A novel dimension reduction approach for spatially-misaligned multivariate air pollution data

Roman Jandarov

CLARC WIP Webinar February 2014

Objective

- Identify important spatially varying air pollution mixtures and quantify long-term health effects in cohort study data
- Initial application:
 - Cohort: NIEHS Sister Study
 - Health endpoint: Systolic blood pressure
 - Pollution data: Annual average concentration of PM2.5 components from national CSN and IMPROVE networks
- Future planned application:
 - Cohort: MESA Air
 - Pollution data: Mobile monitoring data from UW CCAR

Challenges

- Dimension reduction
 - Problem: Difficult to fit health model and interpret coefficients with multi-pollutant exposure (e.g. 15-20 components of PM2.5)
 - Solution: Principal component analysis
- Spatial misalignment
 - Problem: Concentration data is available at monitor locations but not where study subjects live
 - Solution: Predict exposures at subject locations using spatial prediction model that incorporates geographic covariates and spatial smoothing
- Solving two challenges above together

NIEHS Sister Study

- Y blood pressure
- Data on Y and subject-specific covariates from NIEHS
 Sister Study data (cohort study on risk factors for breast cancer)
 - > 50,000 sisters of women with breast cancer
 - Statistically significant association between PM2.5 exposure and Y (Chan et al. (under review))

Need for dimension reduction

- Dimensionality of multi-pollutant data
 - General health model is not practical

$$Y = \alpha_0 + \sum_{l=1}^{m} \alpha_l \hat{P}_l + \text{interactions} + \text{covariates} + \dots$$

- Pollutant concentrations are potentiality correlated
- Large number of main effects and interactions: hard to estimate and interpret

Monitor locations and covariates

- 17 pollutants and 277 monitors (CSN and IMPROVE networks)
 - ▶ PM25, EC, OC, Al, As, Br, Ca, Cr, Cu, Fe, K, Mn, Na, S, Si, V, Zn
 - Annual averages from November, 2009 to October, 2010.

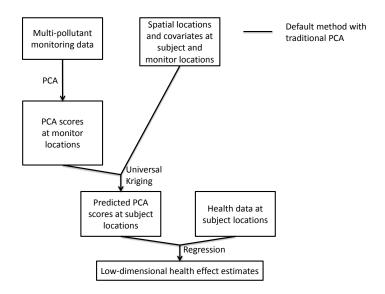
- GIS covariates from MESA Air geographic database
 - ► Let **Z** be a matrix of transformed geographical covariates and thin-plate spline basis functions
 - Available at all monitor and subject locations

A possible solution: Sequential approach

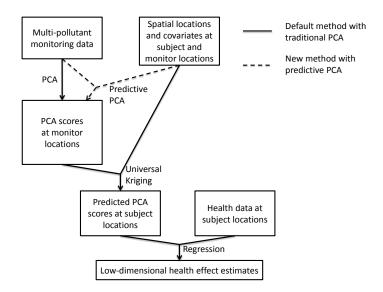
- Dimension reduction
 - Compute first few principal components of multi-pollutant data
- 2. Predict scores obtained from principal components at participant locations using GIS covariates and splines
- 3. Fit a health model with smaller number of variables
 - Interpret coefficient of the model to identify important mixtures

This talk: Steps 1 and 2: Dimension reduction and prediction

Combining PCA with spatial prediction



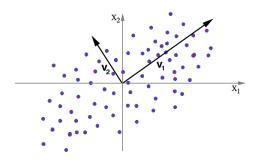
Combining PCA with spatial prediction



Review of principal component analysis

- Principal component analysis (PCA) is a popular dimension reduction technique
- A version of unsupervised learning
- Goal of PCA: Reduce the number of variables of interest into a smaller set of component scores
- PCA transforms the original variables into a set of component scores (linear combinations of originals) equal to the number of original variables

PCA: Example



- Let **X** be a $n \times p$ matrix with standardized columns
- ▶ PCA finds direction v₁ and v₂ (also called loadings)
- ▶ Principal component scores: PC1 = Xv₁, PC2 = Xv₂

PCA algorithm

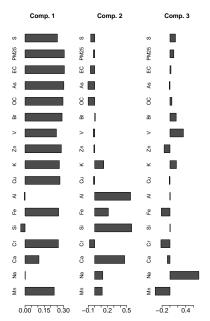
First, find $(\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}})$, s.t. $\|\widetilde{\mathbf{u}}\| = 1$ that minimizes

$$\|\mathbf{X} - \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\|_F$$

Define PC loadings by $\mathbf{v} = \widetilde{\mathbf{v}}/\|\widetilde{\mathbf{v}}\|$. Define PC1 by $\mathbf{u} = \mathbf{X}\mathbf{v}$.

