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Abstract

In this paper we describe a hidden two-compartment stochastic process
used to model the kinetics of feline hematopoietic stem cells in continuous
time. Because of the experimental design and data collection scheme the
inferential task presents numerous challenges. While the hematopoietic
process evolves in continuous time, the observations are collected only at
discrete irregular times and are a probabilistic function of the state of the
process. In addition, the animals go through an experimental procedure
such that their reserve of hematopoietic stem cells is severely depleted at
the start of the observation period. This impedes any approximation of
the hematopoietic process with a continuous state-space process (normal
approximation of the transition probabilities would be inaccurate when
the state of the process, i.e. the number of stem cells, is small). We
implement an MCMC algorithm that allows us to estimate the posterior
distribution of the parameters of the hematopoietic process while main-
taining its state-space discrete (i.e. without using any approximation).
We show the performance of the algorithm on simulated data. Finally, we
apply the algorithm to data on multiple experimental cats and provide
estimates of the rates of the fates of feline hematopoietic stem cells. The
obtained estimates are in agreement with the estimates obtained with dif-
ferent methods published in the medical literature. However the proposed
approach makes a more efficient use of the data and hence the parameter
estimates are much more accurate than the one obtained with the meth-
ods previously proposed.
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1 Introduction

The main objective of this paper is to develop inferential tools for a class of
hidden stochastic population processes. In particular, we will be focusing on a
hidden stochastic two-compartment model proposed for studying hematopoiesis,
the process of blood cell production (Abkowitz et al., 1996).

Stochastic two-compartment processes are used to model different phenom-
ena, making the methods presented here applicable to a wider spectrum of
problems. For example, the well-known SIR (Susceptibles-Infected-Removed)
model used to describe the spread of infectious diseases is a stochastic two-
compartment process. In addition, a stochastic two-compartment model very
similar to the one described in this paper has been proposed for modelling the
spread of malaria within a human host (Gravenor et al., 1998).

In most of the real applications these processes can only be partly observed.
Partial observations may be due to questions of efficiency or to physical con-
straints. For example, in the case of the SIR model, usually it is only possible
to observe the removal times but not the infection times (Gibson and Renshaw,
1998). In biology a scientist might be interested in the behavior of a population
of cells that reside in a living body of which only a few subsets over time can
be observed.

Partial observations make the computation of the likelihood function diffi-
cult. Such computation requires an integration step over the space of the hidden
or missing data. This step presents the greatest difficulty. Advances in stochas-
tic integration methods, like Markov chain Monte Carlo methods (MCMC)
(Gilks et al., 1996), have led to the development of inferential methods that
would not have been feasible a few years ago. In particular, when adopting a
Bayesian approach MCMC methods have been extremely useful in determining
the posterior distribution for the parameters of complicated stochastic systems.

This paper is organized as follows. In section 2 we describe the stochastic
two-compartment model. In section 3 we describe the MCMC algorithm. In
section 4 we illustrate the performance of the algorithm on a simulated dataset
and in section 5 we apply the method to the available experimental data. Section
6 discusses the obtained results. The appendix contains computational details
of the algorithm.

2 A stochastic two-compartment model for
hematopoiesis

In this section we describe the stochastic two-compartment model used for
hematopoiesis. This model represents an extension and an improvement with
respect to the model proposed by Guttorp et al. (1990).
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Figure 1: A stochastic two-compartment model for hematopoiesis.

Hematopoiesis is the process of blood cell production. More precisely, it is
the process in which hematopoietic stem cells (a primitive blood cell), through
sequential divisions, differentiate into progenitor cells. These last cells in turn
can differentiate into white blood cells, red blood cells or platelets. While a
lot is known about how progenitor cells differentiate, since their cell-cycle ki-
netics has been studied both in vivo and in vitro, very little is known about
hematopoietic stem cells (HSC) behavior. This is due to the fact that HSCs
are difficult to isolate, as they do not have a unique physical or antigenic phe-
notype. HSCs support the entire blood and immune system and reconstitute
hematopoiesis after transplantation. Understanding their kinetics is of great
importance. For example this could lead to new treatments for leukemia and
more effective clinical HSC transplantation procedures.

Figure 1 shows a diagram of the model proposed by Abkowitz et al. (1996)
to describe the hematopoiesis process. This model is an example of a stochastic
two-compartment model. The first compartment is the reserve where the HSCs
reside. The second compartment is the committed cells compartment and it is
where the progenitor cells reside. The population of HSCs behaves as a simple
linear birth-death process since HSCs can either give birth to other HSCs at a
rate λ or differentiate into progenitor cells at a rate ν.

The population of progenitor cells, instead, behaves as a non-homogeneous
immigration-death process. The population of progenitor cells increases when
HSCs exit from the reserve compartment and immigrate to the second compart-
ment. It decreases at a rate µ when the progenitor cells differentiate into more
specialized blood cells. Since HSCs are not identifiable, observations are taken
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from the second compartment. Because the population of interest resides in a
living body, we can only observe subsets of the population of progenitor cells at
discrete times.

In order to get an idea of the contributions of the feline stem cells to the
progenitor cells compartment, researchers designed a specific experiment on
female Safari cats. Safari cats are the offspring of matings between a domestic
cat and the South American Geoffroy wild cat and for this reason they have
an electrophoretically distinct phenotype of the X-chromosome-linked enzyme
glucose-6-phosphate dehydrogenase (G6PD). During embryogenesis, since either
the paternal or the maternal X-chromosome is inactivated, the female Safari
cats have some somatic cells expressing the domestic-type G6PD (d G6PD) and
other expressing the Geoffroy-type G6PD (G G6PD). The G6PD phenotype is
retained after replication and differentiation and it is neutral. That is, the cells
that express it do not have significant replication/differentiation advantages.
Therefore, it provides a binary marker or label of each cell and its clones. It
follows that the total number of cells both in compartment one and two in
figure 1 can be seen as the sum of two independent and identically distributed
population processes that differ only for a label: d G6PD or G G6PD. In short
the population process in figure 1 is two-dimensional in both compartments.
One dimension is the population of cells expressing the d phenotype, the other
is the population of cells expressing the G phenotype. For more details on the
experiment see Abkowitz et al. (1988, 1990, 1993).

