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Air quality standards are set to protect public health. The values of the standards are often
based on health effect studies, without any statistical considerations. In order to judge if a standard
is met measurements of ambient air quality are taken at monitoring stations, and these measured
values are used to decide whether or not the standard has been violated. In this paper we examine
the statistical quality of some air quality standards by taking both measurement error and varia-
bility of the ambient field away from the monitoring sites into account. In particular we study the
distribution of the maximum of the ambient field conditional on a measured monitoring value at
the value prescribed by the standard. The distribution of the maximum is computed using Rice’s
method and relies on a generalization of upcrossings of a level in one dimension to two dimensions.
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1 Introduction

Air quality standards are set by governments to protect public health, see e.g. US Clean Air

Act (1990) and COM (2000). Typically, the standard is a value which the governing agency

feels public exposure should not be exceeded too often.

Examples:

• The European Union standard for sulphur dioxide, implemented on January 1, 2005,

has two standard values: a 1-hour-average maximum of 350 g/m3, and a 24-hour-

average maximum of 125 g/m3. The health effects studies on which this standard is

based were summarized by Bertollini et al. (1997) in a World Health Organization

publication.

• The United States Environmental Protection Agency (US EPA) standard for ozone, im-

plemented on June 15, 2004, is based on an maximum 8-hour-average of 0.08 ppm.The

previous standard, which is being phased out, was a maximum 1-hour-average of 0.12

ppm.
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In order to judge whether the standard has been violated, measurements of ambient air

quality are taken at some monitoring stations at regular times. Most implementations of air

quality standards use the measured values at these monitoring sites to decide whether or not

the standard has been violated. This approach can have some difficulties:

• Most people do not live at or even near the monitoring site.

• Due to measurement error, observed values are not actual values.

• Ambient air is only part of the actual exposure of any individual.

Due to these difficulties, people may be exposed to dangerous concentrations of pollutants,

although the standard is attained. If this is the case, the implementation of the standards

needs to be changed in order to protect people.

There has been some work on the statistical quality of air quality standards. Barnett

and O’Hagan (1997), in a Royal Commission Report, discussed a variety of environmental

standards, and developed a theoretical framework for setting standards which included a

statistical quality assessment. Cox et al. (1999) and Thompson et al. (2002) discussed

the US EPA ozone standard, as did Guttorp (2006). Among the main findings of these

authors were that the effect of measurement error, temporal and spatial correlation made

the ozone standard, both the old 1-hour standard and the new 8-hour standard, inadequate

for protecting individuals from the intended exposure limit, even if the monitoring stations

could be considered representative for the actual ambient pollution field.

None of these studies took into account the variability of the ambient field away from

the monitoring sites. This is an important issue to consider since it is closely related to the

first difficulty stated above, namely that people do not live exactly at the monitored sites.

For example, suppose that a certain measurement is attained at one of the monitors. Given

that measurement, what concentrations levels could then be expected in a region around the

monitoring site where people actually live? Due to the variability of the ambient field, these

concentrations may be much higher than the observed ones. The purpose of this paper is to

answer such questions and to illuminate the effects of taking the variability of the ambient

field away from the monitoring sites into account. In particular, we will study this by looking

at the maximum of the ambient field, conditional on a measured monitoring value being at

the value prescribed by the standard, i.e. the site is just inside the region of compliance with

the standard.

In order to compute the distribution of the maximum, conditioned on some measure-

ments, we use Rice’s method. The methodology we propose can be used for a fairly large

class of air pollution models, although it relies on assumptions of Gaussianity. The theo-

retical foundations of our methodology can be found in Azäıs and Delmas (2002) and in a

recent paper by Mercadier(2005). Other approaches to approximate the distribution of the

maximum are taken by Adler (1981), Sun (1993), Takemura and Kuriki (2002) and Piterbarg

(1996).
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The paper is organized as follows. First the modeling framework is presented in quite

general terms that easily can be extended to different applied situations. Then we derive

upper and lower bounds for the distribution of the maximum of a random field. To do so we

first look at the corresponding problem in one dimension and then we generalize it, using the

same kind of arguments, to two dimensions. Finally we consider two important examples,

the first one dealing with the 1-hour standard for ozone and the second one with PM2.5,

i.e. particulate matter with median aerodynamic diameter of at most 2.5 µm, in southern

California.

