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Notation, Stationarity

I p-dimensional multivariate random field
Z(x) = {Z1(x), . . . ,Zp(x)}T defined on a spatial region
D ⊂ Rd , d ≥ 1

I A multivariate random field is second-order stationary (or just
stationary) if the marginal and cross-covariance functions
depend only on the separation vector h = x1 − x2

Cij : Rd → R;Cij(h) := cov{Zi (x1),Zj(x2)},h ∈ Rd

I stationarity can be thought of as an invariance property under
the translation of coordinates



Isotropy

I A multivariate random field is isotropic if it is stationary and
invariant under rotations and reflections,

Cij : R+ ∪ {0} → R;Cij(||h||) := cov{Zi (x1),Zj(x2)},h ∈ Rd

I Isotropy or even stationarity are not always realistic, especially
for large spatial regions, but sometimes are satisfactory
working assumptions and serve as basic elements of more
sophisticated anisotropic and nonstationary models



Spatial Matérn

I Matérn family: correlation function (named after the Swedish
forestry statistician Bertil Matérn)

M(h|ν, α) :=
1

2ν−1Γ(ν)
(α||h||)νBν(α||h||),h ∈ Rd

I Bν , modified Bessel function of the second kind
I ν > 0, smoothness and α > 0, scale parameters

I for ν = odd integer/2 has a closed form expression
I ν = 1/2, M(h|1/2, α) = exp(−α||h||)

I In the numerical analysis literature this kernel is also called
the Sobolev kernel



Spatial Matérn

I Mean Square Differentiability here is defined as an L2 limit
I e.g. an isotropic process is mean squared continuous if

E{Z (s + h)− Z (s)}2 → 0, as ||h|| → 0
I Z is m times mean square differentiable if and only if C (2m)(0)

exists and finite
I Z is m times mean squares differentiable if and only if ν > m



Spatial Matérn
I Covariance functions for various level of ν > 0(smoothness)

and α > 0(scale) parameters
I bigger ν, the smoother C around 0
I increasing as function of ν,

M(h|ν = 1/2, α = 1) < M(h|ν = 3/2, α = 1)
I decreasing as function of α,

M(h|ν = 3/2, α = 1) > M(h|ν = 3/2, α = 2)
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M(ν=1/2,α=1)=
exp(−||x||)

M(ν=3/2,α=2)=
exp(−2||x||)(1+2||x||)

M(ν=3/2,α=1)=
exp(−||x||)(1+||x||)



Univariate and Multivariate Matérn Family

I In the pure spatial setting: Matérn family (Matérn, 1960) has
found widespread interest in recent years (Stein (1999),
Guttorp and Gneiting (2006) for a historical account of this
model)

I Multivariate Matérn : Marginal Spatial and cross -covariance
as a function of Spatial lag are from Matérn (Gneiting et al.
JASA (2011), Apanasovich et al. JASA (2012))

I special case of multivariate space-time process was considered
in Apanasovich et al. Biometrika (2010)



Positive Defitness

I The cross-covariance functions Cij(x1 − x2)
i , j = 1, p, x1, x2 ∈ D

I must form np × np non-negative definite matrix for any
positive integer n and points x1, . . . , xn in D

I {K(h)}ij = Cij(h)

Σ =


K(0) K(x1 − x2) · · · K(x1 − xn)

K(x2 − x1) K(0) · · · K(x2 − xn)
...

... · · ·
...

K(xn − x1) K(xn − x2) · · · K(0)



var(aTZ) = aTΣa ≥ 0,∀a ∈ Rnp,∀x1, · · · , xn ∈ D,∀n ∈ I



Positive Defitness

I Define the cross-spectral densities as fij : Rd → R as

fij(ω) =
1

(2π)d

∫
Rd

exp(−ιhTω)Cij(h)dh, ω ∈ Rd

I ι =
√
−1

I Cramer’s Theorem (slightly modefied) A necessary and
sufficient condition for K(·) to be a valid (i.e., nonnegative
definite), stationary matrix-valued covariance function is for
the matrix function {fij(ω)}pi ,j=1 to be nonnegative definite for
any ω (Cramer 1940).



Separable Multivariate RF

I Separable forms: Mardia and Goodall (1993).

Kij(x1 − x2) = σijK (x1 − x2), i , j = 1, · · · , p

I Σ = {σij} is a positive definite matrix
I K (·) is a valid correlation function
I Problem: same form of correlation for all is and

cross-correlations for all {i , j}s
I E.g. Kij(x1 − x2) = σij exp(−α||x1 − x2||) (same α)



Nonseparable Multivariate RF

I It is a challenging task
I Fit marginal covariances, different αii , i = 1, · · · , p

Kii (x1, x2) := exp(−αii ||x1 − x2||), αii > 0

I Evidence for spatial cross-correlation
I How about

Kij(x1, x2) := exp(−αij ||x1 − x2||), αij > 0, (αij = αji )

I WRONG! will NOT be a valid cross covariance unless αij = α
for any i , j = ¯1, p (back to separability).