However, observing the percentage of progenitor cells expressing the d G6PD
phenotype over a period of almost 6 years in normal female Safari cats (with
observations taken every 4 weeks approximately) did not seem to provide much
information about the HSC behavior. In fact this percentage remained relatively
constant during the six years of observation suggesting that hematopoiesis is a
polyclonal and stable process.

Researchers believed that there should be more information in observing the
hematopoiesis process when it is supported by a much smaller number of stem
cells. For this reason, a number of female Safari cats were irradiated in order to
kill their bone marrow (where HSCs reside) and a small number of bone marrow
cells, collected prior to the radiation, was transplanted back. Since there are
few HSCs in large animals, at the start of the experiment the transplanted cats
are likely to contain a very small number of HSCs. For this reason the process
modelling the HSCs behavior should be a discrete state-space process and not
a continuous one. The behavior of the binary label (d G6PD versus G G6PD)
within the progenitor cells was then monitored in samples taken every two to six
weeks. Under this setting, the percentage of labelled cells is more variable over
time. For example, some cats showed wide clonal fluctuations during the first
year or so and then stabilized, suggesting that hematopoiesis was supported by
only one or two clones.

Formally the Markov population process just described is denoted by the
vector W (t) = {Z(t), X(t)} = {Z(t) = (Zd(t), ZG(t)), X(t) = (Xd(t), XG(t))},
where Z(t) represents the size of the reserve compartment at time t and X(t)
denotes the size of the committed cells compartment at time t. Note that both
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Z(t) and X(t) are two-dimensional, where, for example, Zd(t) represents the
number of stem cells expressing the phenotype d G6PD at time t.

The transition probabilities in a short time interval (t, t + h) for the hidden
component of the model introduced above are:

P (Z(t + h) = z + 1|Z(t) = z) = λzh + o(h)
P (Z(t + h) = z − 1, X(t + h) = x + 1|Z(t) = z, X(t) = x) = νzh + o(h)
P (X(t + h) = x− 1|X(t) = x) = µxh + o(h).

(1)
From these probabilities it follows that the distribution of the time to the

next event is an exponential with rate Z(t)(λ + ν) + X(t)µ, and the probability
that the event is a birth is Z(t)λ/ [Z(t)(λ + ν) + X(t)µ], or an emigration is
Z(t)ν/ [Z(t)(λ + ν) + X(t)µ] or a death is X(t)µ/ [Z(t)(λ + ν) + X(t)µ].

The likelihood function for the process represented in figure 1 when it is
observed continuously over a fixed interval of time [0, T ] and with Z(0) = z0

and X(0) = x0 can be written in the following way (the likelihood function is
similar when considering the two dimensions d and G).

L(λ, ν, µ) = p(w[0,T ]|λ, ν, µ)
=

(∏n−1
k=0

vkηk

zk(λ+ν)+xkµ × [zk(λ + ν) + xkµ] exp {−[zk(λ + ν) + xkµ]tk}
)

× exp {−[zn(λ + ν) + xnµ]tn} ,
(2)

where ηk = λ or ν or µ depending on whether the kth event is a birth, or an
emigration or a death. vk = zk or xk depending on whether the kth event
happened in the first or second compartment respectively. In essence, the like-
lihood function is given by the product of the probability of the n events that
happened in the interval [0, T ], where the probability of a given event is equal
to the product of the probability that the next event is either a birth, or an
emigration or a death; times the distribution of the inter-arrival time between
the previous event and the considered one (Basawa and Rao, 1980).

If we denote with BT , ET and DT the number of births, the number of
emigrations from the first to the second compartment and the number of deaths
observed in the time interval [0, T ] and with Sz

T =
∑n

k=0 zktk, Sx
T =

∑n
k=0 xktk

the total time lived by the population in the first and second compartment
respectively, then it can be seen that the likelihood function is proportional to

L(λ, ν, µ) ∝ λBT νET µDT exp {−(λ + ν)Sz
T − µSx

T } , (3)

The likelihood is of exponential form and (BT , ET , DT , Sz
T , Sx

T ) is the min-
imal sufficient statistic (Keiding, 1975). Therefore the maximum likelihood
estimators for λ, ν and µ are λ̂ = BT

Sz
T

, ν̂ = ET

Sz
T

and µ̂ = DT

Sx
T

.
It follows that estimation in a two-compartment model that has been ob-

served continuously over a window of time [0, T ] is just a straightforward exten-
sion of the theory for continuously observed linear birth-death processes (Keid-
ing, 1975). Similar to the case of the linear birth-death process the maximum
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likelihood estimators for λ, ν and µ have some good asymptotic properties, con-
ditional upon non-extinction, both for large initial population z0 and for long
periods of time (Catlin, 1997).

Inference in a two-compartment model becomes complicated when it is not
observed continuously in time. In the hematopoiesis setting neither Z(t) nor
X(t) can be observed. Instead, we observe Y (t), a probabilistic function of
W (t). The observable process Y (t) defines a hidden Markov model (HMM).

