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August average SST from WOA98

• The ’98 WOA climatology

has a resolution of 1◦. It is very

smooth with a number of circu-

lar features. These are proba-

bly due to a large spherical ker-

nel.
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August average SST from WOA98

• The ’98 WOA climatology

has a resolution of 1◦. It is very

smooth with a number of circu-

lar features. These are proba-

bly due to a large spherical ker-

nel.

• There is no upwelling off the

Iberian peninsula and a very

weak one in Western Africa.
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August average SST from WOA01

• The WOA01v2 climatology

has 1/4◦resolution. It has been

available since 2006 and it in-

cludes data sources that en-

tered the NODC after 1998.
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August average SST from WOA01

• The WOA01v2 climatology

has 1/4◦resolution. It has been

available since 2006 and it in-

cludes data sources that en-

tered the NODC after 1998.

• Circular kernels have a visible

effect, e.g. in NW Iberia.

• Not considering the year of

observation for computations

mixes cold decades with warm

ones, thereby producing that

strong front in NW Africa

( 32.5◦N)

World Ocean Atlas
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• The current version of the World Ocean Atlas is WOA13, and has

1/4◦resolution. It uses only in situ data.

• The WOA13 provides monthly climatologies for the period

1955–2012, not only for SST, but also for 120 depths down to 5,500

meters. It also includes salinity and four other variables.

• It is obtained by smoothing gridded averages using Optimal

Interpolation (Kaplan et al. 1997). This is based on assuming

Gaussian errors, projecting the state variable on the basis of EOFs

and finding the MAP induced by a Gaussian prior.

Worl Ocean Atlas
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The Operational Sea Surface Temperature and Sea Ice Analysis

(OSTIA) produces a daily analysis of SST blending in situ and

satellite observations (L4).
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The Operational Sea Surface Temperature and Sea Ice Analysis

(OSTIA) produces a daily analysis of SST blending in situ and

satellite observations (L4).

The analysis xk consists, essentially, on the estimation of the

posterior mode of a multivariate posterior, assuming Gaussian

errors and using the estimate xk−1 from the previous day, as a

prior.

xk = xk−1 +A(yk − h(xk−1))

The function h maps the observations to the grid. The matrix A is

obtained from such mapping, the prior covariance matrix and the

observational variance.

OSTIA
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SST for June 10, 2014

OSTIA
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OSTIA is one of the analyses of the Group for High Resolution SST.

Here we show the anomalies of the median of the 11 member ensemble,

WRT the climatology for June 11, 2014.

GHRSST
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when an average is all that is needed?

Why a Space-Time Model?

7



Why use a sophisticated spatio-temporal model for climatologies

when an average is all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

Why a Space-Time Model?

7



Why use a sophisticated spatio-temporal model for climatologies

when an average is all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

• To account for location- and time-varying seasonal cycles, long

term trends and high frequency variability.

Why a Space-Time Model?

7



Why use a sophisticated spatio-temporal model for climatologies

when an average is all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

• To account for location- and time-varying seasonal cycles, long

term trends and high frequency variability.

• To account for observational error.

Why a Space-Time Model?

7



Why use a sophisticated spatio-temporal model for climatologies

when an average is all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

• To account for location- and time-varying seasonal cycles, long

term trends and high frequency variability.

• To account for observational error.

• To incorporate different sources information, including structural

knowledge.

Why a Space-Time Model?

7



Why use a sophisticated spatio-temporal model for climatologies

when an average is all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

• To account for location- and time-varying seasonal cycles, long

term trends and high frequency variability.

• To account for observational error.

• To incorporate different sources information, including structural

knowledge.

• To produce probabilistic measures of uncertainty.

Why a Space-Time Model?
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The domain S (gray area) and the grid J (bullets; rJ = 4◦) used for the

convolving process. A transect with three “case study” points. A random

sample of 1% of the data. Temporal distribution of the data.
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We use data

from the NODC

World Ocean

Database 2005,

collected with

four types of

instruments

between 1961

and 1990.

Observation Equation
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We use data

from the NODC

World Ocean

Database 2005,

collected with

four types of

instruments

between 1961

and 1990.

