M1 458.77 1395.79 1625.18 326.06 3.04 329.10 2.33× 10−08

M2 251.37 1050.26 1175.95 318.70 -1.80 316.37 6.18× 10−08

M3 87.80 639.06 682.96 309.46 3.88 313.34 6.49× 10−07

M4 90.38 464.93 510.12 289.79 4.03 293.82 4.93× 10−06

M5 59.97 539.60 569.59 302.29 3.03 305.32 9.98× 10−08

Table : Model comparison criteria: PPL, DIC, the predictive
likelihood (based on the circled locations) under each fitted
model.
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Results - Posterior summary of
hyperparameters
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Results - Posterior mean of ellipses under M3
and M5
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(c) Estimated ellipses under M3
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(d) Estimated ellipses under M5
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Results - Correlation between a point and all
the others
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Results - Spatial interpolation
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Results - Fitted values
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(h) M3
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Discussion

We propose two different ways of considering
directional information in the covariance structure of
a spatial process

This is done by including the covariate in the kernel
function of Higdon’s and co-authors approach

Use of the directional covariate significantly reduces
the number of parameters in the model while still
allowing for some flexibility in the resultant
covariance structure.

Introducing covariates in the covariance structure of
spatial processes might be a helpful tool for
understanding sources of anisotropy
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