I Solution Kij(x1, x2) := γ(αij) exp(−αij ||x1 − x2||) for some
carefully chosen γ(·)



Linear model of coregionalization: Wackernagel (2003)

I Linear model of coregionalization: Wackernagel (2003)

Z(x) = Aw(x),

I components of w(x) ∈ Rp are iid spatial processes,
I A is p × p full rank such that

Kij(x1 − x2) =

p∑
k=1

ρk(x1 − x2)AikAjk



Linear model of coregionalization: Wackernagel (2003)

I The LMC can additionally be built from a conditional
perspective (Royle and Berliner 1999; Gelfand et al. 2004)

I

Zj(x) =

j−1∑
i=1

αiZi (x) + σjwj(x)

I Drawbacks (In My Humble Frequentist Opinion)

I with a large number of processes, the number of parameters
can quickly become large

I smoothness of any component of the multivariate random field
is restricted to that of the roughest underlying univariate
process.



Covariance convolution

I A variant of a result of Gaspari et al. (2006) and theorem 1 of
Majumdar and Gelfand (2007)

I Suppose that c1, ..., cp are real-valued functions on Rd which
are both integrable and square-integrable.

Cij(h) = (ci ? cj)(h), for i , j = 1, · · · , p

I ? denotes the convolution operator

I Drawbacks
I Although some closed-form expressions exist, this method

usually requires Monte Carlo integration
I The models for which the closed form expressions exist are

somewhat rigit



Covariance convolution: Matérn

I Recall

Kij(h) = (ci ? cj)(h), for i , j = 1, · · · , p

I From Gneiting, Kleiber, Schlather(2012)
I ci are being suitably normalized Matérn functions with

common scale α > 0 and smoothness νi/2− d/4
I Hence, recall M(·|·) is a univariate Matérn

Kij(h) = γ(νi , νj)M{h|(νi + νj)/2, α}

γ(νi , νj) =
{Γ(νi + d/2)}1/2

{Γ(νi )}1/2

{Γ(νj + d/2)}1/2

{Γ(νj)}1/2

Γ{(νi + νj)/2}
Γ{(νi + νj + d)/2}



Based on Latent dimensions

I The key idea is to represent i-th vector’s component
(i = 1, · · · , p for p dimensional random field) as a point in a
k-dimensional space (1 ≤ k ≤ p), ξi = (ξi1, · · · , ξik)T ; and
include it INSIDE the covariance function

Kij(x1, x2) = K̃{(x1, ξi ), (x2, ξj)}

I Similar to multidimensional scaling with latent measures of
dissimilarities between vector’s components

I Apanasovich, T. V., and Genton, M. G. (2010),
”Cross-covariance functions for multivariate random fields
based on latent dimensions,” Biometrika, 97, 15-30.



Based on Latent dimensions: Matérn

I The idea of using Latent Dimensions is very general
I A special case that is discussed in the paper in relationship to

Matérn is
I −α2

ij form a conditionally nonnegative definite matrices

Kij(h) = γ(αij)M{h|ν, 1/αij}
γ(αij) = 1/αd

ij



Mixture Representation

I There a well-known closure properties for matrix-valued
covariance functions (Reisert and Burkhardt 2001) to use for
sufficient conditions for validity.

I Suppose that for all r ∈ L ⊂ Rl , Cr : Rd → R is a (univariate)
correlation function, while Dr ∈ Rp×p is symmetric and
nonnegative definite. Suppose furthermore that for all h ∈ Rd

the product DrCr (h) is componentwise integrable with respect
to the positive measure F on L. Then

C(h) =

∫
L

DrCr (h)dF (r)

I Drawback: it is hard to come up with all the elements



Mixture Representation: Matérn

I From Gneiting, Kleiber, Schlather(2012) : only for byvariate



Multivariate GRF and SPDE approach: Matérn

I By Hu, Simpson, Lindgren, Rue

I The advantage: there is no explicit dependency on the theory
of positive definite matrix

I Next talk. Stay tuned!



Sufficient/Cramer : Matérn

I Recall cross-spectral densities are

fij(ω) =
1

(2π)d

∫
Rd

exp(−ιhTω)Cij(h)dh, ω ∈ Rd

I ι =
√
−1

I Need to show that {fij(ω)}pi ,j=1 is nonnegative definite for any
ω

I From Apanasovich, Genton, Sun (2012) JASA ”A Valid
Matérn Class of Cross-Covariance Functions for Multivariate
Random Fields with any Number of Components”



Main Result

I The flexible multivariate Matérn model

1. Marginal parameters: νii , αii , σii ;
2. Somewhat flexible cross-covariance parameters: σij ;
3. Extra parameters νij = νji , αij = αji , i 6= j with some

constraints which involve nontrivial functions of νii , νjj , αii , αjj

and σij
I Recall: Gneiting, Kleiber, Schlather(2012) for p ≥ 3

1. Marginal parameters: νii , αii = α, σii ;
2. Less flexible cross-covariance parameters: σij ;
3. Other parameters for cross-covariances νij = (νii + νjj)/2,