▶ Subsequently, find $(\widetilde{\mathbf{u}}_k, \widetilde{\mathbf{v}}_k)$ by approximating the corresponding residual matrices. Define corresponding PC scores and loadings.

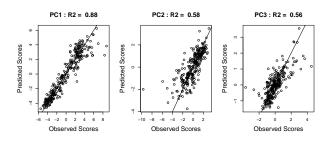
Application of PCA to PM2.5 data: Loadings



Spatial prediction for scores

- Let: u_(s) value of PC score at location s (available only at monitor locations)
- Let: z_(s) vector of geographical covariates at location s (available at all locations)
- ▶ Goal: Predict $u_{(s)}$ at subject locations
- Universal Kriging model:
 - $u_{(s)} = \mu_{(s)} + \epsilon_{(s)}$, where $\mu_{(s)} = \mu(z_{(s)})$
 - $\{\epsilon_{(s)}\}\$ is a Gaussian process with mean 0 and spatial covariance function c=c()
 - After estimates of μ() and c() are obtained from data at monitor locations, one can predict u_(s*) at new locations s* using z_(s*)

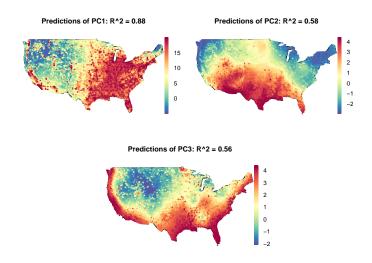
Application of PCA to PM2.5 data: Predictability



Observed scores: PC scores calculated at monitor locations with known pollutants X and fixed loadings v

Predicted scores: Predictions of PC scores at locations where *X* is unknown

Application of PCA to PM2.5 data: Heat maps



Motivation for a new PCA approach

- Can we improve predictability of principal component scores?
- Can we simplify interpretability of the component loadings?

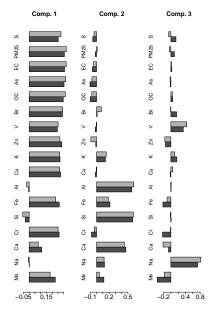
New approach: Idea

- Focus on predictability of principal component scores first
- We want a PCA algorithm that results in PC scores that can be predicted well
 - Develop an algorithm that forces PC scores to be close to spatial covariates
- Work with interpretability by adding a penalty to component loadings later

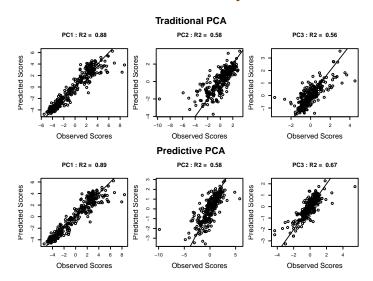
Motivation: Predictive PCA

- Recall: Z matrix derived from geographical covariates and spline basis functions
 - ▶ Modify PCA so that the scores can be predicted well by Z
- At first step of the algorithm, minimize the following with respect to β and $\widetilde{\mathbf{v}}$:
 - $\|\mathbf{X} \mathbf{Z}\beta\widetilde{\mathbf{v}}^T\|_F$ with constraint $\|\mathbf{Z}\beta\|^2 = 1$, rather than $\|\mathbf{X} \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\|_F$ with constraint $\|\widetilde{\mathbf{u}}\|^2 = 1$
- ▶ Define loadings: $\mathbf{v} = \frac{\widetilde{\mathbf{v}}}{\|\widetilde{\mathbf{v}}\|}$ and PC scores: $u = X\mathbf{v}$ (not observable at subject locations)
- Subsequently, optimization using residual matrices $(\mathbf{X} \mathbf{Z}\beta\widetilde{\mathbf{v}}^T)$

Application of predictive PCA to PM2.5 data: Loadings



Application of predictive PCA to PM2.5 data: Predictability



Summary of the talk so far

- 1. Predictive PCA improves predictability of PC scores
- 2. Loadings from both traditional and predictive PCA are difficult to interpret

How to improve interpretability: Sparse PCA (sPCA)

- Principal components scores and loadings can sometimes be difficult to interpret
- Sparse PCA produces modified PCs with sparse loadings: loadings with only a few nonzero elements
- In sparse PCA, penalty parameter, λ ≥ 0, controls sparsity of loadings:
 - Large λ results in very sparse loadings
 - ▶ Different λ can be used for different PCs

How to introduce sparsity to PCA?

