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Objective

» |dentify important spatially varying air pollution mixtures
and quantify long-term health effects in cohort study data

» Initial application:

» Cohort: NIEHS Sister Study

» Health endpoint: Systolic blood pressure

» Pollution data: Annual average concentration of PM2.5
components from national CSN and IMPROVE networks

» Future planned application:
» Cohort: MESA Air
» Pollution data: Mobile monitoring data from UW CCAR



Challenges

» Dimension reduction
» Problem: Difficult to fit health model and interpret
coefficients with multi-pollutant exposure (e.g. 15-20
components of PM2.5)
» Solution: Principal component analysis
» Spatial misalignment
» Problem: Concentration data is available at monitor
locations but not where study subjects live
» Solution: Predict exposures at subject locations using
spatial prediction model that incorporates geographic
covariates and spatial smoothing

» Solving two challenges above together



NIEHS Sister Study

» Y - blood pressure
» Data on Y and subject-specific covariates from NIEHS
Sister Study data (cohort study on risk factors for breast
cancer)
» > 50,000 sisters of women with breast cancer
» Statistically significant association between PM2.5
exposure and Y (Chan et al. (under review))

Subject Locations




Need for dimension reduction

» Dimensionality of multi-pollutant data

» General health model is not practical

m
Y =ap+ Z a,l3, + interactions + covariates + ...
I=1
» Pollutant concentrations are potentiality correlated
» Large number of main effects and interactions: hard to
estimate and interpret



Monitor locations and covariates

» 17 pollutants and 277 monitors (CSN and IMPROVE
networks)
» PM25, EC, OC, Al, As, Br, Ca, Cr, Cu, Fe, K, Mn, Na, S, Si, V, Zn
» Annual averages from November, 2009 to October, 2010.

Monitor Locations

» GIS covariates from MESA Air geographic database
» Let Z be a matrix of transformed geographical covariates
and thin-plate spline basis functions
» Available at all monitor and subject locations



A possible solution: Sequential approach

1. Dimension reduction
» Compute first few principal components of multi-pollutant
data
2. Predict scores obtained from principal components at
participant locations using GIS covariates and splines
3. Fit a health model with smaller number of variables
» Interpret coefficient of the model to identify important
mixtures
This talk: Steps 1 and 2: Dimension reduction and
prediction



Combining PCA with spatial prediction



Combining PCA with spatial prediction



Review of principal component analysis

Principal component analysis (PCA) is a popular
dimension reduction technique

A version of unsupervised learning

Goal of PCA: Reduce the number of variables of interest
into a smaller set of component scores

PCA transforms the original variables into a set of
component scores (linear combinations of originals) equal
to the number of original variables
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PCA: Example

Xy

» Let X be a n x p matrix with standardized columns
» PCA finds direction v4 and v, (also called loadings)

» Principal component scores: PC1 = Xvy, PC2 = Xv,
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PCA algorithm

» First, find (u, V), s.t. ||u]| = 1 that minimizes
IX —uv’|r

Define PC loadings by v = v/||v||. Define PC1 by u = Xv.

» Subsequently, find (U, Vi) by approximating the
corresponding residual matrices. Define corresponding PC
scores and loadings.
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Application of PCA to PM2.5 data: Loadings
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Spatial prediction for scores

Let: u(s) - value of PC score at location s (available only at
monitor locations)

Let: z) - vector of geographical covariates at location s
(available at all locations)

Goal: Predict us) at subject locations
Universal Kriging model:
> Uis) = 1i(s) T+ €(s), Where pis) = pi(Z(s))
» {e(s)} is a Gaussian process with mean 0 and spatial
covariance function ¢ = ¢()
» After estimates of u() and ¢() are obtained from data at
monitor locations, one can predict u(s-) at new locations s*
using Z(s-)
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Application of PCA to PM2.5 data: Predictability

PC1:R2=0.88 PC2:R2= 0.58 PC3:R2= 0.56

Predicted Scores
Predicted Scores
Predicted Scores
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Observed scores: PC scores calculated at monitor locations with
known pollutants X and fixed loadings v
Predicted scores: Predictions of PC scores at locations where X is

unknown
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Application of PCA to PM2.5 data: Heat maps

Predictions of PC1: R"2 = 0.88 Predictions of PC2: R"2 = 0.58

Predictions of PC3: R"2 = 0.56
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Motivation for a new PCA approach

» Can we improve predictability of principal component
scores?