2 Model of the observed ambient pollution field

The general situation that we will consider is that we have measurements from an ambient

air pollution field. Given these we want to compute the distribution of the maximum of the

ambient field in a compact region of the geographical plane. For example, it might be of

interest to study a region around the monitoring station where people actually live or an

area for which, in some other sense, the monitored value is representative.

Let ξ(x) be a Gaussian random field representing either the ambient air pollution field

or a transformed version of it. For example, ξ(x) could be the square root or the loga-

rithm of the ambient pollution field. The reason to allow for such transformations is that

they are commonly used in air pollution models, since they make the Gaussian assumption

more realistic. Further, denote the mean and covariance functions of ξ(x) by mξ(x) and

rξ(s,x), respectively. Now assume that the field is being observed at the monitoring points

(χ1, · · · , χn) = X with an independent additive Gaussian measurement error having mean

zero and variance σ2
ε(x). If the vector of observations is denoted by z(X ), the vector of field

values at the monitoring points by ξ(X ) and the vector of measurement errors by ε(X ), then

z(X ) = ξ(X ) + ε(X ),

i.e., the measurements are just the sum of the underlying pollution field and a measurement

error. Writing σ2
ε(X ) for the vector of measurement error variances, the covariance matrix

of the observations becomes

ΣX = (rξ(χi, χj)) + diag(σ2
ε(X )),

where by diag(σ2
ε(X )) is meant the diagonal matrix having the vector σ2

ε(X ) as its diagonal

elements.

The dependence between the observations and the field at an arbitrary point x is, due

to the Gaussian assumption, totally defined by the vector of covariances

rX (x) = Cov(z(X ), ξ(x)) = (rξ(χi,x)),

and thus this vector contains valuable information about how the distribution of ξ(x) is

affected by observing the field at points X . In fact, the random field W (x) defined as the
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(transformed) ambient field conditional on the observations, viz.

W (x) = ξ(x) ξ(X ) + ε(X ) = z(X ) (1)

is a Gaussian random field with mean given by

m(x) = mξ(x) + rX (x)T Σ−1
X (z(X ) − mξ(X )) (2)

and covariance function

r(s,x) = rξ(s,x) − rX (s)T Σ−1
X rX (x). (3)

Note that if the covariance rX (x) is different from zero the effect of the conditioning is that

the mean m(x) is adjusted in proportion to the measured values and that the variance r(s, s)

gets smaller since more information is brought to our knowledge. From (3) it also follows

that W (x) is a non-homogeneous random field regardless whether the underlying process

ξ(x) is homogeneous or not.

Another interpretation of the conditional expectation (2) is that it is the best prediction

of ξ(x) given the observations, in the sense that it minimizes the mean squared error. In

the geostatistical litterature this spatial prediction method is refered to as kriging, see e.g.

Cressie (1993).

3 Distribution of the maximum in one dimension

Our main purpose is to examine the distribution of the maximum of a Gaussian random

field in a compact region of the plane. In our case the field of interest is the air pollution

field conditional on some measured values given by (1), but of course the theory is much

more general than that. Before discussing this complicated two-dimensional problem it is

appropriate to start with a simpler problem, namely its one-dimensional counterpart. Besides

being a simpler problem, it will also be needed later when dealing with boundary behaviour

in two dimensions.

Let X(t) be a Gaussian process with t ∈ [0, T ], having differentiable sample paths, and

denote its maximum on this interval by MT (X) = maxt∈[0,T ] X(t). If the maximum exceeds

the level u then there are two possibilities, either the process starts above u or it starts below

u and has at least one upcrossing of u, viz.