- For a fixed value of penalty parameter λ :
 - ► Recall: In traditional PCA, we minimize

$$\|\mathbf{X} - \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\|_F$$

with respect to $(\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}})$, s.t. $\|\widetilde{\mathbf{u}}\| = 1$

▶ In Sparse PCA (Shen and Huang, 2008): we minimize

$$\|\mathbf{X} - \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\|_F + P_{\lambda}(\widetilde{\mathbf{v}})$$

with respect to $(\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}})$, s.t. $\|\widetilde{\mathbf{u}}\| = 1$, where $P_{\lambda}(\widetilde{\mathbf{v}}) := \lambda \sum_{l=1}^{m} |v_{l}|$, an L_{1} (LASSO) penalty function

Sparse PCA vs non-sparse PCA: Example

	Traditional PCA			Traditional Sparse PCA			
	Comp. 1	Comp. 2	Comp. 3	Comp. 1	Comp. 2	Comp. 3	
S	0.25	-0.06	0.14	0.28	0	0	
PM25	0.31	-0.02	0.1	0.34	0	0	
EC	0.31	-0.07	0.02	0.34	0	0	
As	0.3	-0.1	-0.02	0.33	0	0	
OC	0.3	-0.1	0.05	0.33	0	0	
Br	0.29	0.01	0.16	0.3	0	0	
V	0.24	-0.02	0.34	0.24	0	0.38	
Zn	0.28	-0.01	-0.15	0.26	-0.01	-0.14	
K	0.27	0.14	0.16	0.26	0.08	0.06	
Cu	0.27	-0.02	-0.02	0.26	0	0	
Al	-0.01	0.56	0	0	0.62	0.02	
Fe	0.26	0.21	-0.22	0.21	0.13	-0.02	
Si	-0.03	0.58	0	0	0.62	0	
Cr	0.26	-0.08	-0.23	0.24	0	0	
Ca	0.11	0.47	-0.07	0	0.45	-0.1	
Na	0	0.13	0.73	0	0	0.9	
Mn	0.23	0.12	-0.37	0.14	0	-0.12	

Sparse predictive PCA

Recall: In predictive PCA, we minimize

$$\|\mathbf{X} - \mathbf{Z}\beta\widetilde{\mathbf{v}}^T\|_F$$

with constraint $\|\mathbf{Z}\beta\|^2 = 1$

Analogous to sparse PCA (Shen and Huang, 2008), we can introduce sparsity to predictive PCA by minimizing

$$\|\mathbf{X} - \mathbf{Z}\beta\widetilde{\mathbf{v}}^T\|_F + P_{\lambda}(\widetilde{\mathbf{v}})$$

with constraint $\|\mathbf{Z}\beta\|^2 = 1$

Candidate PCA algorithms

	Unpenalized	Sparse *
Traditional PCA	$\min \ \mathbf{X} - \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\ _F$	$\min(\ \mathbf{X} - \widetilde{\mathbf{u}}\widetilde{\mathbf{v}}^T\ _F + P_{\lambda}(\widetilde{\mathbf{v}}))$
Predictive PCA	$\min \ \mathbf{X} - \mathbf{Z} eta \widetilde{\mathbf{v}}^T\ _F$	$\min(\ \mathbf{X} - \mathbf{Z}eta\widetilde{\mathbf{v}}^T\ _F + P_{\lambda}(\widetilde{\mathbf{v}}))$

 \ast Maximize pollutants: λ selected to maximize spatial predictability of pollutants

 $\begin{tabular}{ll} {\bf Maximize \ scores:} \ \lambda \ {\bf selected \ to \ maximize \ spatial \ predictability \ of \ principal \ scores \end{tabular}$

Simulation study

- ► Two simulated scenarios with 17 pollutants
- Simulated Scenario 1: Predictability is HIGH most pollutants can be predicted well
- Simulated Scenario 2: Predictability is LOW most pollutants cannot be predicted well

