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PM10 in Piemonte: Where is PM10 > 50?
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PM10 in Piemonte: Where is PM10 > 50? Uncertainty?
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The problem setting

We have observations y = (y1, . . . , yn) at locations (s1, . . . , sn) of
a latent random field x(s). The model is specified through
• The (possibly non-gaussian) likelihood π(yi|x(si),θ).
• A random field model for x(s), typically including covariates.
• Prior distributions for the parameters.

We estimate the parameters and the posteriors (e.g. using INLA)
and use the posterior mean E(x(s)|y) as a point estimate of the
latent field.

We are interested in the uncertainty of contour curves and
excursion sets for x(s)|y.

Later, we will assume that x(s) is Gaussian, so that we are in the
LGM framework where INLA can be used for estimation.
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Confidence sets for level contours

Lindgren, Rychlik (1995): How reliable are contour curves?
Confidence sets for level contours, Bernoulli
• Regions with a single expected crossing
• Method assumes Gaussian likelihood.
• The confidence band is not simultaneous.
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Contours maps

Polfeldt (1999), On the quality of contour maps, Environmetrics
• How many contour curves should one use in a contour map?
• Based on calculating the marginal probabilities for the field
staying between upper and lower contour levels.

• Method assumes Gaussian likelihood.
• Method does not take spatial dependency into account.
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Contours and excursions

• A countour curve of a reconstructed field can (almost) be
found from the pointwise marginal distributions.

• The uncertainty depends on the full joint distribution.
• A credible contour region is a region where the field transitions
from being clearly below, to being clearly above.

• An excursion region is a region where the field is clearly above
(or below) a given level.

• Finding excursion regions is closely related to multiple testing.
• Solving the problem for excursions solves it for contours.

We now need to
• Give precise definitions for the uncertainty regions.
• Construct a method for finding the regions.
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Definitions for functions

Excursion sets for functions

Given a function f(s), s ∈ Ω, the positive and negative excursion
sets for a level u are

A+
u (f)= {s ∈ Ω; f(s) > u} and A−u (f)= {s ∈ Ω; f(s) < u}.

Contour sets for functions

Given a function f(s), s ∈ Ω, the contour set Acu for a level u is

Acu(f) =
(
A+
u (f)o ∪A−u (f)o

)c
where Ao is the interior and Ac the complement of the set A.
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Excursion sets for random fields

Excursion sets

Let x(s), s ∈ Ω be a random process. The positive and negative
level u excursion sets with probability 1− α are

E+
u,α(x) = arg max

D
{|D| : P(D ⊆ A+

u (x)) ≥ 1− α}.

E−u,α(x)= arg max
D

{|D| : P(D ⊆ A−u (x)) ≥ 1− α}.

• E+
u,α(x) is the largest set so that, with probability 1− α, the

level u is exceeded at all locations in the set.
• Another possible definition of an excursion set would be a set
that contains all excursions with probability 1− α. This set is
given by E−u,α(x)c.
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Example 1: Gaussian process with exponential covariance

• Gaussian process with exponential covariance function.
• E+

0,0.05(x) is shown in red.
• The grey area contains {s : P(x(s) > 0) > 0.95}.
• The dark red set is the Bonferroni lower bound.
• The black curve is the kriging estimate of x(s).
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Contour sets

Level avoiding sets

Let x(s), s ∈ Ω be a random process. The pair of level u avoiding
sets with probability 1− α, (M+

u,α(x),M−u,α(x)), is equal to

arg max
(D+,D−)

{|D− ∪D+| : P(D− ⊆ A−u (x), D+ ⊆ A+
u (x)) ≥ 1− α}.

Uncertainty region for contour sets

Let (M+
u,α(x),M−u,α(x)) be the pair of level avoiding sets. The

uncertainty region for the contour set of level u is then

Ecu,α(x)=
(
M+
u,α(x)o ∪M−u,α(x)o

)c
.

• Ecu,α is the smallest set such that with probability 1− α
all level u crossings of x are in the set.
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Example 2: Gaussian Matérn field

• Gaussian Matérn field measured under Gaussian noise.
• Left panel shows the kriging estimate, in the right panel
Ec0,0.05(x) is superimposed in grey.

• The complement of Ecu,α is the union of the pair of level
avoiding sets.
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Excursion functions

• The set E+
u,α(x) does not provide any information about the

locations not contained in the set.
• We want a visual tool similar to p-values (i.e. marginal
probabilities), but which can be interpreted simultaneously.

Excursion functions

The positive and negative u excursion functions, contour avoidance
functions and the contour function are defined as

F+
u (s)= sup{1− α; s ∈ E+

u,α}, F−u (s)= sup{1− α; s ∈ E−u,α},
Fu(s)= sup{1− α; s ∈ Eu,α}, F cu(s)= sup{α; s ∈ Ecu,α}.

