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Data on a regular grid.
Image of an dummy array of plot D1.
Black = missing observations.



Mixed linear model.

y = Tτ + Fx + ε.

Array dimension = r × c . (VERY LARGE).

y = n × 1 response vector.

τ = m × 1 vector of fixed effects.

T = n ×m known design matrix.

x = rc × 1 vector of underlying spatial random field.

F = known sparse incidence matrix - Fx gives back the
values of the spatial random field on n observed plots.

ε ∼ N(0, λ−1y In) : nugget effects.



Intrinsic auto-regression model for x.

y = Tτ + Fx + ε.

I x is Gaussian with sparse singular precision matrix W,

xTWx = λ10
∑∑

(xi ,j−xi−1,j)2+λ01
∑∑

(xi ,j−xi ,j−1)2.

I W has analytically known spectral decomposition

W = P(λ01D01 + λ10D10)PT .

I P correspond to the two dimensional discrete cosine
transformation.



Conditional simulation.

Interested in sampling from:

x|y ∼ N(λyA
−1FT (y − Tτ ) , A−1), A = λyF

TF + W.

I Step 1: First draw z ∼ N(0, I).

I Traditional way: Compute Cholesky factor L such that
LLT = A. And let x = L−1z.

I Costs: memory =O((rc)1.5), #FLOPs = O((rc)2).

I We will create algorithm that has costs:
memory = O(rc), #FLOPs = O(rc log rc)



An “exact” method

I x|y ∼ N(A−1(y − Tτ ) , A−1), A = λyFTF + W

I Analytically known spectral decomposition: W = PDPT .

I Square root of A:

S = [λ
1
2
y F

T PD1/2] then SST = A

Simulation algorithm:

I Strike 1: First draw z ∼ N(0, I).

I Strike 2: Sample with A as the covariance matrix

b = Sz + λy (y − Tτ ) ∼ N(λy(y − Tτ ), A)

I Strike 3: Solve x = A−1b ∼ N(A−1(y − Tτ ) , A−1)



Lanczos algorithm and Incomplete Cholesky

Preconditioner

To solve:
Ax = b

using Lanczos algorithm (Dutta and Mondal, 2012).

I Condition number of A→∞.
I L = incomplete Cholesky factorization (lower triangular):

LLT ≈ A ⇒ L−1AL−T ≈ I.

I solve L−1AL−Tx1 = L−1b, then x = L−Tx1.

I Geometric convergence of Lanczos algo in O(log rc)
iterations.



Arsenic concentration in Bangladesh (Dutta and

Mondal, 2013).
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Embed the data in a 500 x 300 array.



Application: Maximal simultaneous exceedance

region
I D is a 90% exceedance region of x for a given threshold c

P(xi ,j ≥ c , ∀(i , j) ∈ D | y) ≥ 90%

I Finding the largest such set is not possible (NP hard?).

I Put a constraint: highest marginal exceedance
probabilities

P(xi ,j ≥ c | y) ≥ P(xi ′,j ′ ≥ c | y)

∀(i , j) ∈ D and (i ′, j ′) /∈ D.

I Can be thought as a highest probability density
simultaneous exceedance region parallel to the Bayesian
highest posterior density credible region.

I But still cannot be computed analytically.



Simulating maximal simultaneous exceedance

regions

Step 1. Rank the locations:
I Draw an ensemble of realizations x(1), . . . , x(N) of size N

from p(x|y).
I Compute marginal exceedance probabilities.
I Rank the locations according to decreasing marginal

exceedance probabilities.

Step 2. Compute the exeedance region.
I Starting from the top location keep on adding locations

until the simultaneous exceedance probability falls below
90%.
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Various details

I Latitude: 20 – 27 North, Longitude: 88 – 93 East.

I Area of each rectangular cell: 2.64 square kilometers.

I Embedded in 500× 300 array

I Estimates: λ̂y = 4.72(0.02), λ̂01 = 3.14(0.05) and

λ̂10 = 1.17(0.13).


