Stockton dataset

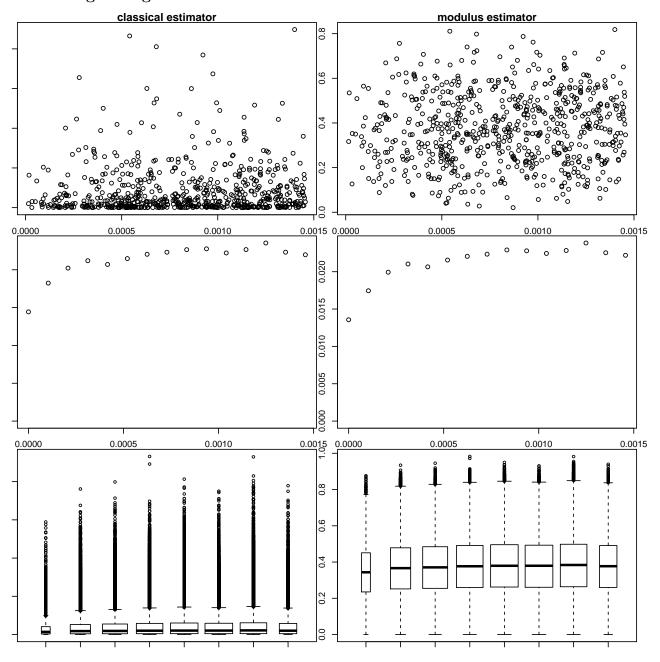
Contents

1	vari	iograms	2
	1.1	variogram figures	2
		variogram envelopes	
		directional variogram	
2	esti	mating parameters	5
	2.1	estimating parameters with variofit()	5
	2.2	$\operatorname{likfit}()$	7
	2.3	simple kriging	8
	2.4	comparing to our original figure	9
n			
3			LO
	3.1	anisotropic directional variogram	10
	3.2	anisotropic log-likelihoods (with loglik.GRF())	10

^{*}All below data are de-trended.

1 variograms

1.1 variogram figures



1.2 variogram envelopes

```
"to test the constant mean model"
```

```
> set.seed(1)
```

> env1R <- variog.mc.env(s1R.geo, ob=bin1R)</pre>

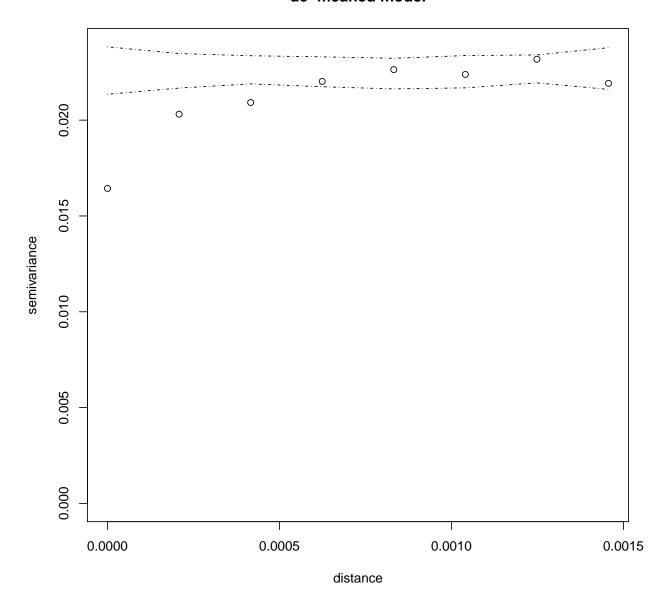
variog.env: generating 99 simulations by permutating data values variog.env: computing the empirical variogram for the 99 simulations

variog.env: computing the envelops

> plot(bin1R, env=env1R, main="de-meaned model")

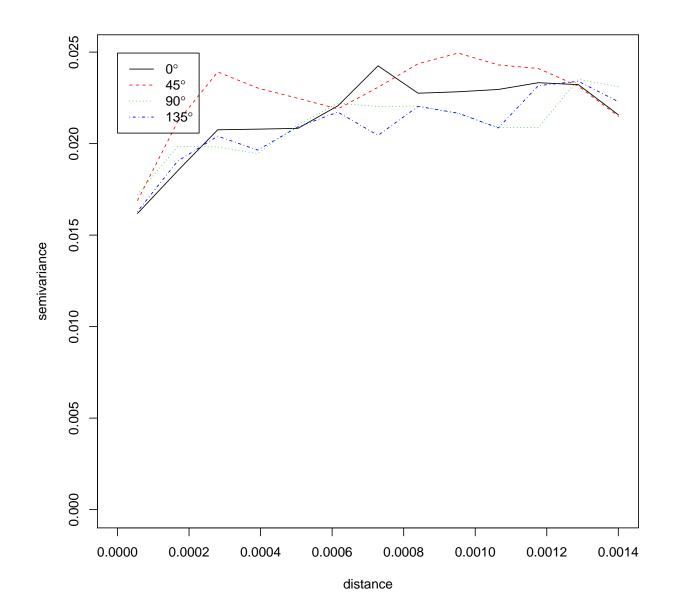
> rm(bin1R,bin2R)

de-meaned model



1.3 directional variogram

- > vario4R <- variog4(s1R.geo, max.dist = maxD)</pre>
- > plot(vario4R)