αij = α, i 6= j



Main Result

I Theorem The flexible multivariate Matérn model provides a
valid structure if there exists ∆A ≥ 0, such that

1. νij − (νii + νjj)/2 = ∆A(1− Aij), i , j = 1, · · · , p, where 0 ≤ Aij

form a valid correlation matrix;
2. −α2

ij i , j = 1, · · · , p, form a conditional nonnegative definite
matrix;

3. σijα
2∆A+νii+νjj
ij

Γ(νij+d/2)
Γ{(νii+νjj )/2+d/2}Γ(νij )

i , j = 1, · · · , p, form a

nonnegative definite matrix



Parameterization

I marginal parameters: αii , νii , σii
I cross -covariance parameters

I νij = (νii + νjj)/2 + ∆B(1− RA,ij), ∆A > 0, RA is a valid
correlation matrix with nonnegative entries i , j = 1, · · · , p

I α2
ij = (α2

ii + α2
jj)/2 + ∆B(1− RB,ij), ∆B > 0, RB is a valid

correlation matrix with nonnegative entries i , j = 1, · · · , p
I ρij = RV ,ijγ(αii , αjj , αij , νii , νjj , νij), γ(·) is a well defied

function (see the paper), RV is a valid correlation matrix

I Hence to model cross-covariance parameters, one need to
choose parameterization for correlation matrixes

I In case of a small number of variables, p, one can use
equicorrelated RLs, so that RL,ij = ρL, i 6= j , L ∈ {A,B,V }

I latent dimention RL,ij = exp(−||ξL,i − ξL,j ||), for vectors
ξL,i ∈ Rk , 1 ≤ k ≤ p, under constraints discussed in
Apanasovich and Genton (2010).



Special Case

I The least flexible parametrization

νij =
νii+νjj

2 , αij =

(
α2
ii+α

2
jj

2

)1/2

, σij = (σiiσjj)
1/2ρij with

ρij =
ανiiii α

νjj
jj

α
2νij
ij

Γ(νij)

Γ1/2(νii )Γ1/2(νjj)
Rij

where Rij is a valid correlation matrix

I Marginal parameters: νii αii σii
I No extra parameters to model νij , αij

I Extra parameters involved in cross-covariances: Rij



Simulations

I we conducted simulation studies for the cases p = 2, 3.

I The simulation scenarios are motivated by a meteorological
dataset discussed by Gneiting et al. (2012). It consists of
temperature and pressure observations, as well as forecasts, at
157 locations in the North American Pacific Northwest. In our
simulation studies, we use these same 157 locations and
generate a bivariate or trivariate spatial Gaussian random field
with multivariate Matérn cross-covariance structure



Simulations



Simulations



Simulations



Wind speed/Temperature/Pressure

I Meteorological dataset: at 120 locations in Oklahoma

I 100 locations for model fitting; 20 locations to evaluate the
wind speed prediction performance.

I Fit a random field after removing a quadratic trend of
longitude, latitude and elevation
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Results: Trivariate Spatial Field

I Estimates of parameters for our flexible trivariate Matérn
model

ν̂11 ν̂22 ν̂33 ν̂12 ν̂13 ν̂23

0.77 1.32 1.97 1.05 1.37 1.64

1/α̂11 1/α̂22 1/α̂33 1/α̂12 1/α̂13 1/α̂23

14.5 20.0 11.0 15.6 11.9 13.0



Results: Trivariate Spatial Field
I Marginal correlation and cross-correlation fits: solid

curves=flexible, and dashed=parsimonious
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Figure : Marginal correlation and cross-correlation fits for wind speed,
temperature, and pressure: solid curves for the flexible trivariate Matérn
model and dashed curves for the parsimonious trivariate Matérn model.



Results: Trivariate Spatial Field

Model #Para Loglik

5. Flexible Matérn (∆A,ij ,∆B,ij) +8 −34, 359.6

4. νij = (νii + νjj)/2 + ∆A, +4 −35, 125.6
α2
ij = (α2

ii + α2
jj)/2 + ∆B

3. νij = (νii + νjj)/2 + ∆A, +3 −35, 615.9
α2
ij = (α2

ii + α2
jj)/2

2. νij = (νii + νjj)/2, +3 −36, 193.3
α2
ij = (α2

ii + α2
jj)/2 + ∆B

1. Parsimonious:νij = (νii + νjj)/2, 0 −36, 572.3
αij = α



Cokriging Trivariate Spatial Field

I temperature and pressure at all 120 locations, wind speed at
100, predict the wind speed at 20

I Different predictive scores for wind speed

Model MSPE MAE LogS CRPS
Flexible 17.5 3.3 4.0 4.4

Parsimonious 24.8 3.8 4.4 5.3

I Prediction errors for the flexible (magenta) and parsimonious
(blue) for each of the 20 left-out locations
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