» Can we simplify interpretability of the component loadings?
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New approach: Idea

» Focus on predictability of principal component scores first
» We want a PCA algorithm that results in PC scores that
can be predicted well
» Develop an algorithm that forces PC scores to be close to

spatial covariates

» Work with interpretability by adding a penalty to
component loadings later
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Motivation: Predictive PCA

Recall: Z - matrix derived from geographical covariates
and spline basis functions

» Modify PCA so that the scores can be predicted well by Z

At first step of the algorithm, minimize the following with
respect to 3 and V:

X — ZvT || with constraint ||Z3]|2 = 1, rather than

X — uv’||¢ with constraint ||ul|2 = 1

Define loadings: v = ﬁ and PC scores: u = Xv (not
observable at subject locations)

Subsequently, optimization using residual matrices

(X —2Zpv7)
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Application of predictive PCA to PM2.5 data: Loadings
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Application of predictive PCA to PM2.5 data
Predictability

Traditional PCA

PC1:R2= 0.88 PC2:R2= 058 PC3:R2= 056
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Summary of the talk so far

1. Predictive PCA improves predictability of PC scores

2. Loadings from both traditional and predictive PCA are
difficult to interpret
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How to improve interpretability: Sparse PCA (sPCA)

» Principal components scores and loadings can sometimes
be difficult to interpret

» Sparse PCA produces modified PCs with sparse loadings:
loadings with only a few nonzero elements

» In sparse PCA, penalty parameter, A\ > 0, controls sparsity
of loadings:

» Large )\ results in very sparse loadings
» Different A can be used for different PCs
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How to introduce sparsity to PCA?

» For a fixed value of penalty parameter A:

» Recall: In traditional PCA, we minimize
X —uv’||r

with respect to (u,v), s.t. ||u| = 1
» In Sparse PCA (Shen and Huang, 2008): we minimize

X — UV + Py(V)

m
with respect to (u, V), s.t. |[u|| = 1, where Py\(V) := A Y |v,
1=1

an L (LASSO) penalty function
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Sparse PCA vs non-sparse PCA: Example

Traditional PCA Traditional Sparse PCA

Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3
S 0.25 -0.06 0.14 0.28 0 0
PM25 0.31 -0.02 0.1 0.34 0
EC 0.31 -0.07 0.02 0.34 0 0
As 0.3 -0.1 -0.02 0.33 0 0
ocC 0.3 -0.1 0.05 0.33 0 0
Br 0.29 0.01 0.16 0.3 0 0
v 0.24 -0.02 0.34 0.24 0 0.38
Zn 0.28 -0.01 -0.15 0.26 -0.01 -0.14
K 0.27 0.14 0.16 0.26 0.08 0.06
Cu 0.27 -0.02 -0.02 0.26 0 0
Al -0.01 0.56 0 0 0.62 0.02
Fe 0.26 0.21 -0.22 0.21 0.13 -0.02
Si -0.03 0.58 0 0 0.62 0
Cr 0.26 -0.08 -0.23 0.24 0 0
Ca 0.11 0.47 -0.07 0 0.45 -0.1
Na 0 0.13 0.73 0 0 0.9
Mn 0.23 0.12 -0.37 0.14 0 -0.12




Sparse predictive PCA

» Recall: In predictive PCA, we minimize
X —2ZpV7 ||

with constraint ||Z3||? = 1

» Analogous to sparse PCA (Shen and Huang, 2008), we
can introduce sparsity to predictive PCA by minimizing

X —ZBVT[|g + Py(V)

with constraint ||Z3||? = 1
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Candidate PCA algorithms

Unpenalized Sparse *
Traditional PCA | min||X —uv’||¢ min(||[X — Uv’ ¢ + Pr(V))
Predictive PCA | min||X —ZaV7||¢ | min(||X — ZBV'||r + PA(V))

«x Maximize pollutants: )\ selected to maximize spatial predictability of
pollutants

Maximize scores: )\ selected to maximize spatial predictability of principal

scores



Simulation study

» Two simulated scenarios with 17 pollutants

» Simulated Scenario 1: Predictability is HIGH - most
pollutants can be predicted well