In the cat example, the observations yi = Y (ti) are collected only at discrete
points in time, usually every 2 to 6 weeks. Also, Y (t) is only a function of the
states/size of the second compartment X(t). Specifically, if ti for i = 0, ...,M
denotes the observation times, then the observations are assumed Binomial, so
that, in a sample of Ni progenitor cells at time ti, the distribution of the number
of cells of d type is

[Y (ti)|W (ti) = (zi, xi)] ∼ Binomial
(

Ni,
xdi

xdi + xGi

)
,

where the observations Y (ti) conditionally on W (ti) are assumed independent.
Given these observations, the goal is to provide an estimate for the three pa-
rameters λ, ν and µ.

While the hidden two-compartment stochastic model is a HMM it presents
some characteristics that are not shared by the HMMs typically seen in the
literature. Usually these models assume that the hidden process is a stationary,
irreducible Markov chain with a finite state space, all characteristics that are
not satisfied by the two-compartment process.

The determination of the likelihood function or of the posterior distribution
for θ = (λ, ν, µ) requires a huge integration step,

L(θ) = p(y|θ) =
∫

w∈W
p(y|w, θ)p(w|θ)dw (4)

whereW is the space of all possible realizations of a stochastic two-compartment
process observed over the interval [0, T ]. That is we need to integrate over all
the possible step functions starting at w(0). Figure 2 shows how the population
size of the second compartment might evolve over time. The two step functions
(the solid and dashed ones) in figure 2 represent two possible realizations of
the second compartment. The integration required by the equation above is
actually more involved since we have two compartments and hence we need to
integrate over two connected spaces of step functions.

In principle we should be able to determine the likelihood function for θ,
L(θ), using similar algorithms to those used for HMMs (Baum, 1972), like the
Forward-Backward algorithm. In practice that algorithm works well for HMMs
with a hidden Markov chain that has a small number of states. The two-
compartment stochastic process has a countably infinite number of states if
there is no bound on the population size of the first compartment.

Another difficulty associated with the use of such an algorithm in this con-
text is that it would require the discretization in time of the two-compartment
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Figure 2: The solid and dashed step functions show how the population size
X(t) of the second compartment might evolve over time. The solid step function
also represents the current state, while the dashed step function represents the
proposed state/realization of the second compartment when an emigration is
inserted at time t∗.

process, that is the computation of the transition probabilities from the ob-
servation time ti to ti+1. We have not been able to compute these transition
probabilities explicitly, and even if we could, under the assumption that the
population size of the first compartment is bounded, such computation would
be very expensive and numerically unstable when the observation times ti are
far apart (Guttorp et al., 1990). In addition, since at the start of the experiment
the population size of the first compartment is very small, approximations of
the transition probabilities, like normal approximations, would be inaccurate
(Catlin, 1997).

Two methods have been previously proposed to estimate the HSC rates:
a simulation method and a method of moments. The simulation study in
Abkowitz et al. (1996) searched the parameter space in a systematic way simu-
lating 100 realizations of the hidden two-compartment process for each param-
eterization. The simulated data were then compared to the observed cats data
with respect to five criteria/characteristics of the real data (such as the range of
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the percentage of d cells over the entire observation interval and so on). With
this method the data are used rather informally and the chosen criteria are
somewhat subjective. The method of moments proposed by Catlin et al. (2001)
consists in equating the analytical form of the variance of the observed propor-
tion of d cells to the actual variance at three time points, providing one equation
for each of the unknown parameters. This method requires many realizations
to obtain good variance estimates and at the same time it discards information
from other time points. Therefore the obtained parameter estimates tend to be
inefficient.

Stochastic integration methods, such as Markov chain Monte Carlo and re-
versible jump Markov chain Monte Carlo provide a more complete solution to
the inferential problem posed above. Because the two-compartment process
is a continuous time Markov chain, any successful integration method for this
problem should keep the time structure of the process continuous.

3 Bayesian inference in a hidden stochastic two-
compartment model

In this section we introduce an MCMC algorithm for determining the posterior
distribution of the unknown parameters λ, ν and µ sampling over W[0,T ], the
two-compartment process.

The goal is to develop an algorithm that simulates the posterior distribution
p(θ|y) given a prior distribution p(θ), where θ = (λ, ν, µ). Determining p(θ|y)
turns out to be a difficult task, since it requires integrating over all the possible
realizations of W[0,T ]. However it is possible to devise an algorithm to sample
from p(θ, w[0,T ]|y). In order to do that we build an irreducible Markov chain on
the space (θ, w[0,T ]) that has stationary distribution p(θ, w[0,T ]|y). The type of
algorithm used is a two-stage algorithm with a Gibbsian outer structure. This
means that at every iteration a new θ′ is drawn from p(θ|w[0,T ],y) and a new
w[0,T ] is sampled from p(w[0,T ]|θ′,y) with a Metropolis-Hastings step. We call
these two steps the parameter update and state update respectively.

3.1 Parameter update

Given the initial state w(0), that is the population size of both compartments
at time zero, the parameter update step turns out to be fully Gibbsian. We
will make the assumption that w(0) is known for the sake of describing the
algorithm.

In order to perform the parameter update, we determine the full conditional
distribution for the unknown parameters p(θ|w[0,T ],y). If we assume that the
parameters θ = (λ, ν, µ) a priori are independently Gamma-distributed (which
is conjugate in this case) and we maintain the time structure of the hidden
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process W[0,T ] continuous, then the full conditionals are

p(λ|w[0,T ],y) ∼ Gamma(αλ + BT , βλ + Sz
T ),

p(ν|w[0,T ],y) ∼ Gamma(αν + ET , βν + Sz
T ),

p(µ|w[0,T ],y) ∼ Gamma(αµ + DT , βµ + Sx
T ).

