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Outline

“Generalized extreme value distributions. Generalized Pareto
distribution. Max-stable processes. Composite likelihood.”
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Survey:

1. Univariate
e Analyzing a subset of extreme data.
e Distributions for extremes.

2. Multivariate
e \What do we mean by tail dependence?
e How multivariate extremes models capture tail depen-
dence.
3. Spatial Processes
e What is a maximal process?
e Max-stable process models.



Why study extremes?

Although infrequent, extremes have large human impact.

Examples of extreme precipitation in Colorado:

Big Thompson, 1976 Ft Collins, 1997 N. Colorado, 2013
e 145 Killed e 5 Killed e 8 Killed

e $41m damage e $250m damage e $77? damage

Fort Collins to Boulder ~ 90 km.



Why study extremes?

Although infrequent, extremes have large human impact.

Goal of an extreme value analysis: to quantify the magni-
tude of a weorst-ease really-bad-case scenario. Often requires
extrapolation.

Application areas:

e hydrology (stream/river flows, flooding)

e climate variables: precipitation, wind, heat-waves, ...
e finance

e insurance/reinsurance

e engineering (structural design, failure)

e not much done (yet) in medicine, biology, ecology



“Ordinary” vs Extreme Value Statistics

“Ordinary” Statistics: Describes main part of distribution.

Extremes: Characterizes the tail of the distribution.

“Ordinary” Stats

Extremes

N

e Relies on asymptotic theory to provide models for the tail.

e Uses only the extreme observations to fit the model:
Retain only a small percentage of data, discard the rest.



Approaches for Extracting Extreme Subset

Block Maxima (Generalized Extreme Value Dist)
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How unusual was the Fort Collins event?

Measured value for 1997 event: 6.18 inches.

Let’'s analyze data preceding the event (1948-1990) and es-
timate the ‘return period’ of an event of 6.18 inches.

We need to answer the question: “What is the probability
the annual maximum event is larger than 6.18 inches?”

Question requires extrapolation into the tail. Largest obser-
vation (1948-1990) is 4.09 inches.

Model the data in two ways:
1. Model all (non-zero) data.
2. Model only extreme data.



Modeling all precipitation data

Let X; be the daily “summer’” precipitation amount for Fort
Collins. (Summer = Apr-Oct)

To model precipitation, we need to account for zeroes.

X >0 w.p. p

X, =0 wp. 1—p P=T0218

Assume: {

Further, assume that [X; | X; > 0] ~ Gamma(q, ).
ML estimates: & = 0.784, 3 = 3.52.

Histogram of fcNonZer

ooooooo



All precipitation model estimate

P(X:; > 6.18) P(X;>6.18| X, > 0)P(X; > 0)
(1 — Fx(6.18))(0.218)

= 1.47%x1071°(0.218) = 3.20x 10~ !

P(ann max > 6.18) 1 — P(entire year's obs < 6.18)
1 — (1 — P(indiv obs > 6.18))24
1—(1—3.20%10 1tH)=14

6.86 %« 10°°

(Assumes independence of daily observations, 214 “summer”
days in a year.)

Return period = (6.86 x 1072)~! = 145,815, 245 years.



All precipitation model

Gamma QQ Plot

model

empirical

Note: 98% of model's mass and 97% of data are < 1.



Modeling annual maxima

Let M, = max;=1,.. ,(X:). Assume M, ~ GEV(u,0,§).
(We will discuss why the GEV is the right distribution later.)

:U’ _1/5
Py (z) = P(M, < ) = exp 1 + g )] |
ML estimates: pn=1.11, 6 = 0.4 31.

P(ann max > 6.18) =1 — F};,(6.18) = 0.008.
Return period point estimate: 0.008~! = 121 vyears.



Modeling annual maxima

GEV QQ Plot

model

empirical

Note: Plot shows only annual maxima.



Why use only ‘extreme’ observations?

Heuristic explanation: Phenomena which generate extreme
observations are fundamentally different than those which
generate typical observations.

Mathematical explanation: Assume X; has cdf Fx(x).
Fy, () = P(M, < x) P(X;<xforallt=1,...,n)

P(X; < x)

F% ()

If we know Fx exactly, then we know F),;, exactly. But if we
have to estimate Fx, any errors get amplified by n.

“Let the tails speak for themselves.”



Why is the GEV the right distribution?

Answer: In a minute.



Why is the GEV the right distribution?

Answer: In a minute.

Why is the normal the right distribution for mod-
eling sample means?

Answer: The central limit theorem.
The normal is (sum-)stable.

amma (.5,2) Histogram of Me;
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7 |

Sample Mean
n = 100

n — o0
sum-stable

Important: We don't need information about the distribution
of X; to know about the distribution of the sample mean.



