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Rationale for the SpatialExtremes package
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“The aim of the SpatialExtremes package is to provide tools

for the areal modelling of extreme events. The modelling strategies

heavily rely on the extreme value theory and in particular block

maxima techniques—unless explicitly stated.”

As a consequence, most often

ä the data used by the package have to be extreme—do not pass daily values

for instance;

ä the marginal distribution family is fixed, i.e., the generalized extreme value

distribution family, but you have hands on how within this family

parameters change in space;

ä the process family is fixed, i.e., max-stable processes, but you have hands

on which type of max-stable processes to use.
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Before introducing more advanced stuff, let’s talk about data

format. It is pretty simple

Observations A numeric matrix such that each row is one

realization of the spatial field—or if you prefer one column per

site;

Coordinates A numeric matrix such that each row is the

coordinates of one site—or if you prefer the first column is for

instance the longitude of all sites, the second one latitude, . . .

> data

Valkenburg Ijmuiden De Kooy ...

1971 278 NA 360 ...

1972 334 NA 376 ...

1973 376 NA 365 ...

1974 314 NA 304 ...

1975 278 NA 278 ...

1976 350 NA 345 ...

1977 324 NA 298 ...

1978 298 NA 329 ...

1979 252 NA 298 ...

...

> coord

lon lat

Valkenburg 4.419 52.165

Ijmuiden 4.575 52.463

De Kooy 4.785 52.924

Schiphol 4.774 52.301

Vlieland 4.942 53.255

Berkhout 4.979 52.644

Hoorn 5.346 53.393

De Bilt 5.177 52.101

...
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In addition to the storage of observations and coordinates, you

might want to use additional covariates. The latter can be of two

types

Spatial A numeric matrix such that each column corresponds to

one spatial covariate such as elevation, urban/rural, . . .

Temporal A numeric matrix such that each column

corresponds to one temporal covariate such as time, annual

mean temperature, . . .

> spat.cov

alt

Valkenburg -0.2

Ijmuiden 4.4

De Kooy 0.5

Schiphol -4.4

Vlieland 0.9

Berkhout -2.5

Hoorn 0.5

De Bilt 2.0

...

> temp.cov

nao

1971 1.87

1972 1.57

1973 -0.20

1974 -0.95

1975 -0.46

1976 2.34

1977 -0.49

1978 0.70

1979 1.11

...

� It is always a good idea to name your columns and rows.
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ä As usual, you first have to scrutinize your data (weird values,

encoding of missing values, check out factors, . . . ). But you’re

used to that, aren’t you?

ä We focus on extremes, so you may wonder

– are my data extremes, i.e., block maxima?

– is my block size relevant?

– what about seasonality? Refine the block or use temporal

covariate?

ä You might want to check that the generalized extreme value

family is sensible for your data—the evd package + a few lines

of code will do the job for you (homework)

ä This will generally be OK, but now you have to go a bit further

by analyzing

– the spatial dependence ;

– and the presence / absence of any spatial trends.
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ä Essentially you want to check if your data exhibit any (spatial)

dependence. If not why would you bother with spatial

models?

ä The most convenient way to do this is through the

F -madogram and its connection with the extremal coefficient:

νF (h) =
1

2
E[|F {Z (o)}−F {Z (h)}|], θ(h) =

1+2νF (h)

1−2νF (h)
.

ä Recall that 1 ≤ θ(h) ≤ 2 where complete dependence iff

θ(h) = 1 and independence iff θ(h) = 2.

ä The fmadogram function will estimate (empirically) the

pairwise extremal coefficent from the F –madogram.



The fmadogram function
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ä Run the file fmadogram.R. You should get the figure below. Any questions?
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Figure 1: Use of the fmadogram function to assess the spatial dependence.
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ä Run the file fmadogram.R. You should get the figure below. Any questions?

ä No? What’s wrong?
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Figure 1: Use of the fmadogram function to assess the spatial dependence.



The fmadogram function
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ä Run the file fmadogram.R. You should get the figure below. Any questions?

ä No? What’s wrong?

ä You can also use a binned version with n.bins = 300. . .
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Figure 1: Use of the fmadogram function to assess the spatial dependence.



Spatial trends
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ä We can do a symbol plot but the package doesn’t have (yet?) a function for

this—mainly because it’s application specific.