P (MT (X) > u) = P (X(0) > u) + P (NT (u) ≥ 1, X(0) < u), (4)

writing NT (u) for the number of upcrossings of u. Note that since X(0) has a continuous

distribution P (NT (u) ≥ 1, X(0) ≤ u) = P (NT (u) ≥ 1, X(0) < u) for each fixed u. Clearly

the last term in (4) can be bounded from above by the expected number of upcrossings of u

giving rise to the upper bound

P (MT (X) > u) ≤ P (X(0) > u) + E[NT (u)]. (5)
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This bound is good if the probability of having more than one upcrossing is small, and it is

usually used for high levels u. To evaluate (5) the expected number of upcrossings must be

computed. This problem was first considered in the pioneer work of Kac (1943) and Rice

(1944, 1945) and the original result is that, for a zero mean stationary Gaussian process, the

expected number of upcrossings in the interval [0, 1] is given by

E[N1(u)] =
1

2π

√
Var(X ′(0))

Var(X(0))
exp

(
− u2

2Var(X(0))

)
.

This classical formula, called Rice’s formula, can be written in a much more general form,

see e.g. Leadbetter et al. (1983), and it can also be used in a non-stationary setting. In fact

it turns out that

E[NT (u)] =

∫ T

0

∫ ∞

0

zfX′(t),X(t)(z, u) dz dt =

∫ T

0

E[X ′(t)+ X(t) = u]fX(t)(u) dt (6)

where x+ = max(0, x). Now formula (6) provides a tool to compute the upper bound (5).

For moderately high levels the bound (5) is too crude and another approach is needed.

One alternative is to study the time τu, say, when the process first upcrosses u. Since the

event that the process starts below u and has at least one upcrossing of u is equivalent to

the event that the time of the first upcrossing of u, τu, is in the interval [0, T ] we may rewrite

(4) as

P (MT (X) ≥ u) = P (X(0) > u) + P (τu ∈ [0, T ]).

At first glance this does not seem to leed to any simplification of the problem. However it

turns out that the density function of τu can be computed and is given by Durbin’s formula,

see Rychlik (1987), viz.

fτu(t) = E
[
X ′(t)+1{X(s)<u,∀s<t} X(t) = u

]
fX(t)(u),

where 1{condition} is the indicator function equal to one if condition holds and zero otherwise.

Thus we have the following equality for the distribution of the maximum on the interval

[0, T ]

P (MT (X) ≥ u) = P (X(0) > u) +

∫ T

0

E[X ′(t)+1{X(s)<u,∀s<t} X(t) = u]fX(t)(u) dt. (7)

Numerical evaluation of this integral turns out to be possible and will be discussed later.

We have now presented two alternative ways of computing the distribution of the max-

imum for a Gaussian process having differentiable sample paths, the upper bound (5) and

the expression (7). These can be used for high and moderate to high levels u respectively.

Extensions to non-Gaussian processes are possible but then more restrictive assumptions

are required. Next we will extend the arguments and the formulae to a two-dimensional

framework.
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4 Distribution of the maximum in two dimensions

4.1 Derivation of an upper bound

In the one dimensional case we argued that if the maximum exceeds level u then either the

process starts above u or it starts below u and has at least one upcrossing of the level u. In

the two dimensional case we can use similar arguments but we need to generalize the concept

of upcrossings of a level.

Let W (x) be a Gaussian random field, having continuously differentiable sample paths,

where x = (x1, x2) ∈ S is a space coordinate and S is a compact subset of R
2 with boundary

∂S. Sufficient conditions for a random field to have continuously differentiable sample paths

are given in Adler (1981), Kent (1989) and Banerjee and Gelfand (2003), where continuity

properties are related to the smoothness of the covariance function. Further, partial deriva-

tives of W (x) with respect to x1 and x2 will be denoted by W10(x) and W01(x), respectively.

Analogously W20 and W02 are second derivatives with respect to x1 and x2, respectively, and

W11 is the mixed second derivative.