(5)

In order to get a realization for λ, ν and µ, it is enough to update the
prior parameters of the Gamma distributions with the number of births BT

and the total time lived by the population in the first compartment Sz
T for

the birth rate for example. We emphasize that the updating of the three rates
is easy because we are maintaining the continuous time structure of the two-
compartment process. Doing so allows us to compute the sufficient statistic
(BT , ET , DT , Sz

T , Sx
T ).

Note that we have two populations of cells (d and G) in both compartments,
therefore we actually have two sufficient statistics, one for the d and one for the
G population. It follows that in the updating for the birth rate, for example,
BT is actually given by the sum of the number of births for the d and for the G
population. For simplicity of exposition we are assuming only one population
of cells, but all the formulas are easily extended to the case of two populations.

3.2 State update

The state update is not as straightforward as the parameter update. In the
observation period [0, T ] covered by the observation times, different realizations
of W[0,T ] can yield different numbers of events: BT , ET , and DT . In order
to simulate from p(w[0,T ]|θ′,y) a regular Metropolis-Hastings algorithm is not
sufficient since the dimension changes. Therefore reversible jump MCMC (RJM-
CMC) (Green, 1995) is used. The difficulty in implementing RJMCMC resides
in the design of a set of moves that defines the proposal distribution.

We introduce an extension of the algorithm proposed by Gibson and Ren-
shaw (1998) for making inference in a SIR model, when the infection times
are not observed. We extend this algorithm to make inference in the more
complicated model that we described in section 2, where the observations are
only collected at discrete points in time. It is worth noticing that the obser-
vation/sampling scheme of our model produces observations that contain much
less information. In the SIR model the removal times are observed exactly, in
our example we do not observe the event times at all.

Before introducing in detail the proposed algorithm, it is helpful to describe
how to parameterize W[0,T ]. Following the notation in Gibson and Renshaw
(1998), the space W where W[0,T ] lives can be decomposed in a countable union
of subspaces Wl,m,n, where Wl,m,n represents the set of all realizations of W[0,T ]

with l births, m emigrations and n deaths. Therefore, Wl,m,n can be expressed
as

Wl,m,n = {(tb1, ..., tbl )|tbj ∈ [0, T ], tbj < tbj+1}×
{(te1, ..., tem)|tej ∈ [0, T ], tej < tej+1}×
{(td1, ..., tdn)|tdj ∈ [0, T ], tdj < tdj+1},

(6)
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where the three components specify the times of occurrence of events of type
B, E and D respectively (where B, E and D stand for birth, emigration and
death). Given such a representation of the process W[0,T ], it becomes clear that
we need to develop an MCMC algorithm that builds a Markov chain that moves
within spaces of dimension Wl,m,n and between spaces of differing dimensions,
e.g.: from Wl,m,n to Wl+1,m,n or to Wl−1,m,n. From this observation, it follows
that a proposal w′ can be obtained by modifying w according to one of the
following moves:

1. Deletion move: with probability p1 > 0 delete a randomly chosen event
(either B or E or D) from w;

2. Insertion move: with probability p2 > 0 insert a new event at time t,
where t ∼ Uniform(0, T ) and the new event is of type B, E or D with
equal probability;

3. Shuffle move: with probability p3 = 1−p1−p2 move a randomly chosen
event to a new time t, where t ∼ Uniform(0, T ).

This set of moves defines a proposal distribution for the candidate state
w′ conditional on the current state w, p(w′|w). Figure 2 illustrates how the
algorithm works. For reasons of space we are showing only the second com-
partment in figure 2. The proposed state w′ (dashed step function), given the
current state w (solid step function), is obtained adding an emigration at the
time t∗ ∼ Uniform(t0, T ). w and w′ differ from t∗ on. The proposal w′ is then
accepted with probability A = min(1, R), where R (the acceptance probability
ratio) assumes different forms depending on which move has been proposed (the
mathematical details for computing R can be found in the Appendix).

4 Simulation results

In this section we discuss the implementation of the algorithm described in the
previous section and analyze its performance on a simulated data set.

Figure 3 shows a simulated realization of the hidden stochastic two-compartment
process. The process was simulated over a window of time of 100 weeks. We col-
lected an observation every 2 weeks for a total of M = 50 observations. The top
two plots show the evolution in continuous time of the d and G populations of
cells in the first and second compartment. The left plot in the second row shows
the d and G population sizes if we could observe the second compartment fully
but only at discrete points in time. The right plot shows the true percentage of
d cells in the second compartment at discrete points in time. Unfortunately, in
reality we cannot observe any of the above. Instead our observations consist of
Binomial samples of size N = 70 from the second compartment with probability
of success given by the percentages given in the right plot of the second row. A
set of these observations are shown in the bottom left plot of figure 3. The right
bottom plot shows the observed percentage of d cells in the Binomial samples.
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Figure 3: A simulated realization of the hidden stochastic two-compartment
process. First row: the two plots show the evolution in continuous time of
the d (black line) and G (grey line) populations of cells in the first and second
compartments. Second row: the left plot shows the d and G population sizes
if we could observe the second compartment fully but only at discrete points
in time. The right plot shows the true percentage of d cells in the second
compartment at discrete points in time. Third row: the left plot shows the
Binomial observations, the right plot shows the observed percentage of the d
cells in the Binomial samples.

The simulated process was obtained setting λ = 0.1, ν = 0.08 and µ = 0.15
and w(0) = {(zd(0) = 10, zG(0) = 10), (xd(0) = 10, xG(0) = 10)}. Both the
observation scheme (i.e. the length of the observation interval and the number
of observations in such interval) and the parameter values used in the simulation
reflect the observation scheme adopted for the real cats and the likely values
for the three rates. Given the observations in the bottom row of figure 3 and
the value of w(0) we would like to determine the posterior distribution of θ =
(λ, ν, µ). In order to assess the sensitivity of the results to the prior distribution
we adopted two prior distributions. In the first set of runs, we assumed that
a priori all three parameters are independent and Gamma(5, 50) distributed.
For the second set of runs we assumed that all three parameters a priori were
uniformly distributed over the interval (0.0, 0.3).
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Figure 4: An estimate of the posterior density when using a Gamma(5, 50) prior.
Top row: the prior distribution is superimposed. The vertical line represents
the true parameter value. Bottom row: qqplot for two runs of the algorithm
from two different starting values.