ä Examples at SpatialTrends.R and SpatialTrends2.R



Spatial trends
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ä We can do a symbol plot but the package doesn’t have (yet?) a function for

this—mainly because it’s application specific.

ä Examples at SpatialTrends.R and SpatialTrends2.R
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Figure 2: Symbol plot for the swiss precipitation data.
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ä We can do a symbol plot but the package doesn’t have (yet?) a function for

this—mainly because it’s application specific.

ä Examples at SpatialTrends.R and SpatialTrends2.R
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Figure 2: Symbol plot for the swiss precipitation data.

�When exporting figures into eps/pdf, always pay attention to the aspect ratio.
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ä The data exhibit some spatial dependence. The extremal

coefficient is around 1.7 for a separation lag of

100km—extremes are still not independent but close to.

ä There’s a clear north-west / south-east gradient in the

intensities of rainfall storms.

ä In conclusion it makes sense to use max-stable models whose

marginal parameters are not constant across space.

ä More specifically, we have

– a clear north-west / south-east gradient for the location

and scale parameters;

– no clear pattern for the shape parameter.
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ä Have a look at the temperature and the wind gust data;

ä Do a descriptive analysis for these two data sets.
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ä In this section we focus only on the spatial dependence and so

assume that the margins are known and unit Fréchet—this is

a standard choice in extreme value theory.

ä From the spectral characterization (Dan’s lecture)

Z (x) = max
i≥1

ζi Yi (x), x ∈X ⊂R
d ,

we can propose several parametric models for spatial

extremes. Hence by letting Y to be

Gaussian densities with random displacements we get the

Smith process;

Gaussian we get the Schlather process;

Log-normal (with a drift) we get the Brown–Resnick

process;

Gaussian but elevated to some power we get the Extremal-t

process.
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Smith Elements of the covariance matrix appearing in the

Gaussian densities;

Schlather Parameters of the correlation function;

Brown–Resnick Parameters of the semi-variogram;

Extremal–t Parameters of the correlation function and degrees

of freedom.

ä Since the margins are fixed, we only need to get estimates for

the dependence parameters.

ä How can we do that?



Least squares (leastSquares.R)

The SpatialExtremespackage Mathieu Ribatet – 15 / 36

argmin
ψ∈Ψ

∑

1≤i< j≤k

{

θ(x j −x j ;ψ)− θ̂(xi −x j )
}2

,

where θ(·;ψ) is the extremal coefficient obtained from the max-stable model

with dependence parameters set to ψ and θ̂(·) is any empirical estimates of the

extremal coefficient, e.g., F –madogram based.
> M0

Estimator: Least Squares

Model: Schlather

Weighted: TRUE

Objective Value: 3592.429

Covariance Family: Whittle-Matern

Estimates

Marginal Parameters:

Assuming unit Frechet.

Dependence Parameters:

range smooth

54.3239 0.4026

Optimization Information

Convergence: successful

Function Evaluations: 61
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Figure 3: Fitting simple max-stable processes from least squares.
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Pairwise likelihood (pairwiseLlik.R)
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argmax
ψ∈Ψ

n
∑

ℓ=1

∑

1≤i< j≤k

log f {zℓ(xi ), zℓ(x j );ψ},

where f (·, ·;ψ) is the bivariate density of the considered max-stable model.
Estimator: MPLE

Model: Schlather

Weighted: FALSE

Pair. Deviance: 1136863

TIC: 1137456

Covariance Family: Whittle-Matern

Estimates

Marginal Parameters:

Assuming unit Frechet.

Dependence Parameters:

range smooth

50.1976 0.3713

Standard Errors

range smooth

20.7085 0.0789

Asymptotic Variance Covariance

range smooth

range 428.841018 -1.570081

smooth -1.570081 0.006225

Optimization Information

Convergence: successful

Function Evaluations: 67
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Figure 4: Fitting simple max-stable processes maximizing pair-

wise likelihood.
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ä The advantage of the pairwise likelihood estimator over the

least squares one is that you can do model selection.