2 estimating parameters

2.1 estimating parameters with variofit()

```
> pSill <- .00665
> phi <- .0001
> bin <- variog(s1R.geo, uvec=seq(0,maxD,l=10),</pre>
                  max.dist=maxD)
variog: computing omnidirectional variogram
> variogk15 <- variofit(bin, cov.model='mat',</pre>
                       ini.cov.pars=c(pSill, phi),
+
                       kappa=1.5,
                       nugget=.014,
                       fix.nugget=FALSE)
variofit: covariance model used is matern
variofit: weights used: npairs
variofit: minimisation function used: optim
> summary(variogk15)
$pmethod
[1] "WLS (weighted least squares)"
$cov.model
[1] "matern"
$spatial.component
     sigmasq
                      phi
7.277033e-03 9.361362e-05
$spatial.component.extra
kappa
  1.5
$nugget.component
     tausq
0.01512544
$fix.nugget
[1] FALSE
$fix.kappa
[1] TRUE
$practicalRange
[1] 0.0004660384
$sum.of.squares
    value
0.1846355
$estimated.pars
       tausq
                  sigmasq
1.512544e-02 7.277033e-03 9.361362e-05
$weights
[1] "npairs"
```

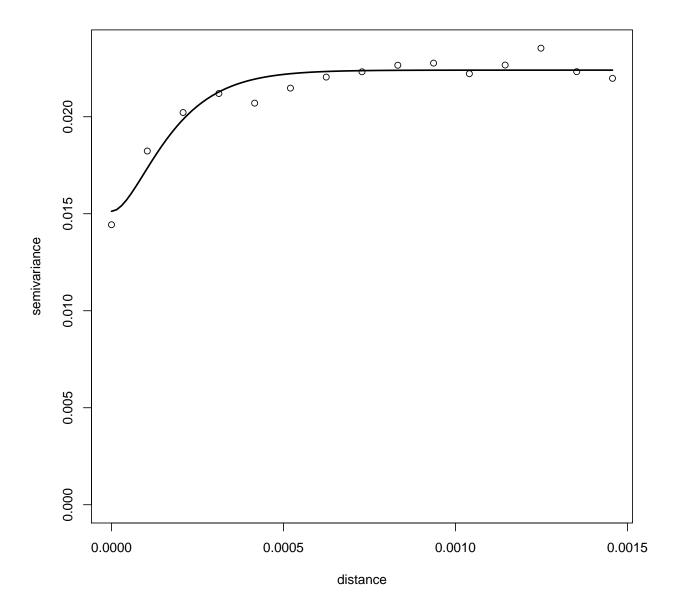
\$call

```
variofit(vario = bin, ini.cov.pars = c(pSill, phi), cov.model = "mat",
    fix.nugget = FALSE, nugget = 0.014, kappa = 1.5)
attr(,"class")
[1] "summary.variomodel"
> rm(bin,phi,pSill)
```

We see here that for $\kappa = 1.5$, variofit() suggests the Matern correlation function

$$\rho(u) = \frac{1}{\sqrt{2}\Gamma(\frac{3}{2})} \cdot \left(\frac{u}{9.4 \times 10^{-5}}\right)^{\frac{3}{2}} K_{\kappa} \left(\frac{u}{9.4 \times 10^{-5}}\right)$$

with $\tau^2=0.01512.$ We can quickly plot that against the empirical variogram:



Looks like a pretty good fit.

