
Regional climate prediction 
comparisons via statistical 
upscaling and downscaling!

Peter Guttorp!
University of Washington!

Norwegian Computing Center!
peter@stat.washington.edu!



Acknowledgements!

Joint work with Veronica Berrocal, 
University of Michigan, and Peter 
Craigmile, Ohio State University!
!
Temperature data from the 
Swedish Meteorological and 
Hydrological Institute web site!
!
Regional model output from 
Gregory Nikulin, SMHI!
!



Data!

SMHI synoptic stations in south 
central Sweden, 1961-2008 !
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F igure 1: T he left-hand panel displays a map of Sweden indicat ing the 17 locat ions that were

included in the modeling exercise. T he rectangle indicates the spat ial domain of interest ,

D. T he locat ion denoted with an asterisk was kept aside for cross-validat ion purposes. T he

right-hand panel summarizes the data availability. For each of the 17 locat ions, the shaded



Regional  
climate models!

Not possible to do long runs of 
global models at fine resolution!
Regional models (dynamic 
downscaling) use global model as 
boundary conditions and runs on 
finer resolution!
Output is averaged over land use 
classes!
“Weather prediction mode” uses 
reanalysis as boundary conditions!



Comparison of  
model to data!

Model output daily averaged 3hr 
predictions on (12.5 km)2 grid!
Use open air predictions only!
RCA3 driven by ERA 40/ERA 
Interim!
Data daily averages point 
measurements (actually weighted 
average of three hourly 
measurements, min and max)!
Aggregate model and data to 
seasonal averages!



Some terminology!

Upscaling: Moving from station 
data to grid square level!
Variant of geostatistics!
Downscaling: Moving from grid 
square model output to station 
level!
Variant of data assimilation!
(Not the same as statistical 
downscaling in climatology)!



A “simple” model!

Yt(s) = µ t (s) + ϕ t (s) + exp(α t (s))ηt (s)

space-time trend!

periodic seasonal!
component!

noise!

seasonal!
variability!



Seasonal part!
Seasonal patterns

st(s) = A(s) cos(2�t/365.25 + ⇥(s))
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φ t (s) = A(s)cos(2πt / 365.25 + θ(s))



Seasonal variability!

!
!
!
!
Modulate noise!
           two term Fourier series!
 !

Seasonal patterns, continued
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• To capture the strong seasonal patterns in the variance let

⇥t(s) = ⇧t(s) ⇤t(s)

log ⇧t(s) = �0(s) + �1(s) sin(2⌅t/365.25) + �2(s) cos(2⌅t/365.25) +

�3(s) sin(2⌅t/182.625) + �4(s) cos(2⌅t/182.625).
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ζ t (s) = exp(α t (s))ηt (s)
α t (s)



Both long and short 
memory!

Consider a stationary Gaussian 
process with spectral density!
!
!
!
!
Examples:!
B(f) constant: fractionally 
differenced process (FD)!
B(f) exponential: fractional 
exponential process (FEXP) (log B 
truncated Fourier series)!

Sη (f) = B(f) 4sin
2 (πf)

−δ

Short term !
memory! Long term!

memory!



Estimated SDFs of 
standardized noise!

!
!
!
!
!
!
!
!
Clear evidence of both short and 
long memory parts!

Estimated SDFs of standardized noise

Dotted: FD process

Solid: FEXP process, p=3

• Strong evidence of both

short and long range

dependence.

• Spatial patterns in the

parameter estimates.
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• Negative association between the long range dependent parameter and either

latitude or log10 of elevation [See also Király and Jánosi, 2005]
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FD!

FEXP!



Space-time model!

Gaussian white measurement 
error!
Process model in wavelet space!

scaling coefficients have mean 
linear in time and latitude !
separable space-time covariance!
trend occurs on scales ≥ 2j for 
some j!
obtained by inverse wavelet 
transform with scales < j zeroed!

Gaussian spatially varying 
parameters!



Downscaling model!

 Y(s,t) = !β0(s,t) + β1!x(s,t) + ε(s,t)

 
!β0(s,t) = β0(t) + β(s,t) smoothed !

RCM!

(0.91,0.95)!



Comparisons!



Reserved stations!

Borlänge: Airport that has 
changed ownership, lots of 
missing data!
Stockholm: One of the longest 
temperature series in the world. 
Located in urban park.!
Göteborg: Urban site, located just 
outside the grid of model output!



Predictions and data!



Comments!

Nonstationarity!
!in mean !!
!in covariance!

Uncertainty in model output!
”Extreme seasons” where down-
and upscaling agree with each 
other but not with the model 
output!
Model correction approaches!
!