The top three plots of figure 4 show an estimate for the posterior distribution
of λ, ν and µ, when the Gamma prior is adopted. The vertical line represents
the true parameter value and the curve represents the prior distribution.

The three bottom plots of figure 4 show the qqplots for two runs of the algo-
rithm. We ran the algorithm from two different starting values in order to check
whether convergence occurred. It is important to note that what really matters
is the starting value for the hidden process and not for the parameters. For
these two plots the algorithm was run from the true hidden sequence (vertical
axis) and from a degenerate two-compartment process (horizontal axis), i.e. a
process that never jumps. The qqplots look extremely good showing that that
there is a strong agreement between the two runs.

Figure 5 shows an estimate for the posterior distribution of λ, ν and µ, when
the Uniform prior is adopted. The three bottom plots of Figure 5 show the
qqplots for two runs of the algorithm. We used the same starting values used in
figure 4. Again the qqplot look quite good, indicating that there is agreement
between the two runs.

Looking at figure 4 and figure 5 we see that the shape of the posterior
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Figure 5: An estimate of the posterior density when using a Uniform(0.0, 0.3).
Top row: the prior distribution is superimposed. The vertical line represents
the true parameter value. Bottom row: qqplot for two runs of the algorithm
from two different starting values.

distribution seem to depend on the adopted prior distribution. However, as
we will discuss in the next section, this is mostly due to the small amount of
information contained in the observations. The problem arises because a small
number of observations are collected over a relatively long period of time and
also because only one realization/cat is used to estimate the three rates. In the
next section we will see that when we combine the data from multiple cats the
sensitivity of the results to the prior distribution disappears.

Table 1 shows the sensitivity of the results to the two different adopted
priors. It reports the posterior mean and standard deviation for the three pa-
rameters under the two priors and it also reports the 95% highest posterior
density interval (HPD) and the posterior mode. The posterior means and stan-
dard deviations obtained with the uniform prior tend to be larger than the ones
obtained with the gamma prior. Similarly the 95% HPD intervals are wider
with the uniform prior. However, the difference between the posterior modes
obtained using the two priors is not as large as the difference observed in the
posterior means.

Table 1 shows the sensitivity of the results when the assumed initial value
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Table 1: Posterior mean, standard deviation, 95% highest posterior density
interval (HPD) and posterior mode for λ, ν and µ obtained with two different
priors and different initial values w(0). mle is the maximum likelihood estimate
of the parameters if the process was not hidden.

λ (sd) ν (sd) µ (sd)
true value .100 .080 .150

mle .097 .078 .143
z0 = 10 x0 = 10

Uniform prior .114 (.072) .094 (.074) .153 (.076)
95% HPD (.011,.263) (.001,.237) (.037,.289)

Posterior Mode .060 .038 .086
Gamma prior .075 (.023) .061 (.024) .098 (.030)

95% HPD (.037,.126) (.022,.115) (.057,.173)
Posterior Mode .075 .060 .098
Gamma prior
z0 = 5 x0 = 10 .087 (.025) .065 (.024) .095 (.030)

95% HPD (.041,.139) (.022,.113) (.043,.155)
Posterior Mode .079 .056 .082
z0 = 5 x0 = 5 .085 (.025) .066 (.024) .087 (.028)

95% HPD (.039,.135) (.022,.115) (.038,.144)
Posterior Mode .077 .057 .075
z0 = 15 x0 = 10 .076 (.024) .069 (.025) .122(.034)

95% HPD (.034,.124) (.023,.121) (.062,.190)
Posterior Mode .067 .062 .106

w(0) differs from the “true” one (i.e. the one used for the simulation). We
simulated the data with w(0) = {(zd(0) = 10, zG(0) = 10), (xd(0) = 10, xG(0) =
10)} and using the gamma prior we performed three additional runs in which
we assumed different values for z(0) and/or for x(0). In general different values
for x(0) do not seem to affect the parameter estimates. Different initial values
for z(0) have a slightly larger impact on the parameter estimates. However,
the parameter that seems to be the most affected by the use of the “wrong
initial” value is µ. In fact, when the initial value for z(0) = 5 and x(0) = 5, the
95% HPD interval for µ does not contain the true parameter value, the same
is not true for the other two parameters. Catlin et al. (2001) show that the
initial value x(0) for the second compartment does not influence the parameter
estimates. In addition, Catlin et al. (2001) find that the initial value for the
first compartment z(0) is non-identifiable. More precisely larger values of z(0)
are associated with larger parameter values. The results in table 1 support this
finding. However, as we discuss in the next section, the non-identifiability is not
really an issue for the cats study. Because of the experiment that the animals
underwent to, we know that at time zero the cats must have a small number of
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stem cells. In addition the results in table 1 suggest that small departures from
the “true value” of z(0) do not substantially affect the parameters estimates.

The algorithm was run for a total of 500,000,000 iterations. However the
parameters were updated only every 200 state updates. The observations were
further sub-sampled every 50 iterations. The algorithm was implemented in
C++ and run on a Pentium 4 2.2GHz with 1 GB of RAM. Every run took
approximately two days. The observations obtained using the algorithm intro-
duced in the previous section tend to be correlated. This is not surprising given
the nature of the process and the type of algorithm used to determine the pos-
terior distribution of interest. However, the sampling scheme described above
seems to reduce the correlation between the sampled values.

