REDUCED RANK SPATIAL COVARIANCE: A MULTIRESOLUTION APPROACH

Orietta Nicolis

Instituto de Estadistica, Universidad de Valparaiso, Chile

June 18, 2014

Valparaiso

Orietta Nicolis REDUCED RANK SPATIAL COVARIANCE

Reduced Rank Covariance

- Wavelet multiresolution approach
- The reduced rank covariance
- Applications: artificial data, AOT and ozone data
- Conclusions

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

The problem of large data sets...

... we propose a wavelet based method for reducing rank of covariance matrices of non stationary and incomplete data sets.

Examples of large data sets:

- data spatially distributed on a regular grid with many missing data (satellite data: aerosols, radar, ndvi, ecc.);
- irregularly distributed observations (gauge data: ozone, rainfall, etc.)

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Basis function representation

The general concept behind this work is the expansion of a random function in terms of basis functions

$$f = W\gamma$$

where *W* is a matrix of basis and γ is the vector of coefficients.

• Fourier basis representation (Panciorek, 2006) W is the matrix of orthogonal spectral basis functions, and $\gamma_k = a_k + b_k, k = 1, ...,$ is a vector of complex-valued coefficients;

Karhunen-Loève decomposition

W is a matrix of orthogonal basis and the coefficients γ are independent Gaussian random variables, $\gamma \sim N(0, \Lambda)$, where and $\Lambda = diag(\lambda_1, ..., \lambda_n)$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Multiresolution representation (Matsuo et al., 2008) In this work

- W is a multi-resolution or wavelet basis
- 3 the coefficients may not be uncorrelated, $\gamma \sim N(0, D)$, where *D* can be not orthogonal
- Because of the localized support of wavelet basis functions, the expansion results in a small number of coefficients with significant correlations.

< ロ > < 同 > < 回 > < 回 >

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Outline

Reduced Rank Covariance

Wavelet multiresolution approach

- The reduced rank covariance
- Applications: artificial data, AOT and ozone data
- Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Spatial model

Let **y** be the field values on a large (regular) 2-D ($N \times N$)-grid (stacked as a vector) with covariance function

 $\Sigma = COV(\mathbf{y}).$

• Eigen decomposition of the covariance

$$\Sigma = WDW^T = WHH^TW^T$$

where $D = H^2$ and $H = (W^{-1}\Sigma W^T)^{1/2}$.

Representation of the process

 $\mathbf{y} = WH\gamma$

where γ is a vector of independent standard normal variables

 $W \rightarrow$ need not be orthogonal!

D-> need not be diagonal!

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone dat Conclusions

The matrix W (Kwong and Tang, 1994)

Orietta Nicolis

REDUCED RANK SPATIAL COVARIANCE

Reduced Rank Covariance

References

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone dat Conclusions

D and H

Orietta Nicolis F

REDUCED RANK SPATIAL COVARIANCE

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Observational data

Suppose that the observations \mathbf{y} are samples of a centered Gaussian random field and are composed of two components: the observations at irregularly distributed locations, \mathbf{y}_o , and the missing observations, \mathbf{y}_m ,

$$\mathbf{y} = \begin{pmatrix} \mathbf{y}_o \\ \mathbf{y}_m \end{pmatrix} \tag{1}$$

< □ > < @ > < E >

The observational model can be written as

$$\mathbf{y}_o = K\mathbf{y} + \varepsilon$$

where

- y_o observations
- y values on a the grid
- *K* is a incidence matrix

•
$$\varepsilon \sim MN(0, \sigma^2 I)$$

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

The conditional distribution of y_m given y_o is a multivariate normal with mean

$$\Sigma_{o,m}(\Sigma_{o,o})^{-1}\mathbf{y}_o\tag{2}$$

and variance

$$\Sigma_{m,m} - \Sigma_{m,o} (\Sigma_{o,o})^{-1} \Sigma_{o,m}$$
(3)

where

- Σ_{o,m} = W_oHH^TW_m^T is the cross-covariance between observed and missing data,
- $\Sigma_{o,o} = W_o H H^T W_o^T + \sigma^2 I$ is covariance of observed data and
- $\Sigma_{m,m} = W_m H H^T W_m^T$ is the covariance of missing data.
- The matrices *W_o* and *W_m* are wavelet basis evaluated at the observed and missing data, respectively.

Problem

 $\Sigma_{o,m}$ and $\Sigma_{o,o}$ very big!!!

< ロ > < 同 > < 回 > < 回 >

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Outline

Reduced Rank Covariance

Wavelet multiresolution approach

• The reduced rank covariance

- Applications: artificial data, AOT and ozone data
- Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

The reduced rank covariance for Σ (Nicolis and Nychka, 2012).