Each set E?u,α can be retrieved as the 1− α excursion set of the
function F ?u (s)
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Example 1 (cont): Excursion functions

• E+
u,α is retrieved as the 1− α excursion set of F+

u (s).
• If the function takes a value close to one, the process likely
exceeds the level at that location.

• If the value of the function is close to zero, it is more unlikely
that the process exceeds the level at that location.
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Calculating excursion sets in practise

• There are, in principle, two main problems that have to be
solved in order to find the excursion sets.

1 Probability calculation: e.g. calculate the probability
P(D ⊆ A+

u (x)) for a given set D.
2 Shape optimization: find the largest region D satisfying the

required probability constraint.

• In practice it may not be computationally feasible to solve the
problems separately since the probability calculation requires
integration of the joint posterior density.

• We need a method that minimizes the number of probability
calculations.

• One way of doing this is to use a parametric family for the
possible excursion sets.
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Parametric families for excursion sets

• The parametric families are based on the marginal quantiles of
x(s), P(x(s) ≤ qρ(s)) = ρ, which are easy to calculate.

One-parameter family

Let qρ(s) be the marginal quantiles for x(s), then a one-parameter
family for the positive and negative u excursion sets is given by

D+
1 (ρ)= {s;P(x(s) > u) ≥ 1− ρ} = A+

u (qρ),

D−1 (ρ)= {s;P(x(s) < u) ≥ 1− ρ} = A−u (q1−ρ).

• Using this parametric family reduces the complexity of the
shape optimization to finding the correct value of ρ.

• Important: D?
1(ρ1) ⊆ D?

1(ρ2) if ρ1 < ρ2.
• This simple one-parameter family can be extended in a number
of ways, e.g. by smoothing the marginal quantiles.
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Gaussian integrals

• For a Gaussian vector x, the probabilities P(D ⊆ A+
u (x)),

P(D ⊆ A−u (x)), and P(D+ ⊆ A+
u (x), D− ⊆ A−u (x)) can all

be written on the form

I(a,b,Σ) =
1

(2π)d/2|Σ|1/2

∫
a≤x≤b

exp(−1

2
x>Σ−1x) dx,

• a and b are vectors depending on the mean value of x, the
domain D, and on u.

• There have been considerable research efforts devoted to
approximating integrals of this form in recent years1.

• For GMRFs, we want to use the sparsity of Q.
• We use a method based on sequential importance sampling.

1A good introduction given in Genz and Bretz (2009), Computation of
Multivariate Normal and t Probabilities, Lecture Notes in Statistics, Springer
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A sequential Monte-Carlo algorithm

• a GMRF can be viewed as a non-homogeneous AR-process
defined backwards in the indices of x.

• Let L be the Cholesky factor of Q, then

xi|xi+1, . . . , xn ∼ N

µi − 1

Lii

n∑
j=i+1

Lji(xj − µj), L−2ii

,
• Let Ii be the integral of the last d− i components,

Ii =

∫ bd

ad

π(xd)

∫ bd−1

ad−1

π(xd−1|xd) · · ·
∫ bi

ai

π(xi|xi+1:d) dx,

• xi|xi+1:d only depends on the elements in xNi∩{i+1:d}.
• Estimate the integrals using sequential importance sampling.
• In each step xj is sampled from the truncated Gaussian
distribution 1(aj < xj < bj)π(xj |xj+1:d).

• The importance weights can be updated recursively.
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Putting the pieces together

Calculating excursion sets using a one-parameter family

Assume that π(x) is Gaussian and that D(ρ) is a parametric family,
such that D(ρ1) ⊆ D(ρ2) if ρ1 < ρ2. The following strategy is

then used to calculate E+
u,α.

• Choose a suitable (sequential) integration method.
• Reorder the nodes to the order they will be added to the
excursion set when the parameter ρ is increased.

• sequentially add nodes to the set D and in each step update
the probability P(D ⊆ A+

u (x)). Stop as soon as this
probability falls below 1− α.

• E+
u,α is given by the last set D for which

P(D ⊆ A+
u (x)) ≥ 1− α.
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Extension to a latent Gaussian setting

• The previous method can only be used in a purely Gaussian
setting with known parameters.

• For the more general latent Gaussian setting, the posterior
distribution can be written as

π(x|y) =

∫
π(x|y,θ)π(θ|y) dθ,

where y is data and θ the parameter vector.
• For Gaussian likelihoods, π(x|y,θ) is Gaussian.
• There are a number of, more or less complex, ways we can
extend the method to the latent Gaussian setting.