» Simulated Scenario 2: Predictability is LOW - most
pollutants cannot be predicted well
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Simulation study - Scenario 1 (Predictability is HIGH)

Predictability of Scores Abs.
A . Sparseness
(R2) Correlation %)
e o PC1 PC2 PC3 (Average) ?
E % Trad.PCA 0.96 0.87 0.7 0.04 0.00%
-‘;: § Pred.PCA 0.96 0.88 0.71 0.05 0.00%
%]
g
3
0 Trad.PCA 0.97 0.91 0.84 0.38 35.22%
z %  Pred.PCA 0.97 0.92 0.84 0.43 35.53%
g =
a
= 0
-
f§° 5 Trad.PCA 0.96 0.87 0.66 0.11 19.96%
E Pred.PCA 0.96 0.87 0.74 0.18 20.04%
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Simulation study - Scenario 2 (Predictability is LOW)

Predictability of Scores Abs. S
. arseness
(RA2) Correlation P (%)
e o PC1 PC2 PC3 (Average) °
§ £ Trad.PcA 0.76 0.6 0.27 0.02 0.00%
~§ é Pred.PCA 0.85 0.76 0.56 0.08 0.00%
%]
I
3]
v Trad.PCA 0.93 0.79 0.28 0.31 52.47%
z 3 Pred.PCA 0.95 0.9 0.83 0.42 69.96%
T =
(9]
a
ey
= (%]
= . f
§ 5 Trad.PCA 0.79 0.66 0.28 0.08 19.14%
E Pred.PCA 0.88 0.8 0.61 0.13 25.69%
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Simulation study: Conclusions

» Predictive sPCA results in improved predictability of PC
scores:

» Difference between approaches increases with increase in
# of unpredictable pollutants

» Effect of penalty parameter:

» Simplifies interpretability of loadings

» If penalty maximizes predictability of scores:
» PC scores are highly predictable
» PC scores are highly correlated

» If penalty maximizes predictability of pollutants:
> Predictability of PC scores is still high
» PC scores are not correlated
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Application of sparse PCA to PM2.5 data: Comparison

Without
Penalty

With Penalty

Max.

Pollutants

Max. Scores

Trad.PCA
Pred.PCA

Trad.PCA
Pred.PCA

Trad.PCA
Pred.PCA

Predictability of Scores

(RA2) Correlations Spal}i/e)ness
PC1 PC2 PC3 PClvsPC2 PClvsPC3 PC2vsPC3 °

0.88 0.58 0.56 0.02 0 0 0.00%
0.89 0.58 0.67 -0.05 0.02 -0.03 0.00%
0.91 0.86 0.78 0.93 0.7 0.8 70.60%
0.92 0.93 0.9 0.88 0.99 0.83 80.40%
0.89 0.64 0.57 0.08 0.55 -0.71 47.10%

0.9 0.59 0.73 0.11 0.08 0.06 47.10%

32



Application of predictive sPCA to PM2.5 data: Loadings
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Application of predictive sPCA to Data: Heat maps

Traditional PCA

Predictions of PC1: R*2 = 0.88 Predictions of PC2: R*2 = 0.58 Predictions of PC3: R*2 = 0.56

Predictive SPCA

Predictions of PC1: R*2 = 0.90 Predictions of PC2: R*2 = 0.59 Predictions of PC3: R*2 = 0.73
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Summary of the approach

» Developed by adding a constraint to traditional sparse PCA

» Predictive sPCA results in improved predictability of PC
scores
» Penalty can be optimally selected by maximizing
predictibility of pollutants
» Simplifies interpretation of loadings (and increases

predictability of scores)
» Obtained PC scores are uncorrelated
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Future work: Applications of current method

v

v

v

v

Scientific interpretation of obtained principal component
scores

Number of principal components to use in health analysis
Analysis of systolic blood pressure in Sister Study

Application to MESA Air and mobile monitoring data from
CCAR
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Future work: Extensions of current method

» Additional penalty parameter to penalize regression
coefficients 8 can be added

» Accounting for measurement error

» Spatial all-at-once dimension reduction approach (reduced
rank regression)
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Thank you!
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