The SST observation xi,m,y(s) collected with

instrument i = 1, . . . , 4, in month m, year y

and location s follows

xi,m,y(s) ∼ N
(

θm,y(s), τ
2

i

)

.

Observation Equation
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Represent a Gaussian process X as

θ(s) =
m
∑

j=1

Bj(s)γj = B(s)Tγ , γ = (γ1, . . . , γm)T ∼ Nm(0,K)

• Predictive Gaussian processes (Banerjee et al. ’08) that take γ as

a Gaussian process over a grid. B(s) is obtained by calculating the

predictive expectation for points outside the grid.

• Reduced rank kriging (Cressie and Johanesson ’08) where B(s)

corresponds to a multi-resolution, non-orthogonal, basis.

• Process convolutions (Higdon ’07) where γj = γ(s∗j ) is a process

over a grid s∗
1
, . . . , s∗J and Bj(s) = b(s− s∗j ).

Low Rank Models
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To model the SSTs we use process convolutions:

θm,y(s) ∼ N
(

∑

j
b(s− j;Λ(s))

(

α(j) + βt(j)w
T
t +

η(j)(t− 180)) ,Φ(s)2
)

,

Φ(s)2 =
∑

j
b(s− j;Ω(s)) exp (σ(j)) .

Here t = m+ 12(y − 1961) denotes time in months since December

1960.

Process Equation

11



The space-varying kernels are

b(s− j;ω) ≡







(

1− ||s− j||2
Σ

)ω1

if ||s− j||Σ < 1

0 otherwise.

and ω = (ω1, . . . , ω4).

Spatially-Varying Kernels
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The space-varying kernels are

b(s− j;ω) ≡







(

1− ||s− j||2
Σ

)ω1

if ||s− j||Σ < 1

0 otherwise.

and ω = (ω1, . . . , ω4).

The distance is given as

||s− j||Σ ≡

√

((xs − xj), (ys − yj))Σ−1 ((xs − xj), (ys − yj))
T
.

Spatially-Varying Kernels
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The ellipsoidal shape is controlled by the parameters in

Σ
−1 ≡





Ψ1 +Ψ2 cos 2πω4 Ψ2 sin 2πω4

Ψ2 sin 2πω4 Ψ1 −Ψ2 cos 2πω4





Ψ =
1

2

(

1

a2
+

1

A2
,
1

a2
−

1

A2

)

a = L+ ω2(U − L), A = a+ ω3(U − a), ω2, ω3 ∈ (0, 1)

So the semi-minor and semi-major axes a and A belong to (L,U).

Spatially-Varying Kernels
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Anisotropy of the kernels is achieved by letting

Λ(s) = (Λ1(s), . . . ,Λ4(s)) and Ω(s) = (Ω1(s), . . . ,Ω4(s)), with

Λ(s) =
∑

j
b(s− j,u)κ(j),

Ω(s) =
∑

j
b(s− j,u)ρ(j),

with u = (2, rj , rj , 0). Which implies that the kernels are spherical.

κ1 and κ4 have Uniform priors in (1.5, 5) and (−π/2, π/2),

respectively; the joint prior for κ2 and κ3 is proportional to

IrJ/
√
2<κ3≤κ2<rJ

. We assign analogous priors to ρ.

The model
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Lack of stationarity in time is handled by letting

βt ∼ N (βt−1,Wt)

and

wt =

(

sin

(

2πt

12

)

, cos

(

2πt

12

)

, sin

(

2πt

6

)

, cos

(

2πt

6

))

.

Where Wt is modeled using a space-dependent discount factor.

The model
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Baseline, α, long-term trend, η, initial seasonality, β1, and

variance, σ, coefficients are modeled with a MRF as in

α(j) ∼ N

(

α(N(j)) + α(S(j)) + α(E(j)) + α(W(j))

4
, τ2α

)

.

The model
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The use of a compactly supported kernel allows for an efficient

parallel implementation. We use 13 processors, each one working

with two columns of J .
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The use of a compactly supported kernel allows for an efficient

parallel implementation. We use 13 processors, each one working

with two columns of J .

We use reasonably vague inverse gamma priors for all variance

parameters. Posterior inference shows that the data do provide

information about those parameters.

