Tropical Cyclone Forecast Assessment

Zachary Weller

Colorado State University

wellerz@stat.colostate.edu

Joint work with Dr. Jennifer Hoeting (CSU) and Dr. Ligia Bernardet (NOAA)

June 24, 2014

- National Hurricane Center tropical cyclone (TC) predictions since 1954
- Forecasts have typically improved each year, but are always seeking improvement due to potentially large economic and societal impacts

- Forecast models are typically initialized every 6 hours producing updated forecasts.
- Typical output for an individual model run (forecast metrics):
 - Lead time for prediction, given in 6 hour increments
 - 2 Track (location) given in lat/lon
 - Minimum Sea Level Pressure (MSLP) given in millibars
 - Intensity (1 minute max. sustained wind) given in knots
 - Sadii of sustained winds (34, 50, and 64 knots) for each storm quadrant

- Forecast models are typically initialized every 6 hours producing updated forecasts.
- Typical output for an individual model run (forecast metrics):
 - Lead time for prediction, given in 6 hour increments
 - 2 Track (location) given in lat/lon
 - Minimum Sea Level Pressure (MSLP) given in millibars
 - Intensity (1 minute max. sustained wind) given in knots
 - S Radii of sustained winds (34, 50, and 64 knots) for each storm quadrant
- Current models of interest: dynamical models HC35 (control) and HDTR (experimental)
- Working Data:
 - Data from 2012 Atlantic Hurricane Season
 - Forecasts for 17 of 19 total storms
 - Variable number of forecasts from each model for each storm

2012 Atlantic Hurricanes

Zachary Weller (CSU)

TC Forecast Assessment

June 24, 2014 4

4 / 19

Verification Techniques

- After a storm, best track data are compiled (i.e. the "truth")
 - contains information on the "observed" values: track, MSLP, and intensity, etc.
 - data are compiled through a reanalysis
 - some uncertainty in these data
- Forecast model output is compared to best track for each forecast metric separately, creating prediction errors
- Traditionally, univariate analysis is done on the prediction errors for each forecast metric for a given lead time
- Models are often compared via a <u>homogeneous comparison</u>: prediction errors from the two models are matched on storm, forecast initialization time, and lead time
- For example: compare intensity errors at the 24 hour lead time from the two models via a paired t-test

া হ তিও্ও June 24, 2014 6 / 19

Zachary Weller (CSU)

Zachary Weller (CSU)

Zachary Weller (CSU)

Goals

- Help hurricane modelers evaluate model performance for various metrics
 - Construct statistical tests to compare TC forecasting model performance. Ideally, could compare more than two models simultaneously and tests would be multivariate.
 - Graphical methods to evaluate model performance.

Goals

- Help hurricane modelers evaluate model performance for various metrics
 - Construct statistical tests to compare TC forecasting model performance. Ideally, could compare more than two models simultaneously and tests would be multivariate.
 - Graphical methods to evaluate model performance.
- Output of the state of the s
 - Adjust p-values and CI's used in model comparison.
 - Reduce computation time needed for retrospective model runs?

Goals

- Help hurricane modelers evaluate model performance for various metrics
 - Construct statistical tests to compare TC forecasting model performance. Ideally, could compare more than two models simultaneously and tests would be multivariate.
 - Graphical methods to evaluate model performance.
- Output of the state of the s
 - Adjust p-values and CI's used in model comparison.
 - Reduce computation time needed for retrospective model runs?
- Understand the relationship between the dynamical model forecast errors and errors in the dynamical model's 3-D environment.
 - For forecasting intensity (max winds), statistical forecasting models still out-perform dynamical forecasting models
 - Statistical Hurricane Intensity Prediction System (SHIPS)
 - Example: errors in the sea surface temperature may be related to errors in the intensity forecast.

Statistical focus:

- Probabilistic forecasts (Murphy and Winkler, 1987)
- Spatial methods (Gilleland, et. al. 2009)
- Ensembles and proper scoring (Gneiting and Raftery, 2007)
- Assessing multivariate forecasts (Gneiting, et. al. 2008)
- 2 Atmospheric Science focus:
 - Progress and Challenges in Verification (Ebert, et. al. 2013)
 - Forecast Verification: A Practitioner's Guide in Atmospheric Science (Jolliffe and Stephenson 2012)
 - New Techniques to Assess Wind Radii Forecasts and Storm Asymmetry (Davis et. al. 2010)
 - Developmental Testbed Center (DTC): yearly summaries of model performance (Bernardet, et. al. 2012)

Paired t-tests are traditionally used to compare the performance of two forecasting models at a given lead time.