Simulation study - Scenario 1 (Predictability is HIGH)

.			Predictability of Scores (R^2) PC1 PC2 PC3			Abs. Correlation (Average)	Sparseness (%)	
noı	a L	Trad.PCA	0.96	0.87	0.7	0.04	0.00%	
Without	Penalty	Pred.PCA	0.96	0.88	0.71	0.05	0.00%	
With Penalty	Max. Scores	Trad.PCA Pred.PCA	0.97 0.97	0.91 0.92	0.84 0.84	0.38 0.43	35.22% 35.53%	
With	Max. Pollutants	Trad.PCA	0.96	0.87	0.66	0.11	19.96%	
	Pol	Pred.PCA	0.96	0.87	0.74	0.18	20.04%	

Simulation study - Scenario 2 (Predictability is LOW)

			Predic	tability of (R^2) PC2	Scores PC3	Abs. Correlation (Average)	Sparseness (%)
no	a E	Trad.PCA	0.76	0.6	0.27	0.02	0.00%
With	Penalty	Pred.PCA	0.85	0.76	0.56	0.08	0.00%
With Penalty	Max. Scores	Trad.PCA Pred.PCA	0.93 0.95	0.79 0.9	0.28 0.83	0.31 0.42	52.47% 69.96%
With	Max. Pollutants	Trad.PCA Pred.PCA	0.79 0.88	0.66 0.8	0.28 0.61	0.08 0.13	19.14% 25.69%

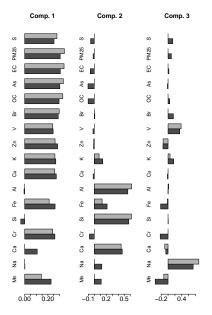
Simulation study: Conclusions

- Predictive sPCA results in improved predictability of PC scores:
 - Difference between approaches increases with increase in # of unpredictable pollutants
- Effect of penalty parameter:
 - Simplifies interpretability of loadings
 - If penalty maximizes predictability of scores:
 - ▶ PC scores are highly predictable
 - PC scores are highly correlated
 - If penalty maximizes predictability of pollutants:
 - Predictability of PC scores is still high
 - PC scores are not correlated

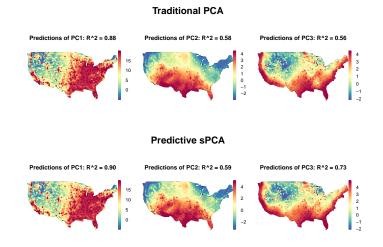
Application of sparse PCA to PM2.5 data: Comparison

			Predictability of Scores (R^2)			Correlations			Sparseness (%)
+	_		PC1	PC2	PC3	PC1vsPC2	PC1vsPC3	PC2vsPC3	(70)
Without	Penalty	Trad.PCA	0.88	0.58	0.56	0.02	0	0	0.00%
ΣΞ	Pen	Pred.PCA	0.89	0.58	0.67	-0.05	0.02	-0.03	0.00%
_	_								
With Penalty	Max. Scores	Trad.PCA Pred.PCA	0.91 0.92	0.86 0.93	0.78 0.9	0.93 0.88	0.7 0.99	0.8 0.83	70.60% 80.40%
With P	Max. Pollutants	Trad.PCA Pred.PCA	0.89 0.9	0.64 0.59	0.57 0.73	0.08 0.11	0.55 0.08	-0.71 0.06	47.10% 47.10%

Application of predictive sPCA to PM2.5 data: Loadings



Application of predictive sPCA to Data: Heat maps



Summary of the approach

- Developed by adding a constraint to traditional sparse PCA
- Predictive sPCA results in improved predictability of PC scores
- Penalty can be optimally selected by maximizing predictibility of pollutants
 - Simplifies interpretation of loadings (and increases predictability of scores)
 - Obtained PC scores are uncorrelated

Future work: Applications of current method

- Scientific interpretation of obtained principal component scores
- Number of principal components to use in health analysis
- Analysis of systolic blood pressure in Sister Study
- Application to MESA Air and mobile monitoring data from CCAR

Future work: Extensions of current method

- Additional penalty parameter to penalize regression coefficients β can be added
- Accounting for measurement error
- Spatial all-at-once dimension reduction approach (reduced rank regression)

Thank you!