ä For instance one can use the TIC, Takeuchi Information

Criterion or sometimes known as CLIC, Composite Likelihood

Information Criterion,

TIC = 2ℓpairwise(ψ̂)−2tr{J (ψ̂)H−1(ψ̂)},

H (ψ̂) = E{∇2ℓpairwise(Y ;ψ̂)}, J (ψ̂) = Var{∇ℓpairwise(Y ;ψ̂)}.
ä From our previous fitted models, we get

> TIC(M0,M1,M2,M3)

M2 M3 M0 M1

1133668 1134829 1137456 1159784
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ä Once you have fitted a suitable model, you usually want to

simulate from it.

ä Simulation from max-stable models is rather complex, recall

that

Z (x) = max
i≥1

ζi Yi (x), x ∈X .

sim <- rmaxstab(n.obs, cbind(x, y), "twhitmat", DoF = 4,

+ nugget = 0, range = 3, smooth = 1)

> sim

[,1] [,2] [,3] [,4] [,5]

[1,] 3.8048914 0.4767980 6.3613989 1.4548317 1.0433912

[2,] 1.2200332 0.6711422 0.8078701 2.0928629 0.7537061

[3,] 0.5466466 2.0498561 4.8852572 2.3497976 0.6857268

[4,] ...
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Figure 5: One simulation

on a 50 x 50 grid from the

extremal–t model. (log scale)
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ä The Smith model is clearly not a sensible model for our

data—because of its linear behaviour near the origin;

ä Schlather, Brown–Resnick and Extremal–t seems relevant;

ä According to the TIC, the Extremal–t should be preferred.
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ä Perform simulations from various max-stable processes on

scattered and lattice locations;

ä Fit a Schlather model with a powered exponential correlation

function;

ä Why do we always set nugget = 0?

ä Try to put weights within the pairwise likelihood.
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From generalized extreme value margins to unit Fréchet ones

1. Data and

descriptive analysis

2. Simple max-stable

processes

3. Trends surfaces

Spatial GEV

Prediction #1

Model selection #2

Debrief #3

Homework

4. General max-stable

processes

5. Conclusion

The SpatialExtremespackage Mathieu Ribatet – 22 / 36

ä Alright we are able to handle the spatial dependence, but we

assume that our data have unit Fréchet margins. This is not

realistic at all!

ä Fortunately, if Y ∼ GEV(µ,σ,ξ) then

Z =

(

1+ξ
Y −µ

σ

)1/ξ

is a unit Fréchet random variable.
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ä Alright we are able to handle the spatial dependence, but we

assume that our data have unit Fréchet margins. This is not

realistic at all!

ä Fortunately, if Y ∼ GEV(µ,σ,ξ) then

Z =

(

1+ξ
Y −µ

σ

)1/ξ

is a unit Fréchet random variable.

ä And since we are extreme value and spatial guys

Z (x) =

{

1+ξ(x)
Y (x)−µ(x)

σ(x)

}1/ξ(x)

, x ∈X ,

is a simple max-stable process.

ä Hence we can use the pairwise likelihood estimator as

before—up to an additional Jacobian term.
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ä With simple max-stable models, we omitted the marginal

parameters.

ä Here we will omit the spatial dependence for a while and

consider locations as being mutually independent, i.e., use

independence likelihood

argmax
ψ∈Ψ

k
∑

i=1

ℓGEV{y(xi );ψ}.

ä This is a kind of “spatial GEV ” where ψ is a vector of marginal

parameters.
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Figure 6: Symbol plot for the swiss precipitation data.

This suggest that

µ(x) =β0,µ+β1,µlon(x)+β2,µlat(x)+β3,µlon(x)× lat(x),

σ(x) =β0,σ+β1,σlon(x)+β2,σlat(x)+β3,σlon(x)× lat(x),

ξ(x) =β0,ξ,

or equivalently with the R language

loc.form <- scale.form <- y ~ lon * lat; shape.form <- y ~ 1
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Model: Spatial GEV model