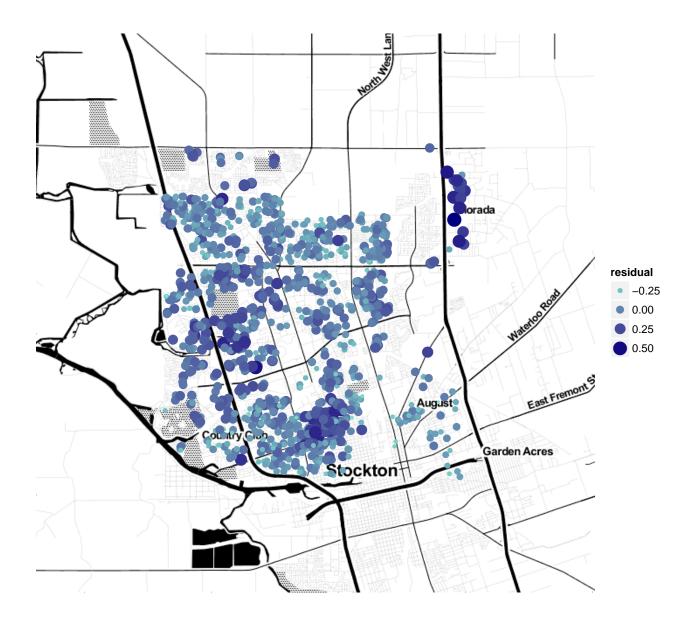
2.2 likfit()

```
> mlfit <- likfit(s1R.geo, cov.model='mat',</pre>
                ini=c(7.277033e-03, 9.361362e-05),
                kap=1.5, nug=1.512544e-02)
likfit: likelihood maximisation using the function optim.
likfit: Use control() to pass additional
        arguments for the maximisation function.
       For further details see documentation for optim.
likfit: It is highly advisable to run this function several
       times with different initial values for the parameters.
likfit: WARNING: This step can be time demanding!
_____
likfit: end of numerical maximisation.
> mlfit
likfit: estimated model parameters:
   beta tausq sigmasq phi
"0.0060" "0.0148" "0.0071" "0.0001"
Practical Range with cor=0.05 for asymptotic range: 0.0004660384
likfit: maximised log-likelihood = 774.7
> #summary(mlfit)
```

2.3 simple kriging



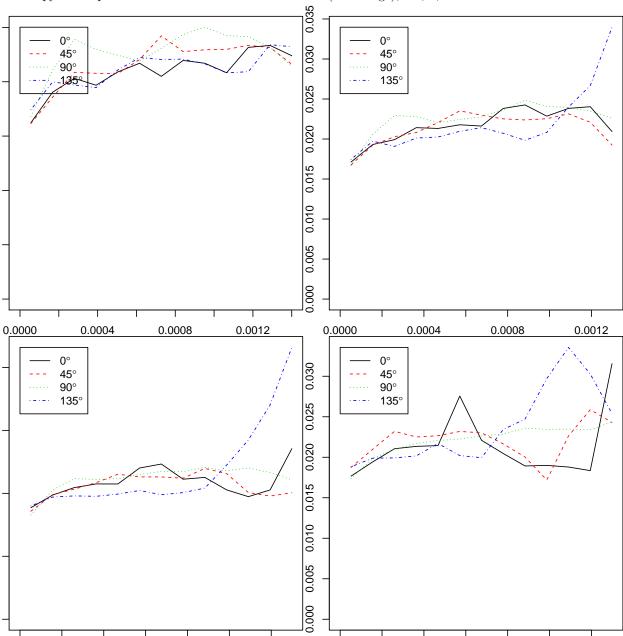
2.4 comparing to our original figure



3 assuming anisotropy (azimuthal angle = 135 deg)

3.1 anisotropic directional variogram

coords.aniso() takes two arguments: anisotropy angle "psiA" (which here is 135 degrees = $\frac{3\pi}{4}$ radians), and anisotropy ratio "psiR" which I've varied in the below: 1 (no change), 1.5, 2, 5:



3.2 anisotropic log-likelihoods (with loglik.GRF())

Looking at the log likelihoods for each of the above:

```
+ cov.pars=c(7.277033e-03, 9.361362e-05),
+ kap=1.5, nug=1.512544e-02,
psiA=(3*pi)/4, psiR=1.5)

[1] 766.9429
> # log likelihood for model, psiA=(3*pi)/4, psiR=2
> loglik.GRF(s1R.geo, cov.model='mat',
+ cov.pars=c(7.277033e-03, 9.361362e-05),
+ kap=1.5, nug=1.512544e-02,
psiA=(3*pi)/4, psiR=2)

[1] 758.4905
> # log likelihood for model, psiA=(3*pi)/4, psiR=5
> loglik.GRF(s1R.geo, cov.model='mat',
+ cov.pars=c(7.277033e-03, 9.361362e-05),
+ kap=1.5, nug=1.512544e-02,
+ psiA=(3*pi)/4, psiR=5)
```

[1] 724.8255

All these numbers seem very similar.

Given the similarity, I wanted to check with you both before chopping the points up into quadrants and rerunning. (I also ran out of time.) :)