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Modeling spatial data

• A typical geostatistical model:

Y (s) = X(s) + E(s)
X is Gaussian with some covariance function r(s, t) and some
mean, and E is Gaussian white noise.

• Modeling spatial environmental data is a challenging problem:
• Non-stationary covariance models are often needed.
• Spatially irregular data on other domains than R

d.
• Large datasets.
• Gaussianity can not always be assumed.
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So what do we do for non-Gaussian data?

• The standard approach is to try to find some non-linear
transformation that enables the use of Gaussian models.

• This is commonly referred to as trans-Gaussian Kriging.
• Common transformations include the square root transform

and the log transform.
• For example, consider a standard square root transformed

latent Gaussian model
√
yi = Z(si) + ǫi

Z(s) = B(s)β +X(s)

where
• yi are the observations,
• ǫi ∼ N(0, σ2

ǫ ) is measurement noise,
• X(s) is a mean-zero Gaussian field with a stationary

covariance function.
• The mean B(s)β =

∑K

k=1
Bi(s)βk is modeled using covariates

B(s).
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What does this actually mean?

• According to this model, the mean and covariance of the data
in the original scale is given by

E[yi] = CX(0) + 2(B(si)β)
2,

C[yi, yj] = 2CX(si − sj)
2 + 4(B(si)β)(B(sj)β)CX(si − sj),

where CX is the stationary covariance function of X(s) with
the measurement variance σ2

ǫ added at 0.

• It is not obvious how to interpret the effect of the
measurement error.

• The usage of covariates for the mean induces a non-stationary
covariance function for the data.
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How does it affect kriging predictions?
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• The posterior variance of the process in the same scale as the
data is given by

V[X(s)2|y] = 2V[X(s)|y]2 + 4E[X(s)|y]2V[X(s)|y].

• Hence, the observations y and the mean field affects the
kriging variance for the transformed Gaussian model.
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Does it really matter?

• The dependence between mean and covariance is often not
unreasonable for real data.

• However, as the models grow more complex, for example by
introducing

• non-stationary covariance functions,
• spatially varying measurement errors,
• or covariates for the mean,

the effects of the transformation methods become less
transparent and more stale.

• In these situations, one would like to use latent non-Gaussian
models without resorting to transformations.

• By doing this, we will be able to separate non-stationarity in
the mean from non-stationarity in covariance.
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non-Gaussian Matérn fields

A Matérn field is a solution to the SPDE

(κ2 −∆)
α

2 X(s) = σW(s)

where α = ν + d/2, W(s) is Gaussian white noise and ∆ is the
Laplacian (Lindgren et al 2011).

• Goal: Formulate a model with Matérn covariances and
non-Gaussian marginal distributions.

• Idea: Replace the Gaussian noise σW with a non-Gaussian
process Ṁ :

(κ2 −∆)
α

2 X = Ṁ

• We need to make sure that this makes sense, and we need to
know if we can obtain anything useful (i.e. computationally
feasible) from it.
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Yes, we can solve this and it makes sense.

Theorem (Bolin, 2013)

Assume that M is an independently scattered L2-valued random
measure with E(|M( dx)|2) = C dx. Then for κ > 0, α > 0, there
exists a random functional X : Hn ×Ω → R such that for a certain
set Ω0, P (Ω0) = 1 and for all ω ∈ Ω0 and all ϕ ∈ Hn

X(ϕ,ω) =

∫

Gαϕ(x)M( dx, ω),

where Gαϕ(x) =
∫

Gα(s,x)ϕ(s) ds and Gα is given by

Gα(s, t) =
21−

α−d

2

(4π)
d
2 Γ(α

2
)κα−d

(κ‖s − t‖)α−d

2 Kα−d

2

(κ‖s− t‖).

This is the unique Hn-solution to (κ2 −∆)
α

2 X = Ṁ if n > d/2,
and moreover we have X ∈ Hm almost surely for m < α− d/2.
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Just a bit more math before we do something useful

• The solution X is in general a random linear functional.

• However, it can be identified with a random function if
α > d/2 since X ∈ Hm almost surely for m < α− d/2.

• Recall that the Sobolev embedding theorem shows that the
Sobolev space Hn can be embedded in the Hölder space
Cr
k(R

d) where n− (r + k) = d/2 and r ∈ (0, 1).

• If ν > d/2, one has that X ∈ Cr
k(R

d) almost surely, where k is
the integer part of ν − d/2 and r = ν − d/2 − k.

• One should note here that only ν > 0 is required for continuity
in the Gaussian case.

• Thus, the non-Gaussian Matérn fields are in general less
smooth than the Gaussian Matérn fields, for the same
smoothness parameter ν.
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Computationally efficient representations

• For Gaussian fields, Lindgren et al used a finite element
method to represent a solution to the SPDE.

• Similarly, we use a finite element matrix transfer technique to
obtain a discretized approximation of the solution.

• This technique yields computationally efficient representations
if the driving noise is a type-G Lévy process.

• The most well known subclass of the type-G processes are the
the generalized hyperbolic processes.