If the maximum of the field W (x) exceeds a threshold u, then u can either be exceeded on

the boundary, or the field can stay below u on the boundary and have a local maximum higher

than u in the interior of S. Writing MS(W ) = maxx∈S W (x) and M∂S(W ) = maxx∈∂S W (x)

we thus have

P (MS(W ) > u) = P (M∂S(W ) > u) + P (MS(W ) > u, M∂S(W ) ≤ u)

= P (M∂S(W ) > u) + P (MS(W ) > u, M∂S(W ) < u) ,
(8)

where the last equality holds due to a lemma by Bulinskaya (1961) stating that under mild

conditions a random process on the line is, with probability one, never tangential to a given

level u in any finite interval. Now suppose that M∂S(W ) < u, that is the field is below level

u on the boundary, and that the maximum is above u, i.e. MS(W ) > u. Then, due to the

smoothness assumptions, there must be at least one level curve W (x) = u in the interior of

S, and on each level curve there must be at least one point satisfying W01(x) = 0, W02(x) ≤ 0

and W10(x) ≥ 0. Such points, where the process upcrosses u in the x1-direction, can be seen

as a generalization of the upcrossings in one dimension to two dimensions. However, it should

be emphasized that the choice to favour a certain direction is totally arbitrary and any other

direction could have been chosen. Let NS(A|u) denote the number of points in S such that

W (x) = u, W01 = 0 and the statement A = ”W02(x) ≤ 0, W10(x) ≥ 0, W (s) < u, ∀s ∈ ∂S”

is fulfilled. Then, following the arguments above, (8) can be rewritten as

P (MS(W ) > u) = P (M∂S(W ) > u) + P (NS(A|u) ≥ 1)

≤ P (M∂S(W ) > u) + E[NS(A|u)],
(9)

which is a direct analogue to (4) and (5). In (9) there are two terms. The first one is a

contribution from the boundary and will in principle be calculated using (7). The second

term, which is a contribution from the interior of the region, will be computed by using a

generalized version of Rice’s formula presented next.
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4.2 A generalized Rice’s formula

Rice’s formula, given by (6), can be extended to include so called marked crossings, see

Leadbetter et al. (1983). This means that not only the occurence of a crossing is registered,

but also the value of some other random variable connected with the crossing. For example,

one may be interested in the expected number of upcrossings such that the derivative is

larger than some specific value or, as is our case, the expected number of points such that

(W (x), W01(x)) = (u, 0) and a statement A concerning derivatives and process values is

fulfilled. The following generalized Rice’s formula, valid for Gaussian random fields, can be

found in Mercadier (2005).

Theorem 1 Let Z(x) ∈ R
2 be an a.s. continuously differentiable Gaussian random field

defined on a compact subset S of R
2, whose boundary has Lebesgue measure zero. Denote by

Z′(x) the matrix of partial derivatives of Z and by fZ(x)(z) the density of Z(x). Further, let

Y(x) be a random vector field, a.s. continuos and jointly Gaussian with Z(x). Let g(Y,x)

be a positive, bounded and continuous function which can be a function of the whole sample

path of Y, not only of the value at a single point. If there are a.s. no points in the interior

of S such that Z(x) = u and det(Z′(x)) = 0, then , for every u,

E


 ∑
{x∈S;Z(x)=u}

g(Y,x)


 =

∫
S

E [| det(Z′(x))|g(Y,x) Z(x) = u] fZ(x)(u) dx, (10)

where both members are finite.

Remark 1 To prove generalized versions of Rice’s formula that holds for almost every u

is often a fairly easy task and such results are valid under mild conditions on the process.

However, to prove it for every u is usually much harder and more restricitve conditions are

needed. To get from the almost everywhere result to the everywhere result it is sufficient to

show that both sides of (10) are continuous functions of u. In order to prove that, one uses

the local inversion theorem explaining why the condition that there are a.s. no points in the

interior of S such that Z(x) = u and det(Z′(x)) = 0 is needed. Sufficient conditions for

Z(x) = u and det(Z′(x)) = 0 to hold are given in Azäıs and Wschebor (2005).

Identify the processes Z and Y from the theorem with Z(x) = (W (x), W01(x)) and Y(x) =

(W02(x), W10(x), W (x)), respectively. Further, let u = (u, 0) and let A = ”W02(x) ≤
0, W10(x) ≥ 0, W (s) < u, ∀s ∈ ∂S” be a condition on Y(x) and define an indicator fun-

ction by g(Y,x) = 1{A}. With this notation we have

E [NS(A|u)] = E


 ∑
{x∈S;Z(x)=u}

g(Y,x)


 .