Roberts et al. (2004) proposed an MCMC algorithm for Bayesian inference
for stochastic volatility processes, that are modelled by non-Gaussian Ornstein-
Uhlenbeck processes. Their algorithm jointly parameterizes the hidden process
and the model parameters. Being able to do so noticeably improves the per-
formance of the MCMC algorithm. In particular, it reduces the correlation of
successive iterations. Their algorithm is applicable whenever the driving Lévy
process of the hidden process is a compound Poisson process. That is, the jump
times of the hidden process form a Poisson process with finite rate and the cor-
responding jump sizes are IID from some distribution. Unfortunately, the jump
times of the two-compartment process described in section 2 are not IID, as the
probabilities of the three possible events indicate (see page 5). At the moment,
the algorithm here proposed represents the best solution at hand to solve the
inferential problem that we posed in this paper. In the future, we are hoping
to be able to relax the assumption about the compound Poisson process and
extend the methodology proposed by Roberts et al. (2004) also to our problem.

5 Analysis of the cat data

Figure 6 shows data for the six cats that underwent the experiment described
in section 2. This figure shows the observed proportion of progenitor cells d in
samples of bone marrow of varying size Ni, with an average of 60-80 progenitor
cells per sample. In general the bone marrow samples were collected every two
to six weeks and over intervals of time ranging from [0, 77] to [0, 100] weeks
depending on the animal. The number and frequency of the observations varied
also from animal to animal, ranging from a minimum of 23 to a maximum of
42 observations in the intervals of time reported above. For all the cats, we
assumed that w(0) = {(zd(0) = 10, zG(0) = 10), (xd(0) = 5, xG(0) = 5)}. From
the previous section, we saw that the parameter estimates are not sensitive to
small departures from the true value of z(0), while the initial size of the second
compartment x(0) has a negligible effect on the parameter estimates (Catlin
et al., 2001). The choice of the value for w(0) and more specifically for z(0)
was driven by two reasons. First, after radiating the bone marrow we know
that the number of stem cells transplanted at time 0 must be extremely small.
Second, research on other animal species shows that there are fewer stem cells
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Figure 6: Observed percentage of progenitor cells d for six experimental cats.

in larger animals, such as cats or baboons, than in smaller animals such as mice
(Abkowitz et al., 2000). In particular, research shows that both the frequency
of the stem cells in the bone marrow and the stem cells replication rate vary
inversely with respect to the average size and longevity of the animal species.
Abkowitz et al. (2000) find that the average number of transplanted HSC in
mice, that underwent a similar experiment as the cats did, is around 35 (i.e.
z(0) = zd(0) + zG(0) = 35). This implies that the number of transplanted HSC
in cats should be less than 35.

To check the sensitivity of the results to the prior distribution, we assumed
that all three parameters were either Gamma(5,50) or Uniform(0.0,0.5) dis-
tributed a priori. The choice of the prior parameters and, hence the range of
plausible values for the parameters, was again dictated by research on other
animal species. As we indicated above, it is known that feline stem cells un-
dergo replication at a slower rate than mice do. Therefore, the estimates for
the murine rates represent upper bounds for the feline rates. In Abkowitz et al.
(2000) the authors found that the best estimates for λ and ν are 0.4 and 0.3
respectively. Both adopted priors put a high probability mass on values smaller
than 0.4, particularly so for the gamma prior. However, both priors also put
some mass above 0.4.

We assumed that the data from the six cats are independent and that the
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Table 2: Posterior mean, standard deviation and 95% highest posterior density
interval (HPD) for λ, ν and µ obtained with two different priors.

λ (sd) ν (sd) µ (sd)
Gamma prior .125 (.020) .104 (.022) .147 (.026)
95% HPD (.088,.169) (.064,.149) (.101,.201)
Uniform prior .134 (.020) .116 (.022) .155 (.023)
95% HPD (.098,.173) (.077,.158) (.113,.201)

three rates are the same for all the animals. While this last assumption might
be in general quite strong, since it is likely that different subjects of the same
species have different rates, we think that in this context it is quite appropriate.
First, these cats are all female cats of the same species and coming from the
mating of a domestic and a Geoffroy wildcat. Therefore, even if not genetically
identical, they are likely to share a lot of genetic material. Second, since we
have only six experimental cats assuming that the rates for these animals are
exchangeable would not produce very different results from the ones obtained
with the assumption that we made. Lastly, once we obtained the posterior esti-
mates for the three rates we performed posterior predictive checks (results not
shown) that did not contradict this assumption. Therefore, we combined the
data from these six cats to obtain the posterior distribution for the three rates λ,
ν and µ. From a methodological point of view the extension to the multiple re-
alizations case is straightforward, from a computational point of view it presents
several challenges. The extension of the algorithm described in section 3 requires
that, at every iteration, the algorithm makes an RJMCMC step for every one
of the six animals. These steps integrate over all six hidden two-compartment
stochastic processes and compute for every one of the six cats the number of
births, emigrations and deaths and total times lived by the population. These
statistics update the parameters’ full conditional for the parameter update step.
This added complexity has consequences on the computing time. The running
time for 400,000,000 iterations now takes about 10 days when using the same
machine used in the previous section. On the other hand combining data from
multiple animals has the advantage of producing better parameter estimates
and in general reduces the amount of uncertainty around the parameters. In
addition, as the results in table 2 and figure 7 show the sensitivity to the prior
practically disappears.

Table 2 reports the posterior mean and the 95% HPD interval for two differ-
ent runs of the algorithm: one using the Gamma(5,50) prior and one using the
Uniform(0.0, 0.5) prior. The posterior means, the posterior standard deviations
and the HPD intervals for the three rates are practically identical in the two
runs.