• We need the distribution to be closed under convolution.
• Only two special cases have this property (Podgórski and

Wallin, 2013)
• Generalized asymmetric Laplace (GAL) fields
• Normal inverse Gaussian (NIG) fields
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Computationally efficient representations (cont.)

• We represent X(s) using a (high-rank) basis expansion:

X(s) =

n
∑

i=1

ϕi(s)wi

where {ϕi} are usual piecewise linear FEM basis functions.

• Let K = G+ κ2C, where Cij = 〈ϕi, ϕj〉 and
Gij = 〈∇ϕi, ∇ϕj〉

• For NIG and GAL noise, we then have

Kw ∼ N(γτa+ µV,diag(V))

where Vi ∼ Γ(aiτ, 1) for GAL and Vi ∼ IG(ν2ai, 2) for NIG.

• The complicated SPDE with Sobolev space solutions has now
transformed into a very simple linear equation system.
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Examples of marginal distributions
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Simulated examples
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Latent non-Gaussian models

• We can use Matérn fields driven by noise processes of this type
in a hierarchical model:

Yi = Z(si) + Ei

Z(s) =

p
∑

i=1

Bi(s)βi +X(s)

where X(s) now is a non-Gaussian Matérn field.

• In practise, we need to estimate the following model
parameters: βx, κ, σε, γ, µ, σ and τ (GAL) or ν (NIG).

• We can do the parameter estimation in a likelihood framework
using an MCEM algorithm.

• A better alternative is to use a gradient-based approach.

• For details on the estimation procedure, see the references.
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Parana data
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Precipitation data for October 2012 over Parana, Brazil.

We want to create a high-resolution map of precipitation.
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Models for the data

We compare four different models, for all models we use a latent
field Z(s) =

∑p
i=1Bi(s)βi +X(s) with p = 3 three covariates for

the mean: B1 = 1 (intercept), B2 = longitude, B3 = latitude.
For the first three models, we assume

Yi = Z(si) + Ei

and assume that X(s) is a Matérn field driven by

1 Gaussian noise.

2 GAL noise.

3 NIG noise.

For the final model, we assume
√

Yi = Z(si) + Ei

and assume that X(s) is a Gaussian Matérn field.
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Parameter estimates

max mean

Gauss tGauss NIG GAL Gauss tGauss NIG GAL

κ 2.6 1.9 5.8 5.9 1.40 1 2.0 2.0

φ 11.6 2.5 - - 2.75 1 - -

σε 16.3 1.1 14 .4 13.5 1.3 0.3 1.3 1.3

β
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µ - - 312 74 - - -1.8 -1.0

σ - - 0.0 0.0 - - 8.3 2.3

ν2
- - 0.7 - - - 0.2 -

τ - - - 17 - - - 15

Parameter estimates for the different models for the precipitation
max and mean data. Note that the tGauss parameters should not
be compared directly with the others since they are for transformed
data.
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Model comparisons

max mean
Gauss tGauss NIG GAL Gauss tGauss NIG GAL

V(rs) 0.99 0.89 0.99 1.00 0.99 0.67 1.05 1.02
V(r) 327 334 330 295 2.05 2.12 2.12 2.06
ES 301 304 310 287 24.0 24.5 24.2 24.0
CRPS 9.8 9.7 9.7 9.3 0.76 0.79 0.77 0.76

Crossvalidation results for the different models. Here,

• V(r) denotes the variance of crossvalidated kriging residuals.

• V(rs) denotes the variance of crossvalidated kriging residuals.
standardized by the estimated kriging variances.

• CRPS denotes the continuous ranked probability score of r.

• ES denotes the energy score.
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Posterior marginals for monthly mean
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Gaussian model (solid), NIG model (dotted), GAL model (dashed),
and transformed Gaussian model (dash-dotted).
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Kriging surfaces for the monthly maximum
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Quantiles

−56 −54 −52 −50 −48
−27

−26

−25

−24

−23

−22
Gaussian 5%

 

 

−56 −54 −52 −50 −48
−27

−26

−25

−24

−23

−22
GAL 5%

 

 

−56 −54 −52 −50 −48
−27

−26

−25

−24

−23

−22
Gaussian 95%

 

 

−56 −54 −52 −50 −48
−27

−26

−25

−24

−23

−22
GAL 95%

 

 

40

60

80

100

120

140

160

40

60

80

100

120

140

160

20

40

60

80

100

120

20

40

60

80

100

120

Application David Bolin 23/28



Absolute differences between GAL and Gaussian
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Posterior marginals for monthly maximum
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Gaussian model (solid), NIG model (dotted), GAL model (dashed),
and transformed Gaussian model (dash-dotted).
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Marginal excursion probabilities, P(X(s) > u|Y )
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Conclusions

• One should be aware of the assumptions that are implied by
using transformed Gaussian models.

• Non-Gaussian Matérn fields are interesting alternatives to
transformed Gaussian models for non-Gaussian data.

• By using the SPDE representation we can obtain a
computationally feasible representation.

• We can handle latent non-Gaussian models with measurement
noise and partial observations for large datasets.

• Estimation for similar models has previously been done using
the method of moments, we have constructed a
likelihood-based estimation procedure.

• Currently, we have Matlab and C code for performing the
analysis. We are planning on making an R package.
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