However, the theorem cannot be used straight away since the indicator function is clearly not

a continuous function. In order to show that the theorem remains true with g(Y,x) = 1{A}
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one can pick a sequence {gn} of continuous functions that turns to 1{A} as n → ∞, and use

monotone and dominated convergence arguments to show that (10) holds with g(Y,x) =

1{A}. Leaving out the details, we thus have

E [NS(A|u)] =

∫
S

E
[| det(Z′(x))1{A}| Z(x) = u

]
fZ(x)(u) dx. (11)

Now, note that since

Z′(x) =

(
W10(x) W01(x)

W11(x) W02(x)

)
and it is conditioned on that W01 = 0 it holds that | det(Z′(x))| = |W10(x)W02(x)| so that

(11) gives

E[NS(A|u)] =

∫
S

E
[|W10(x)W02(x)|1{A} W01(x) = 0, W (x) = u

]
fW01(x),W (x)(0, u) dx

=

∫
S

E
[
W10(x)+W02(x)−1{W (s)<u,∀s∈∂S} W01(x) = 0, W (x) = u

]
fW01(x),W (x)(0, u) dx.

(12)

Thus the generalized Rice’s formula provides a tool to compute the second term in the upper

bound (9).

4.3 A lower bound

So far we have discussed how to compute an upper bound for the distribution of the maxi-

mum. However, to get an idea about how close we are to the true distribution it would be

useful to also have a lower bound. In this way the difference between the bounds can be

used as an indicator of the accuracy of the approximation.

To get a lower bound, choose N points that are inside S and call the set of those points

SN . Then

P (MS(W ) > u) ≥ 1 − P (W (x) ≤ u, ∀x ∈ SN), (13)

constitutes a lower bound. The higher value of N the closer the lower bound will be to the

true distribution. How the upper and lower bounds can be evaluated is the topic of the next

section.

5 Computing the upper and lower bounds

In the previous sections the upper bound (9) for the distribution of the maximum for a

random field was derived and theoretical results that show how to compute this bound were

given in terms of (7) and (12). However, to be able to compute these bounds numerically

they have to be put in a discrete form that is suitable for numerical evaluation. We start

by having a closer look at the first term in (9), which is a contribution from the boundary,

and then we turn our attention to the contribution from the interior of the region, i.e. the

second term. After that we discuss how to numerically evaluate both the upper and lower

bounds presented earlier.
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5.1 Contribution from the boundary

Suppose that the boundary ∂S is a closed curve γ in R
2, having a parametrisation with

parameter θ taking values in [0, Θ]. Define the process X(θ) as the process one gets by

restricting the field W (x) to the boundary of S, i.e. X(θ) = W (γ(θ)). The process X(θ)

is a process of one parameter and hence the one-dimensional result (7) can be used to

compute the probability that its maximum exceeds a level u on the interval [0, Θ]. Since

MΘ(X) = M∂S(W ) it follows that

P (M∂S(W ) ≥ u) = P (X(0) > u)+

∫ Θ

0

E
[
X ′(θ)+1{X(θ′)<u,∀θ′<θ} X(θ) = u

]
fX(θ)(u) dθ, (14)

where X ′(θ) is the directional derivative of the process W (γ(θ)) in the direction of the tangent

to the curve at θ. In practice, however, this formula can not be used directly because of the

continuous path in the indicator function. To get a discretized version the interval [0, Θ] is

replaced by a subdivision {θ1, . . . , θk} and the indicator is approximated by 1{X(θj)<u,∀j:θj<θ}.
Since {X(θ′) < u, ∀θ′ < θ} is a subset of {X(θj) < u, ∀j : θj < θ}, the discretization of the

indicator in (14) gives rise to an upper bound, viz.