Figure 7 shows the posterior distribution for the three rates obtained using
the two different priors. The posterior distributions look virtually identical un-
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Figure 7: Posterior distribution for the three rates λ, ν and µ. Top row: pos-
terior distribution obtained with a Gamma(5,50) prior. The lighter curve rep-
resents the prior density and the vertical line represents the posterior mean.
Bottom row: posterior distribution obtained with a Uniform(0.0,0.5) prior.

der the two settings. In both settings, the posterior distribution differs sensibly
from the prior, indicating that we have acquired a good amount of information
about the 3 unknown rates.

6 Discussion

In this paper we described a hidden two-compartment stochastic process that
has been adopted to study feline hematopoiesis. Because of the adopted ex-
perimental design that the cats underwent, the process describing the behavior
of HSCs must be modeled as a discrete-state, continuous-time, stochastic pro-
cess. Since the cats undergo radiation and only a small number of HSCs are
transplanted back into the animals at the start of the observation period, ap-
proximating the hematopoietic process with a continuous state process would
not be appropriate. Because of the adopted observation scheme, only a small
sample of progenitor cells from the second compartment is collected at discrete
points in time, making inference in the proposed model quite challenging.
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We proposed a Bayesian approach to estimate the three parameters of inter-
est: HSC replication rate, HSC differentiation rate, and progenitor cells differ-
entiation rate. In particular we implemented a MCMC algorithm that allows us
to maintain the continuous time structure of the hematopoietic process and does
not require us to approximate the discrete state of the process with a continuous
one.

We show with both simulated and real data that the proposed algorithm
works quite well in estimating the three quantities of interest. We show that
the adopted method is flexible, since it can be used both when data from only
one animal are available and when data from multiple cats are available. When
we combine the data from the six experimental cats we obtain estimates that
are close to the ones obtained by Abkowitz et al. (1996) and Catlin et al. (2001).
However, the estimates obtained with our approach are much more precise than
the estimates obtained with the other two methods. In general, our approach
makes a more efficient use of the data and therefore extracts more information
about the parameters of interest from the observations.

Being able to extend the proposed algorithm to the case of multiple real-
izations has allowed us to fully analyze the available cat data and hence to
obtain accurate estimates of the rates of the fates that hematopoietic stem cells
undergo. These estimates, with the associated assessment of their variability,
represent a huge advancement in the hematopoiesis research after much biolog-
ical and statistical research.

Appendix

In this appendix we provide the mathematical details about the algorithm pre-
sented in section 3. In particular we give the form of and how to compute
the acceptance probability ratio under the three different moves that define the
proposal distribution.

In section 3.2 we said that the set of moves defining the proposal distribution
was given by: a deletion, an insertion and a shuffle move.

If w ∈ Wl,m,n (i.e. the current realization of the hidden process is such that
there are l births, n emigrations and m deaths and therefore a total number of
events given by l + m + n), then the moves are proposed with probability:

1. Deletion move: p1/(l +m+n) (where p1 is the probability of proposing
a deletion move and 1/(l +m+n) is the probability of randomly selecting
one of the l + m + n existing events to be deleted);

2. Insertion move: p2/{3T} (where p2 is the probability of proposing a
deletion move, 1/3 is the probably of selecting one of the three types of
events to add and 1/T is the probability of selecting uniformly a time in
the interval [0, T ] to insert the new event);

3. Shuffle move: p3/{(l+m+n)T} (where p3 is the probability of proposing
a shuffle move; 1/(l + m + n) is the probability of randomly selecting one
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of the l+m+n existing events to be moved to a different time and 1/T is
the probability of selecting uniformly a time in the interval [0, T ] to move
the selected event to).

The proposal w′ is then accepted with probability A = min(1, R), where R
assumes different forms depending on which move has been proposed. Move 3
does not alter the dimension of w, therefore R becomes

R =
p(w′|θ,y)p(w|w′)
p(w|θ,y)p(w′|w)

=
p(w′, θ,y)p(w|w′)
p(w, θ,y)p(w′|w)

=
p(w′|θ)p(y|w′, θ)p(w|w′)
p(w|θ)p(y|w, θ)p(w′|w)

, (7)

which can be further simplified since in this case the proposal distribution is
symmetric, i.e. p(w′|w) = p(w|w′).

Move 1 and 2, instead, alter the dimension of w, so R now takes form

R =
p(w′|θ,y)p(w|w′)
p(w|θ,y)p(w′|w)

|J |, (8)

for an appropriate Jacobian J . It turns out that |J | = 1 for both moves 1 and
2, so the acceptance probabilities for all the move types can be calculated from
(7).

R can be rewritten as R = R1R2R3. Here, R1 is the ratio of the likelihood
for w′ over w,

R1 =
p(w′[0,T ]|θ)
p(w[0,T ]|θ)

, (9)

that assumes different forms depending on the move that has been performed.
R2 is the ratio of the likelihood of the data conditional on w′ and w respectively,

R2 =
p(y|w′[0,T ], θ)

p(y|w[0,T ], θ)
=

∏M
i=1

(
x′di

x′
di

+x′
Gi

)yi
(

x′Gi

x′
di

+x′
Gi

)Ni−yi

∏M
i=1

(
xdi

xdi+xGi

)yi
(

xGi

xdi+xGi

)Ni−yi
(10)

The ratio R2 actually will have a simpler form since every proposal modifies
either population d or G but not both. Also it is the same for all the moves
except for those related to the insertion, deletion and shuffling of a birth. In
this last case R2 = 1, as the second compartment x[0,T ] remains unchanged, this
means that the observations are only indirectly linked to birth related moves.

Finally, R3 is the ratio of the proposal distributions. Again its value depends
on the type of move that has been proposed. We report the form of R1 and R3

for each of the move types below.