Why is GEV the right distribution?

A: Three-types Theorem. (Limit theorem for maxima.)

Let M, = maX;=1..,X:, Where X; are iid. If there exist nor-
malizing sequences a, and b, such that P (MZ—;”” < a:) — G(x)
(nondegenerate) as n — oo, then

G(x) = exp {— [1+ 5:1:]‘1/5} .

(Form of the max-stable distributions.)

¢ determines the tail behavior.
e £ < 0: Weibull (or reverse Fréchet) case (bounded tail)

e £ = 0: Gumbel case (light tail), interpreted as limit
e £ > 0: Fréchet case (heavy tail, power function decay)

Important: We don’t need information about the distribution
of X; to know about the distribution of M,,.



Distributions of sample maxima
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Distributions of sample maxima
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Statistical Practice

Assume n is fixed and large enough so that:

P(Mn_bn S:U) ~ exp{—[1+§x]_1/€}

Qn

Qn

- oo -[re(132)] ™)

o

. P(M, <y) ~ expl— :Hg(y—bn)]‘”ﬁ}

where y s.t. 1+ ¢& (%) > 0.

Fort Collins Data:
n=1.11 (0.086); o= 0.46 (0.074); §= 0.31 (0.181)

Point estimate for the 100-year return level: 5.8 inches
95% confidence interval for 100-year return level: (3.5, 18.8)



Outline

2. Multivariate
e \What do we mean by tail dependence?
e How multivariate extremes models capture tail depen-
dence.
3. Spatial Processes
e \What is a maximal process?
e Max-stable process models.



What is a Multivariate Extreme?

Let Z,, = (Zma,.--, Zma)t, m=1,2,... be an iid sequence of
random vectors. In an EV analysis, we extract a subset of
data considered ‘extreme’. How?

Block-maximum definition: Construct MV Dblock maxima:
M, = (Vi—=1Zmi,---,\Vr—1Zma). Leads to modeling with
Mmultivariate max-stable distributions.

Marginal-exceedance definition: For each marginal:=1,...,d,
find an appropriate threshold u; and retain data where Z,,; >
u;. Leads to MV generalized Pareto distribution.

Norm-exceedance definition: For a given norm retain data
where ||Z,,|]| > u. Leads to description by MV regular varia-
tion.



What is a Multivariate Extreme?
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Goal of a MV Extreme Analysis

Goal: often to assess probability of falling in a risk region.
Sometimes requires extrapolation.

Keep in mind: A basic tenet of an extreme value analysis is
to only use data considered to be extreme.
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Left: Annual max wind speeds at Hartford and Albany (Coles 2001)
Right: Wave height and storm surge data (Coles 2001).



Tail Dependence
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A central aim of multivariate extremes is trying to find an
appropriate structure to describe tail dependence.

To assess probability of falling in risk region, we need to know
how points in the tail behave jointly.



NOT Tail Dependence: Correlation

- E[(X — pe)(Y — py)]
VEIX = 1) E[(Y — p1y)?]

model.output alx

5= 0.59 5= 0.83

Correlation measures ‘“spread from center’, does not focus
on extremes.



A Start: Asymptotic Dependence/Independence

A random vector (X,Y) with common marginals is termed
asymptotically independent if

im P(X >u|Y >u) =0.

u—szt

Or if X has cdf Fx and Y has cdf Fy, then
Iirq P(Fx(X)>u| Fy(Y) >u) = 0.
u—

To talk about tail dependence, we need to know something
about what it means to be in the tail of each component:

e have a common marginal,
e Or account for different marginals.

Asymptotic dependence/independence is a way to begin to
talk about tail dependence.



Tail Dependence of Examples

X IS an empirical measure of asymptotic_dependence.

Quantile Quantile

Notes:
e asymptotic dependence implies a special (and strong) type
of dependence.

e need dependence structures which can exhibit asymptotic
dependence (few do).

e Gaussian dependence with p < 1 is asymptotically inde-
pendent.



Multivariate Extremes and Marginal Distributions

In multivariate extremes, dependence is modeled/described
after marginal effects have been accounted for.

Theory: MV distributions used in extremes are described by

first assuming a common marginal distribution, often unit

Fréchet (P(Z < z) = exp(—2z271)). Also (in theory) the marginal
distribution doesn’t really matter when describing dependence

because of “domain of attraction” results.

Practice: In practice, the marginal distributions do matter.
To apply MV extremal distributions, one must estimate the
marginal, and then transform to have common marginals.

Estimation: One can do the two-step process suggested
above, or in certain instances, both the marginal distributions
and dependence structure can be estimated all-at-once.

Sounds copula-like, but with different marginals and models.
Models need to accommodate tail dependence.