Deviance: 29303.81

TIC: 29499.38

Location Parameters:

locCoeff1 locCoeff2 locCoeff3 locCoeff4

27.132 1.846 -3.656 -1.080

Scale Parameters:

scaleCoeff1 scaleCoeff2 scaleCoeff3 scaleCoeff4

9.7850 0.7023 -1.0858 -0.5531

Shape Parameters:

shapeCoeff1

0.1572

Standard Errors

locCoeff1 locCoeff2 locCoeff3 locCoeff4 scaleCoeff1 scaleCoeff2

1.13326 0.34864 0.45216 0.38361 0.76484 0.28446

scaleCoeff3 scaleCoeff4 shapeCoeff1

0.31267 0.27566 0.05878

Asymptotic Variance Covariance

locCoeff1 locCoeff2 locCoeff3 locCoeff4 scaleCoeff1

locCoeff1 1.2842711 0.1131400 -0.1740921 -0.0729564 0.6570988

locCoeff2 0.1131400 0.1215498 -0.0623759 0.0149596 0.0521630

locCoeff3 -0.1740921 -0.0623759 0.2044448 0.0576622 -0.1086629

locCoeff4 -0.0729564 0.0149596 0.0576622 0.1471593 -0.0346376

scaleCoeff1 0.6570988 0.0521630 -0.1086629 -0.0346376 0.5849729

...

Optimization Information

Convergence: successful

Function Evaluations: 2135
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Figure 7: Left: symbol plot. Right: Prediction of the pointwise 25-year return levels from a fitted spatial GEV

model.
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ä But don’t we forget something???

ä Model selection?
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ä Typically here we would like to test if a given covariate is

required or not

ä Hence we’re dealing with nested model for which composite

likelihood ratio test are especially suited

2{ℓcomposite(ψ̂)−ℓcomposite(φ̂λ0
,λ0)} −→

p
∑

j=1

λ j Xi , n →∞.

Eigenvalue(s):

0.06

0.04

Analysis of Variance Table

MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M2 7 29329

M0 9 29304 2 24.924 < 2.2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

� Always check that your models are nested. The code won’t do

that for you!
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ä Based on the spatial GEV model, we identify what seems to

be relevant trend surfaces for the marginal parameters:

µ(x) =β0,µ+β1,µlon(x)+β2,µlat(x),

σ(x) =β0,σ+β1,σlon(x)+β2,σlat(x),

ξ(x) =β0,ξ,
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ä Produce a figure similar to Figure 7 with our best model;

ä Fit a spatial GEV model where elevation appears;

ä Is this model appropriate?
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Fitting a max-stable process with trend surfaces
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ä Now it’s time to combine everything, i.e., trend surfaces + dependence.

ä The syntax won’t be a big surprise

M0 <- fitmaxstab(rain, coord[,1:2], "twhitmat", nugget = 0, loc.form, scale.form, shape.form)

Estimator: MPLE

Model: Extremal-t

Weighted: FALSE

Pair. Deviance: 2239596

TIC: 2251000

Covariance Family: Whittle-Matern

Estimates

Marginal Parameters:

Location Parameters:

locCoeff1 locCoeff2 locCoeff3

20.65202 0.06473 -0.15630

Scale Parameters:

scaleCoeff1 scaleCoeff2 scaleCoeff3

5.25314 0.02087 -0.04029

Shape Parameters:

shapeCoeff1

0.1892

Dependence Parameters:

range smooth DoF

226.7903 0.3562 3.9615

...



Model checking
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ä When you want to check your fit-

ted max-stable model, you usually

want to check if

– observations at each single lo-

cation are well modelled: return

level plot;

– the dependence is well cap-

tured: extremal coefficient

function.

ä This can be done using a single line

of code plot(M0).
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Figure 8: Model checking for a fitted max-stable pro-

cess having trend surfaces.



Predictions
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ä Prediction works as for the spatial GEV model thanks to the predict

function.

ä But beware these predictions are pointwise—no spatial dependence at all!!!

ä If you want to do take into account spatial dependence then you need to

simulate from your fitted model—see simulationFinal.R.

Figure 9: One simulation from our fitted extremal–t model with trend surfaces.
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ä Perform a simulation study to estimate the distribution of

sup
x∈b(Zurich,10km)

Z (x),

where b(Zurich,10km) denotes the ball centred in Zurich with

radius 10km;

ä Try to redo what was done in paper1.pdf ;

ä Try to redo what was done in paper2.pdf ;
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What we haven’t seen
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ä Many (many!) utility functions. Highly recommended to have a look at the

documentation;

ä The package has a vignette: vignette("SpatialExtremesGuide");

ä Copula models—although I do not recommend their use for spatial

extremes;

ä Bayesian hierarchical models;

ä Conditional simulations—really CPU demanding.
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THANK YOU!
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