We run an MCMC. To determine convergence we use the

diagnostics available in BOA to set the burn-in (1,200 iterations),

the thinning (1/3) and the sample size (6,000 from the thinned

chain). We also performed two separate runs, a warm start

configuration (30◦) and a cold one (15◦).

Implementation
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Results: January Climatology
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August SST from WOA01 August SST from LS09

Results: August Climatology
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Posterior mean

for monthly SST

at s2 (◦C).
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A collection of SST data from 1662 to 2007 is available from

International Comprehensive Ocean-Atmosphere Data Set

(ICOADS).
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A collection of SST data from 1662 to 2007 is available from

International Comprehensive Ocean-Atmosphere Data Set

(ICOADS).

ICOADS reports 12 different measurement methods that

correspond to observations collected by ships, research vessels,

moored buoys, drifting buoys, and oceanographic stations.

Each measurement method has a different associated bias.

Moreover, measurement errors corresponding to the same device

are likely to be correlated.

SST Biases
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The SST metadata often does not report the measurement method

used for a given observation. This uncertainty needs to be

accounted for in the analysis. We achieve this by proposing a

mixture model for the biases.

SST Biases: Observation Equation
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The SST metadata often does not report the measurement method

used for a given observation. This uncertainty needs to be

accounted for in the analysis. We achieve this by proposing a

mixture model for the biases.

Ignore the time index and let xik(s) be the k-th observation at

location s from device i. Then

xik(s) = θ(s) + βi + εik(s), εik(s) ∼ N(0, σ2

i )

SST Biases: Observation Equation
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We use a reduced rank model for the random field of SSTs, thus

θ(s) = µ(s) +B′(s)γ + v(s) , v ∼ N(0,Φ2(s))

Here µ(s) is a linear function of the location. B(s) is a vector

obtained from the evaluations of basis functions, that may depend

on a set of parameters φ. Finally γ ∼ N(0,K).

SST Biases: Process Equation
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We use a reduced rank model for the random field of SSTs, thus

θ(s) = µ(s) +B′(s)γ + v(s) , v ∼ N(0,Φ2(s))

Here µ(s) is a linear function of the location. B(s) is a vector

obtained from the evaluations of basis functions, that may depend

on a set of parameters φ. Finally γ ∼ N(0,K).

In our application K(s) is obtained from kernel convolutions and γ

is a Markov random field.

SST Biases: Process Equation
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As there is sometimes uncertainty about the type of measurement,

we consider the prior for βi

βi ∼

p
∑

j=1

λijN(µj , τ
2

j ) , p(µj , τ
2

j ) = N(µj |mj , κτ
2

j )IG(τ2j |aj , bj).

Information about the parameters of these priors can be obtained

from the published literature.

SST Biases: Priors
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The variance of each device follows the prior

p(σ2

i |σ
2) = IG(σ2
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Thus, a priori, we assume that E(σ2

i ) = σ2.
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As there is sometimes uncertainty about the type of measurement,

we consider the prior for βi

βi ∼

p
∑

j=1

λijN(µj , τ
2

j ) , p(µj , τ
2

j ) = N(µj |mj , κτ
2

j )IG(τ2j |aj , bj).

Information about the parameters of these priors can be obtained

from the published literature.

The variance of each device follows the prior

p(σ2

i |σ
2) = IG(σ2

i |α+ 1, ασ2) , p(σ2) = Ga(σ2|a, b).

Thus, a priori, we assume that E(σ2

i ) = σ2.

Finally, λi = (λi1, . . . , λip) ∼ Mult(1;πi1, . . . , πip).

SST Biases: Priors
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• We consider the data for the Mediterranean Sea in December 2003.

• There are 12,210 SST observations in this datatset.

• We consider four types of measurements: moored buoys, moving buoys,

engine room intake, and buckets.

SST Mediterranean Data
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• Extend the model to larger domains.

• Consider a temporal component that includes trends and

time-varying cycles.

• Consider space-varying biases.

• Include satellite data. This requires dealing with a change of

support problem.

Model Extensions
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• Ricardo T. Lemos, Bruno Sansó (2009) “A Spatio-Temporal

Model for Mean, Anomaly and Trend Fields of North Atlantic Sea

Surface Temperature (with discussion)”. Journal of the American

Statistical Association, 104, pp. 5–25.

References

33