Marginal-transformed Example Data
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e Transforming to heavy tailed marginals focuses attention
on large observations.

e Asymptotic independence — large observations on axes,
asymptotic dependence — large observations in interior.
e In the heavy-tailed case, there is a probabilistic framework

which allows one to model tail dependence.



Framework for Tail Dependence:
Regular Variation and Polar Representation

Let R=||Z|| and W = ||Z||"1Z. Z is regular varying if there
exists a normalizing sequence {b,} where P(b | Z]| > r) ~
1/n, such that

nP (b,'R>r W € A) 5 r EH(A)

where d is the dimension of Z, and where H is some proba-
bility measure on the unit ‘ball’ Sy = {z € R?| ||z]| = 1}.

e ‘regular variation’ = heavy tail (described by &)
e LHS: “as points get big (radial component)”
e RHS: “radial and angular comps. become independent”

e angular measure H describes distribution of directions —
completely describes dependence.



MV Regular Variation in a Picture

(20, Z1, Z2)

£l

Idea: Distribution of large points described by radial compo-
nent and angular component (which has a probability distri-
bution on the unit simplex.



Transformed Data: Air Pollution Datasets
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MV EVD's: Limit Dists for Component Maxima

Let Z,, = (Zma,.--, Zma)t, m=1,2,... be an iid sequence of
random vectors, with Z,,; in the domain of attraction of a
unit Fréchet distribution.

Let M, = (Vi =1 Zm1,---,Vin—1Zma). If there exist normal-
izing sequences a, and b, such that P(MZ—;”” < z) — G(2)
(nondegenerate) as n — oo, then

G(z) = exp(—V(2)),

where
V(z)=d[ max (3) dH (w).

One can think of V(z) as linking the angular measure H(w)
to Cartesian coordinates required by a cdf.

There are a number of parametric subfamilies of MVEVDs
(e.g., Logistic).



Statistics: Fitting a MV EVD

L ogistic Model

G(z1,22) = exp [_ (zl—l/ﬁ i Z21/5)B]

Annual max wind speed at Hartford and Albany.
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Fitted Logistic Model to Wind Data

1 o1 &1 2 02 & B
49.97 5.03 0.01 4458 4.34 0.8 0.71
(0.87) (0.64) (0.09) (0.77) (0.57) (0.11) (0.10)

Note: estimation of angular measure has been done “behind
the scenes”. Encapsulated in estimate 8.

Estimation of Risk

est

P(Ml > 80 or M> > 80) = 0.0042

est

P(M; > 80 and M, > 80) = 0.00086

est

P(M; > 80)P(M, > 80) = 0.000006

There is dependence in this data. Note the difference
between the “joint” and “independent” estimates.



Outline

3. Spatial Processes
e What is a maximal process?
e Max-stable process models.



The Need for Spatial Extremes

Colorado Precipitation September 9-13, 2013
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Limit Distributions for Maxima of Processes

We know:
e GEV models limiting dists of univariate block maxima.
e MV EVD's are limiting dists of componentwise maxima.
e form of MV EVDs if marginal is assumed.

Q: What is the limiting distribution of locationwise maxima
of a process?
A: A max-stable process.

Let Z,.(s),se D,m =1,...,n be independent copies of Z(s),
and let M,(s) = max,, Z,(s). If there exist a,(s) and b,(s)

such that
Mn(s) T bn(s)

an(s)

then Y (s) is a max-stable process.

» Y (s),



Maxima of Processes
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Maxima of Processes
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Maxima of Processes
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Maxima of Processes
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Maxima of Processes
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Maxima of Processes
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A Max-stable Process Model

Brown Resnick Process:

PriZ(z:) < z1,Z(z;) < z2] =

(i —x)) 2 — 21 )
— le " 1b
exp { ( 5 + ol =2

. \/P(icz‘—iﬁj) Z1 — 22 )]}
e 2P
" ( - " v p(xi — x5)

e Best model available for both theoretical and practical rea-
sons.

e Above representation assumes marginals are unit Frechet.
e Model known in closed form only for two dimensions.
e One method for inference: composite likelihoods.

e Inference only uses extreme observations (i.e., annual max-
ima); model can capture tail dependence.




Take-Away Messages

1. Extremes goal is often to extrapolate.

2. Extremes methods ‘let tail speak for itself’, use a subset
of extreme data.

3. Two general approaches:
e Block maxima (GEV/MVEVD's/Max-Stable Processes)
e Threshold exceedances (GPD/Various Methods)

4. Do not need to know underlying dist'n to model extremes.

5. Dependence for extremes
e iS not described with correlations.
e requires structures which can allow for tail dependence.

6. Max-stable processes are
e theoretically justified models for spatial extremes.
e (practical standpoint) process models which can exhibit
tail dependence.