P (M∂S(W ) ≥ u) ≤ P (X(0) > u) +

∫ Θ

0

E
[
X ′(θ)+1{X(θj)<u,∀j:θj<θ} X(θ) = u

]
fX(θ)(u) dθ.

(15)

This is the formulation that we will use to compute an upper bound of the first term in (9).

5.2 Contribution from the interior of the region

Previously it was derived that the second contribution to the upper bound (9), i.e. the term

E[NS(A|u)], is given by (12). Again, due to the continuous path in the indicator, this formula

is not directly applicable to numerical computations. However, by introducing a subdivision

{s1, . . . , sn} of the boundary, where si and γ(θi) are not necessarily equal, and approximating

the indicator by 1{W (sj)<u,j=1,...,n} an upper bound that is suitable for numerical evaluation

is obtained, namely

E[NS(A|u)] ≤∫
S

E
[
W10(x)+W02(x)−1{W (sj)<u,j=1,...,n} W01(x) = 0, W (x) = u

]
fW01(x),W (x)(0, u) dx. (16)

Altogether, combining the contributions from the boundary and from the interior of the

region, an upper bound for the distribution of the maximum of a random field in a compact

subset of the plane is given by

P (MS(W ) > u) ≤ P (X(0) > u) +

∫ Θ

0

E
[
X ′(θ)+1{X(θj)<u,∀j:θj<θ} X(θ) = u

]
fX(θ)(u) dθ+∫

S

E
[
W10(x)+W02(x)−1{W (sj)<u,j=1,...,n} W01(x) = 0, W (x) = u

]
fW01(x),W (x)(0, u) dx.

(17)
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5.3 Numerical evaluation of the upper and lower bounds

To evaluate the upper bound for the distribution of the maximum, given by (17), multivariate

normal expectations must be computed. This can be done by using the routine rind, custom

made for this type of computations, from the MATLAB toolbox WAFO1, see Brodtkorb et

al. (2000). The input to the rind function are the means and covariances of all the variables

involved in the expectations in (17). Expressions for these are given in the appendix. In

particular, if the underlying field ξ(x) is assumed to be isotropic, the more explicit forms for

this special case can be used.

The rind-function can also be used to compute multivariate normal probabilities. Thus

it can be used to compute the lower bound (13). In our applications we chose to evaluate

it with N = 50 and N = 100 points chosen at random within the region S. These points

are only chosen once and then used for all levels u for which the lower bound is evaluated

for. The reason to choose at most 100 points to integrate over is that this is the upper limit

the authors of the rind routine recommend. From our experience, however, the number of

points could probably be increased and still give a reliable result for moderately high levels

u.

An alternative to exact computation of the lower bound using rind, would be to use

Monte Carlo simulation. To do so one should simulate the process in N points within

the region S a large number of times, and then compute an empirical distribution of the

maximum based on these simulated samples. The advantages with the simulation method

is that it does not have the same kind of limitation in the number of points N that could be

chosen. The drawback is that it would be much heavier computationally. However, for our

purposes, we were satisfied with the results that we got by using low values of N and did

not pursue the simulation.

6 Examples

In this section we will apply the previously derived bounds for the distribution of the max-

imum to air pollution fields. The purpose of these examples are twofold. Firstly they are

intended to illustrate the methodology and secondly they illuminate the importance of con-

sidering the variability of the ambient field away from the monitored sites when designing

the air quality standard. Thus, these examples should not be seen as a full solution to the

standard setting problem, but rather as an illustration of the fact that there is reason for

concern about some existing standards.

Two different examples will be presented. The first one deals with ozone in Harris County,

Texas. In this example the simplest possible model for the ambient field is used and hence

it should mainly be seen as an illustrating example and no major conclusions can therefore

be drawn. However, we use this example to introduce a new way of thinking of the standard

1Available free of charge at http://www.maths.lth.se/matstat/wafo
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setting problem. The second example, on PM2.5 in the Los Angeles area, uses a much

more realistic model showing the flexibility of the modeling framework. In this case we also

investigate the sensitivity of the methodology to parameter uncertainties.

