Small scale spatio-temporal data analysis

Jaehong Jeong and Mikyoung Jun

Texas A&M University

June 20, 2014

Texas A&M University

Small scale spatio-temporal data analysis

Data description

The log 2-week average time series at 42 monitoring sites (from 1999-01-06 to 2011-12-21).

- ► 42 × 339 = 14238 observations (including 1061 missing values).
- Its mean is roughly 0 and standard deviation is 0.2064.

10 of the 52 monitoring sites for validation.

Data description

Figure 1: Locations. \circ : 40 locations for estimation and \times : 2 locations (station 60793001 and 60379033) for prediction for preliminary study. For given location, (L) mean of residuals over the whole time and (R) standard deviation of residuals over the whole time.

Data description

Empirical variance at time over locations Empirical variance at locations over time

Figure 2: Empirical variance at time over locations (L) and at locations over time (R). Red line represents overall empirical variance, 0.0426.

Figure 3: Empirical semivariogram against distance (km) at 1999-01-05 and 2002-11-06.

Figure 4: Empirical semivariogram against distance (km) at 2006-09-06 and 2000-03-01.

2007-01-24 ~ 2007-10-17

2010-11-24 ~ 2011-08-17

Figure 5: Empirical semivariogram against distance (km) at some periods.

2002-11-24 ~ 2006-08-23

1999-01-06 ~ 2011-12-21

Figure 6: Empirical semivariogram against distance (km) at some periods.

Figure 7: Empirical semivariogram of Z(s, t) - Z(s, t - 1) against distance (km) at some selected times.

Figure 8: Empirical semivariogram of Z(s, t) - Z(s, t - 1) against distance (km) at some selected times.

Autocorrelation plot

Undifferenced data

1.0 1.0 0.8 0.5 0.6 4.0 0.0 0.2 8 -0.5 0 5 10 15 20 25 0 5 10 15 20 25 Lag Lag

First differences

Figure 9: ACF plots at 60831025 station.

Texas A&M University

Autocorrelation plot

Undifferenced data

1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 -0.2 0.0 -0.4 0 5 10 15 20 25 o 5 10 15 20 25 Lag Lag

First differences

Figure 10: ACF plots for 60793001 station.

Texas A&M University

Model

We splitted whole time domain into 4 parts (1 : 1999-01-06 \sim 2002-03-27, 2 : 2002-04-10 \sim 2005-06-29, 3 : 2005-07-13 \sim 2008-10-01, and 4 : 2008-10-15 \sim 2011-12-21). Following models were considered.

- MC Matérn covariance function.
- ► MCS Separable space-time Matérn covariance function.
- DF Differential operator terms + Matérn covariance function (Jun and Stein, 2007).
- EX Exponential covariance function.

For priliminary study, we used 40 stations for estimation and 2 stations for prediction.

Differential Operator Model (Jun and Stein, 2007) Consider

$$Z(L, I, t) = \left\{ A(L) \frac{\partial}{\partial L} + B(L) \frac{\partial}{\partial I} + C(L) \frac{\partial}{\partial t} \right\} Z_0(L, I, t) + Z_0'(L, I, t)$$

where $A(L) = P(L; a_0, ..., a_p) \times cos(L)$, $B(L) = P(L; b_0, ..., b_q)$, and $C(L) = P(L; c_0, ..., c_r)$. $P(L; \cdot)$ is the linear combinations of Legendre polynomials, and L and I are latitude and longitude, respectively.

Then,
$$\mathcal{M}_{
u}(x) = lpha x^{
u} \mathcal{K}_{
u}(x)$$
,

$$\mathcal{K}_{Z}(L_{1},L_{2},l_{1}-l_{2},t_{1}-t_{2})=\mathcal{C}_{1}\mathcal{M}_{\nu-1}(\sqrt{h})+\mathcal{C}_{2}\mathcal{M}_{\nu}(\sqrt{h})+\alpha'\mathcal{M}_{\nu'}(\sqrt{h})$$

where

 $h(L_1, L_2, l_1 - l_2, t_1 - t_2) = ch^2(L_1, L_2, l_1 - l_2)/\beta_1^2 + (t_1 - t_2)^2/\beta_2^2$ and *C* functions are expressed as sums of products of the *A*, *B*, *C*, α , and the partial derivatives of *h* with respect to latitude lag, longitude lag, and time lag. Table 1: Maximum loglikelihood value and prediction measures for each model.

Model	Max.loglik	RMSE	MAE	CRPS
MC1	3765.011	0.2097	0.1732	0.1203
MC2	4020.027	0.1790	0.1349	0.0985
MC3	4318.228	0.1432	0.1118	0.0793
MC4	3576.529	0.2101	0.1394	0.1042

< A >

I ≡ ▶ < </p>

Model1 - Matérn

Table 2: Parameter estimates for each model. β_s : spatial range (km), β_t temporal range (2 weeks), α : scale and ν : smoothness parameter.

Estimate	MC1	MC2	MC3	MC4
β_s	758.32	833.70	609.29	524.63
β_t	0.32	0.11	0.13	0.11
α	0.05	0.05	0.04	0.05
ν	0.08	0.08	0.11	0.09

Figure 11: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (1999-01-06 \sim 2002-03-27).

Figure 12: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2002-04-10 \sim 2005-06-29).

Figure 13: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2005-07-13 \sim 2008-10-01).

Figure 14: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2008-10-15 \sim 2011-12-21).

Model1 - MC - Prediction

Figure 15: Image of 10×339 prediction values matrix.

Model2 - Separable space-time Matérn

 Table 3:
 Maximum loglikelihood value and prediction measures for each model.