• The simplest is to use an empirical Bayes estimator where
π(x|y) is replaced with πG(x|y,θ0), a Gaussian
approximation at the mode. Two more accurate methods are:

• Quantile corrections
• Numerical integration
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Quantile Corrections

The QC method is based on modifying the integration limits in the
Gaussian integrals based on the marginal posteriors.
• For each i, replace the lower limits ai with
ãi = σiΦ

−1 (1− P(xi > ai|y)), where σi is the marginal
standard deviation for xi|y,θ0 and Φ denotes the standard
Gaussian CDF.

• Similarly, the upper limits bi are replaced with
b̃i = σiΦ

−1 (P(xi < bi|y)).
• One then has that PG(xi > ãi|y,θ0) = P(xi > ai|y) and
PG(xi < b̃i|y,θ0) = P(xi < bi|y), where PG(·|y,θ0) denotes
the probability calculated under a Gaussian approximation of
the posterior π(x|y,θ0).

• The QC method is exact if the components xi are independent.
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Numerical Integration

In the NI method, one numerically approximates the excursion
function as F •u (s) =

∑K
k=1 λkF

•
u,k(s).

• Here F •u,k(s) is the level u excursion function calculated for
the conditional posterior πG(x | y,θk) for a fixed parameter
configuration θk.

• The configurations θk in the hyper parameter space can, for
example, be chosen as in the INLA method and the weights λk
are chosen proportional to π(θk|y).

• Finally, the desired excursion set for a fixed α is retrieved as
the excursion set A+

α (F •u ) of the excursion function.

The NI method is more accurate than the QC method, but requires
K times as many calculations.
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Air pollution (PM10) data

• The limit value fixed by the European directive 2008/50/EC
for PM10 is 50µg/m3. The daily mean concentration cannot
exceed this value more than 35 days in a year.

• A region where this value is periodically exceeded is the
Piemonte region in northern Italy.

• Cameletti et al (2012/13)2 investigated an SPDE/GMRF
model for PM10 concentration in the region.

• The goal is to analyse exceedance probabilities of the limit
value.

• Daily PM10 data measured at 24 monitoring stations during
182 days in the period October 2005 - March 2006.

2Cameletti, Lindgren, Simpson, and Rue (2012), Spatio-temporal modeling
of particulate matter concentration through the SPDE approach, AStA
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Model

• The following measurement equation is assumed,

y(si, t) = x(si, t) + E(si, t),

where E(si, t) ∼ N(0, σ2E) is Gaussian measurement noise,
both spatially and temporally uncorrelated.

• x(si, t) is the latent field assumed to be on the form

x(si, t) =

p∑
k=1

zk(si, t)βk + ξ(si, t),

where the p = 9 covariates zk are used.
• ξ is assumed to follow first order AR-dynamics in time

ξ(si, t) = aξ(si, t− 1) + ω(si, t),

where |a| < 1 and ω(si, t) is a zero-mean temporally
independent Gaussian process with spatial Matérn covariances.
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Results for January 30, 2006

Spatial reconstruction
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Results for January 30, 2006

Marginal probabilities
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Results for January 30, 2006

Contour function F c50(s)

4900

4950

5000

5050

5100

5150

350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0

Signed avoidance ±F50(s)

4900

4950

5000

5050

5100

5150

350 400 450 500

−1.0

−0.5

0.0

0.5

1.0

Application — Piemonte David Bolin 29/34



Further examples: Estimating vegetation increase

• Estimates of trends in vegetation in the western Sahel for the
period 1983 - 1999.

• Marginally significant trends in green.
• Excursion set E+

0,0.05 in red.
• There has been a vegetation increase in several parts of the
region since the drought period in the early 1980s.
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Further examples: activation regions in fMRI studies

Joint work with Yue, Lindquist, Lindgren, Simpson, and Rue.
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Further examples: estimating bycatch hotspots

Joint work with Godin, Krainski, Worm, Flemming, and Campana.
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Remarks

• Excursion sets and contour uncertainty regions are important
in many applications.

• For latent Gaussian models, we can find these quantities
efficiently.

• R package excursions, on CRAN:
excursions(alpha=0.05, u=0, type=">",

mu=field.expectation, Q=precision.matrix)
excursions.inla(result.inla, ind=candidates,

u=0, type="=", method="NI")
• Current and future developments.

• For excursion sets, compare with other thresholding methods
and a sample based method by French and Sain (2013).

• For contour uncertainty sets, compare with the methods by
Lindgren and Rychlik (1995).

• Combine method with the work by Polfeldt (1999) to make
quantitative statements about joint contour map reliability.
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