- The idea is to estimate *H* on a small sub-grid *G* of size (g × g) starting from a Matérn model and using a MR approach.
- Monte Carlo conditional simulation provide an efficient estimator for the conditional mean and variance.

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Conditional simulation

Find Kriging prediction on the grid G:

$$\hat{\mathbf{y}}_g = \Sigma_{o,g} (\Sigma_{o,o})^{-1} \mathbf{y}_o,$$

where $\tilde{H}_g = (W_g^{-1} \Sigma_{g,g} W_g^T)^{1/2}$ and $\Sigma_{g,g}$ is stationary covariance model (es. Matern).

- 2 Generate synthetic "data": \mathbf{y}^s from $\mathbf{y}^s = W \tilde{H}_g a$ with $a \sim N(0, 1)$.
- Simulated Kriging error:

$$\mathbf{u}^* = \mathbf{y}_g - \mathbf{y}_g^s,$$

where $\mathbf{y}_g = W_g \tilde{H}_g a$ and $\mathbf{y}_g^s = \Sigma_{o,g} (\Sigma_{o,o})^{-1} \mathbf{y}_o^s$.

• Find conditional field $\mathbf{y}_m | \mathbf{y}_o$:

$$\hat{\mathbf{y}}_u = \hat{\mathbf{y}}_g + \mathbf{u}^*.$$

Some compute the conditional covariance on *T* replications, $\Sigma_u = COV(\hat{\mathbf{y}}_u)$, using the new \tilde{H}_g in the step 1 of each iteration.

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

By choosing properly the filter W basis and the levels of resolutions L we obtain the estimation of the conditional mean and variance

$$\Sigma_{o,m}(\Sigma_{o,o})^{-1}\mathbf{y}_o\tag{4}$$

and variance

$$\Sigma_{m,m} - \Sigma_{m,o} (\Sigma_{o,o})^{-1} \Sigma_{o,m}$$
(5)

where

•
$$\Sigma_{o,m} = W_o H_g H_g^T W_m^T$$
, $\Sigma_{o,o} = W_o H_g H_g^T W_o^T + \sigma^2 I$ and $\Sigma_{m,m} = W_m H_g H_g^T W_m^T$

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Outline

Reduced Rank Covariance

- Wavelet multiresolution approach
- The reduced rank covariance
- Applications: artificial data, AOT and ozone data
- Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Non-stationary random field simulated on a 40×40 grid with Matèrn covariance

 $(\theta = 0.1 \text{ and } \nu = 0.5))$ and 50% of missing values.

Orietta Nicolis REDUCED RANK SPATIAL COVARIANCE

イロト イポト イヨト イヨト

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Application to AOT (54×32)

Orietta Nicolis

REDUCED RANK SPATIAL COVARIANCE

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Non-stationary covariance obtained after 5 iterations of MC simulations.

Orietta Nicolis REDUCED RANK SPATIAL COVARIANCE

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

イロト 不得 トイヨト イヨト 二日

Daily max 8 hour ozone, June 18, 1987

Orietta Nicolis REDUCED RANK SPATIAL COVARIANCE

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Daily NO2 in California

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Covariance NO2 in California

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Forecasting NO2 in California

Orietta Nicolis REDUCED RANK SPATIAL COVARIANCE

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data Conclusions

Outline

Reduced Rank Covariance

- Wavelet multiresolution approach
- The reduced rank covariance
- Applications: artificial data, AOT and ozone data
- Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wavelet multiresolution approach The reduced rank covariance Applications: artificial data, AOT and ozone data **Conclusions**

Further work

- Find a parametrization for the matrix H_g , depending on the parameters of the Matern covariance, $H_g(\nu, \theta)$, and find the maximum likelihood estimates.
- Consider other basis functions (frames, radial basis etc.).
- Include the multiresolution covariances in spatio-temporal models.
- Extension to multivariate case (for example calibration of aerosol data)

References

- Gneiting, T. (2002) Compactly Supported Correlation Functions. J. of Multivariate Analysis, 83, 493–508
- Matsuo, T., D Nychka and D. Paul (2008) Nonstationary Covariance Modeling for Incomplete Data: Monte Carlo EM approach. In review.
- Nychka, D., Wikle, C. and Royle, K. A. (2003). Multiresolution models for nonstationary spatial covariance functions. Stat. Model., 2, 315–332.
- Nicolis, O., Nychka. D. (2012). Reduced Rank Covariances for the Analysis of Environmental Data. In Advanced Statistical Methods for the Analysis of Large Data-Sets (Di Ciacco, Coli, and Angulo Ibanez, eds.), Series: Studies in Theoretical and Apllied Statistics, Springer, ISBN 978-3-642-21036-5.