Deletion move

If w ∈ Rl,m,n, then the ratio of the proposal distributions is:

R3 =
( p2

3T

)
/

(
p1

(l + m + n)

)
.
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R1, the ratio of the likelihood of the hidden process, instead, assumes differ-
ent values whether a birth, an emigration or a death is deleted from the current
state w.

• If a birth is deleted, then

R1 =
1
λ

∏
z′j∗∏
zj∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )

}
=

1
λ

∏
z′j∗∏
zj∗

exp {−(λ + ν)(ti − T )} ,

where the z′’s and z’s that are multiplied are those in correspondence to
which a birth or an emigration was generated. ti is the time of the birth
to be deleted. Notice, also, that when a birth is added or deleted the
second compartment is unchanged, so R2 = 1. We were able to determine
a general form for the difference between Sz′

T and Sz
T and between Sx′

T

and Sx
T for the different moves. For example, when a birth is deleted, the

difference between the total time lived by the population for the proposed
state and the current one for the first compartment can be determined in
the following way

Sz′
T − Sz

T =




n′∑

j=0

z′j(t
′
j+1 − t′j)


−




n∑

j=0

zj(tj+1 − tj)


 ,

observing that ∀j < i− 1 z′j = zj and t′j+1 − t′j = tj+1 − tj , while ∀j > i
z′j = zj − 1 and t′j+1 − t′j = tj+1 − tj . Also, noticing that z′i−1 = zi−1 for
the interval of time ti+1 − ti−1, since the jump time ti has been deleted,
we have that

Sz′
T − Sz

T = (z′i−1 − zi)(ti+1 − ti)− (T − ti+1) = ti − T,

where z′i−1 − zi = −1.

For the second compartment, instead, the difference Sx′
T − Sx

T = 0, since
in this case the second compartment remains unchanged. These formulas
make computations easier and faster, since at every iteration we do not
have to recompute Sz′

T or Sx′
T .

• If an emigration is deleted, then

R1 = 1
ν

∏
z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )− µ(Sx′

T − Sx
T )

}

= 1
ν

∏
z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp {−(λ + ν)(T − ti)− µ(ti − T )} ,

where the x`’s that are multiplied are those that generate a death and
where Sz′

T − Sz
T = T − ti and Sx′

T − Sx
T = ti − T .
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• If a death is deleted, then

R1 =
1
µ

∏
x′`∗∏
x`∗

exp
{
−µ(Sx′

T − Sx
T )

}
=

1
µ

∏
x′`∗∏
x`∗

exp {−µ(T − ti)} ,

where Sx′
T − Sx

T = T − ti and Sz′
T − Sz

T = 0, since when a death is deleted
or added the first compartment remains unchanged.

Insertion move

If w ∈ Rl,m,n, then the ratio of the proposal distributions is

R3 =
(

p1

(l + m + n) + 1

)
/

( p2

3T

)
.

R1 assumes different values whether a birth, an emigration or a death is
added to the current state w.

• If a birth is added, then

R1 = λ

∏
z′j∗∏
zj∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )

}
= λ

∏
z′j∗∏
zj∗

exp {−(λ + ν)(T − t∗)} ,

where t∗ is the time at which the new event, in this case a birth, is inserted.
Also Sz′

T − Sz
T = T − t∗ and Sx′

T − Sx
T = 0.

• If an emigration is added, then

R1 = ν

∏
z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )− µ(Sx′

T − Sx
T )

}

= ν

∏
z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp {−(λ + ν)(t∗ − T )− µ(T − t∗)} .

Here, Sz′
T − Sz

T = T − t∗ and Sx′
T − Sx

T = T − t∗.

• If a death is added, then

R1 = µ

∏
x′`∗∏
x`∗

exp
{
−µ(Sx′

T − Sx
T )

}
= µ

∏
x′`∗∏
x`∗

exp {−µ(t∗ − T )} ,

where Sx′
T − Sx

T = t∗ − T and Sz′
T − Sz

T = 0.

Shuffle move

If w ∈ Rl,m,n, then the ratio of the proposal distributions is:

R3 =
(

p3

(l + m + n)

)
/

(
p3

(l + m + n)

)
= 1.

R1 assumes different values whether a birth, an emigration or a death is
moved from the time ti at which it occurred in the current state w to a new
time t∗.
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• If a birth is moved to a new time t∗, then

R1 =

∏
z′j∗∏
zj∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )

}
=

∏
z′j∗∏
zj∗

exp {−(λ + ν)(ti − t∗)} ,

where Sz′
T −Sz

T = ti− t∗ and Sx′
T −Sx

T = 0. Notice that Sz′
T −Sz

T is always
equal to ti − t∗ whether ti > t∗ or ti < t∗.

• If an emigration is moved to a new time t∗, then

R1 =
∏

z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp
{
−(λ + ν)(Sz′

T − Sz
T )− µ(Sx′

T − Sx
T )

}

=
∏

z′j∗∏
zj∗

∏
x′`∗∏
x`∗

exp {−(λ + ν)(t∗ − ti)− µ(ti − t∗)} ,

where Sz′
T −Sz

T = t∗− ti, while Sx′
T −Sx

T = ti− t∗. The observation made
above about the difference Sz′

T −Sz
T holds also for the difference Sx′

T −Sx
T ,

which is always equal to ti − t∗ no matter ti > t∗ or ti < t∗.

• If a death is moved to a new time t∗, then

R1 =
∏

x′`∗∏
x`∗

exp
{
−µ(Sx′

T − Sx
T )

}
=

∏
x′`∗∏
x`∗

exp {−µ(t∗ − ti)} ,

where Sx′
T − Sx

T = t∗ − ti, while Sz′
T − Sz

T = 0.
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