- For the number of storms, let $i \in \{1, 2, \dots, I\}$
- For the number of forecasts for storm *i*, let $j \in \{1, 2, \dots, n_i\}$
- For the total sample size, let $N = \sum_{i=1}^{I} n_i$
- Let $y_{ij} = |e_{ij}^{HC35}| |e_{ij}^{HDTR}|$, where $\overline{e_{ij}^{M-1}} =$ Forecast Observed values for a forecasting metric (e.g. intensity) from forecasting model M for a fixed lead time (e.g. 24 hours)
- Onsider the model:

$$y_{ij} = \mu + \epsilon_{ij}.\tag{1}$$

- **③** We are interested in inference for μ (e.g., $\mu = 0$).
- Challenge: multiple types of correlation

Zachary Weller (CSU)

TC Forecast Assessment

Correlation

Correlation

Zachary Weller (CSU)

TC Forecast Assessment

Recall the model: $y_{ij} = \mu + \epsilon_{ij}$.

Treating the data as coming from a repeated measures experiment (subject = storm), and modeling the ϵ_{ij} as an AR(1) process gives adjusted Cl's for μ .

95% CI's for μ : location error (km)

i.i.d. errors

AR-1 errors

Lead Time	Lower	Upper	Lead Time	Lower	Upper
24	-2.16	5.76	24	-4.54	8.55
48	2.84	18.44	48	-3.30	25.67
96	21.16	72.51	96	3.15	94.77

95% Cl's for μ : intensity error (knots)

i.i.d. errors

AR-1 errors

Lead Time	Lower	Upper	 Lead Time	Lower	Upper
24	-2.59	-0.90	24	-2.88	-0.36
48	-1.25	0.56	48	-1.70	0.92
96	0.19	2.91	96	-0.84	3.73

Graphical Techniques: Evaluating a Single Model

Zachary Weller (CSU)

Graphical Techniques: Evaluating a Single Model

2012 AL Hurricanes

Future Work: 3-D Enviroment

- Oynamical models attempt to emulate the 3-dimensional physical environment.
 - Sea surface temperature (SST)
 - Air temperature
 - Relative humidity (RH)
 - Wind speed and shear at various pressure gradients

Our data contains 100+ variables describing 3-D physical environment

Future Work: 3-D Enviroment

- Oynamical models attempt to emulate the 3-dimensional physical environment.
 - Sea surface temperature (SST)
 - Air temperature
 - Relative humidity (RH)
 - Wind speed and shear at various pressure gradients
- Q Our data contains 100+ variables describing 3-D physical environment
- Question: are errors in any of the 3-D environment variables related to forecast errors? (in particular, intensity errors)
- Errors in 3-D environment can be computed by using GFS (global forecast system) data, but data are not on the same scale
- Irrors in the 3-D environment are highly correlated for some variables

- Oynamical models attempt to emulate the 3-dimensional physical environment.
 - Sea surface temperature (SST)
 - Air temperature
 - Relative humidity (RH)
 - Wind speed and shear at various pressure gradients
- **2** Our data contains 100+ variables describing 3-D physical environment
- Question: are errors in any of the 3-D environment variables related to forecast errors? (in particular, intensity errors)
- Errors in 3-D environment can be computed by using GFS (global forecast system) data, but data are not on the same scale
- S Errors in the 3-D environment are highly correlated for some variables

<u>Goal</u>: Use statistics to improve dynamical forecasting models, which are being outperformed by statistical forecasting models!

- Multivariate spatio-temporal model of forecast errors
- Ompare several forecasting models at once
- Examine other forecasting metrics (e.g. radii of max winds: a measure of storm structure)

Thank you to:

- Ligia Bernardet & Christina Holt (NOAA)
- Interpretation Method A Met
- STATMOS research network
- Or. Peter Guttorp (University of Washington)
- Justin Wagner (University of Washington)
- **1** Dr. Alexandra Schmidt (UFRJ) and all the PASI instructors

Questions? Perguntas?