Model	Max.loglik	RMSE	MAE	CRPS
MCS1	4185.360	0.2132	0.1753	0.1223
MCS2	4469.583	0.1794	0.1356	0.0988
MCS3	4740.078	0.1433	0.1118	0.0794
MCS4	3954.572	0.2108	0.1405	0.1046

Model2 - Separable space-time Matérn

Table 4: Parameter estimates for each model. β_s : spatial range (km) and β_t temporal range (2 weeks).

Estimate	MCS1	MCS2	MCS3	MCS4
β_s	1473.23	1502.75	820.07	1009.62
β_t	6.71	5.97	8.11	5.39
α_{s}	0.21	0.21	0.13	0.19
α_t	0.25	0.27	0.39	0.30
ν_s	0.09	0.10	0.14	0.10
ν_t	0.16	0.17	0.14	0.17

Figure 16: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (1999-01-06 \sim 2002-03-27).

Figure 17: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2002-04-10 \sim 2005-06-29).

Figure 18: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2005-07-13 \sim 2008-10-01).

Figure 19: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2008-10-15 \sim 2011-12-21).

Model2 - DF - Prediction

Figure 20: Image of 10×339 prediction values matrix.

Table 5: Maximum loglikelihood value and prediction measures for each model.

Model	Max.loglik	RMSE	MAE	CRPS
DF1	4119.963	0.1966	0.1613	0.1111
DF1*	3768.563	0.2109	0.1736	0.1209
DF2	4379.737	0.1827	0.1372	0.1007
DF2*	4035.548	0.1768	0.1332	0.0971
DF3	4606.413	0.1466	0.1201	0.0841
DF3*	4322.475	0.1430	0.1119	0.0792
DF4	3919.680	0.2180	0.1504	0.1191
DF4*	3581.579	0.2099	0.1399	0.1046

DF* results were obtained with different starting points.

				,
Estimate	DF1/DF1*	DF2/DF2*	DF3/DF3*	DF4/DF4*
a ₀	-0.01/0.01	-0.01/0.10	0.00/0.01	-0.01/0.04
a_1	0.02/0.00	0.01/-0.13	0.00/-0.02	0.01/-0.08
a ₂	0.00/-0.23	0.00/-1.76	0.00/0.00	0.00/0.05
b_0	-0.01/0.01	0.00/0.01	0.00/-0.01	0.02/0.08
b_1	0.01/0.00	0.00/0.04	0.00/0.01	-0.03/-0.04
b_2	0.00/0.35	0.00/-0.82	0.00/-0.30	0.01/1.84
<i>c</i> ₀	0.12/-0.03	0.12/-0.03	0.09/-0.01	-0.32/-0.05
<i>c</i> ₁	-0.04/-0.06	0.53/-0.02	-0.09/0.06	-0.11/0.10
<i>c</i> ₂	-5.95/0.77	2.09/0.67	0.95/-0.42	-4.08/0.39
β_s	16.32/1563.47	4.41/2338.87	9.43/976.21	13.28/4705.90
β_t	5.69/0.78	4.64/0.32	2.40/0.56	5.64/4.73
α	0.81/0.17	0.17/0.08	8.79/0.46	4.79/0.60
ν	1.00/1.98	1.28/2.48	1.81/1.99	1.00/2.34
β'_s	5791.49/773.75	4366.19/284.05	1424.56/568.62	3482.06/833.98
β'_t	1.88/0.29	0.30/0.25	3.76/0.17	0.94/0.05
α'	0.04/0.04	0.04/0.04	0.04/0.04	0.03/0.05
ν'	0.05/0.07	0.04/0.07	0.12/0.11	0.08/0.08

Table 6: Parameter estimates for each model. β_s (km) and β_t (2 weeks).

- ▲ 문 ▶ - ▲ 문 ▶

< 1 →

Figure 21: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (1999-01-06 \sim 2002-03-27).

Figure 22: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2002-04-10 \sim 2005-06-29).

Figure 23: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2005-07-13 \sim 2008-10-01).

Figure 24: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2008-10-15 \sim 2011-12-21).

Model3 - DF - Prediction

Figure 25: Image of 10×339 prediction values matrix.

ৰ্≣া>্≣্ৰি Texas A&M University

Figure 26: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (1999-01-06 \sim 2002-03-27).

Figure 27: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2002-04-10 \sim 2005-06-29).

Figure 28: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2005-07-13 \sim 2008-10-01).

Figure 29: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2008-10-15 \sim 2011-12-21).

Model3 - DF* - Prediction

Figure 30: Image of 10×339 prediction values matrix.

Model4 - Exponential

 Table 7:
 Maximum loglikelihood value and prediction measures for each model.

Model	Max.loglik	RMSE	MAE	CRPS
EX1	3673.584	0.2092	0.1724	0.1207
EX2	3762.053	0.1999	0.1578	0.1128
EX3	4100.743	0.1514	0.1204	0.0857
EX4	3299.550	0.2355	0.1644	0.1208

∃ >

→ Ξ →

Model4 - Exponential

Table 8: Parameter estimates for each model. β_s : spatial range (km), β_t temporal range (2 weeks), and α : scale parameter.

Estimate	EX1	EX2	EX3	EX4
β_s	28.07	25.46	32.31	17.82
β_t	0.82	0.57	0.57	0.64
α	0.05	0.05	0.04	0.05

Figure 31: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (1999-01-06 \sim 2002-03-27).

Figure 32: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2002-04-10 \sim 2005-06-29).

Figure 33: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2005-07-13 \sim 2008-10-01).

Figure 34: 3400 \times 850 covariance matrix and 40 \times 10 covariance matrix for prediction (2008-10-15 \sim 2011-12-21).

Model4 - EX - Prediction

Figure 35: Image of 10×339 prediction values matrix.