6.1 Example 1: Ozone

The US EPA 1-hour ozone standard, which is currently being replaced by a more stringent

8-hour standard, is that a region is in violation if the expected number of days per year with

exceedances of 0.12 ppm is more than one. Consider a measurement that is exactly 0.12 ppm.

Such a measurement would not be considered in violation of the standard. We are interested

in the probability that someone in the region for which the measurement is considered

representative of ambient air concentration is actually subjected to ambient concentrations

in excess of u > 0.12 ppm. In particular, is it possible that anyone in that region has been

subjected to concentrations as high as 0.18 ppm, considered a serious health risk by the

US EPA? We need to define what region is representative for the measurement station, and

define this, somewhat arbitrarily, as the region of the ambient field with correlation at least

0.7 with the measurement site.

6.1.1 Model of mean and covariance

Carroll et al. (1997) proposed a model for ozone in Harris County, Texas. Their model was

quite involved and used temperature as covariate. Since this is an illustrating example we

choose not to work with their full model but rather use a couple of their findings to make

our example slightly more realistic. One of the features that we borrow from their work

is that a square root transformation makes a Gaussian assuption more realistic. The other

thing that we use from their work is the estimate of the measurement standard deviation,

which was estimated to 0.020 ppm1/2 at the square root scale for the year 1993. This value

is also in good agreement of the measurement standard deviation found in Cox et al. (1999)

for southern California data, which was 0.020 − 0.027 ppm1/2 at the square root scale.

In this example we use the simplest possible model, that is a model with constant mean

and stationary isotropic covariance. To find out reasonable values for mean and variance we

choose the annual mean and variance for a particular monitor in Harris County for 1993,

which were mξ(x) = 0.235 ppm1/2 and σ2 = 0.06482 ppm, according to the US EPA AIRS

data base. What is left to specify is the covariance function. Here it is assumed that the

covariance is of the Gaussian type, i.e. it has the parametric form rξ(s,x) = σ2 exp(−||s −
x||2/φ2). Due to the smoothness properties of this covariance at the origin (it is in fact

analytic), the smoothness properties of the random field and its derivatives required in

Theorem 1 follow. In the expression for the covariance there is a parameter φ defining the

range of the covariance. We have empirically found that if we choose the region over which

the maximum is computed as the points being correlated at least 0.7 with the monitoring

point, on the square root scale, then the result will not depend on the choice of φ. This
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is thus an effect of how the region is chosen in this particular example and not a general

result for this methodology. However, in the computations we used φ = 0.4 length units,

corresponding to a circular region having radius r = φ
√− ln 0.7 ≈ 0.24 length units.

6.1.2 Computational issues

The region over which the maximum is taken is in this case a circular disc in the plane

and its boundary can be parametrized using the angle θ ∈ [0, 2π] from the positive x-axis

as parameter. In this example the parameter space is subdivided into 100 equally spaced

points, {θ1, . . . , θ100}, and for simplicity the same subdivision is used to compute the second

integral in (17), i.e. {s1, . . . , sn} = {γ(θ1), . . . , γ(θ100)}.
The computations are carried out on an equally spaced grid, constructed by placing

100 grid points in each direction over the square [−0.5, 0.5]2, where the monitoring site is

assumed to be at the origin. The integration is done by using the simplest possible numerical

quadrature, i.e. by multiplying the value in each grid cell with its area and summing over

all grid cells that falls in the integration region.

6.1.3 Distribution of the maximum

Having defined our model we are now ready to compute the distribution of the maximum in

the region with correlation at least 0.7 with the measurement site, given a measurement that

is exactly 0.12 ppm. However, to get a better understanding of what is actually computed,

we start by showing what the integrands in (17), computed by rind for a fixed value of u,

typically look like. In order to avoid confusion, values on the transformed scale are in the

following denoted by u and values on the original scale by v. In Figure 1 (Left) the first

integrand in (17), viz.

E[X ′(θ)+1{X(θj)<u,∀j:θj<θ} X(θ) = u]fX(θ)(u)

is plotted against the parameter θ for u =
√

0.12 ppm1/2, i.e. the standard level on the

transformed scale. The function is clearly decreasing in a smooth way as the value of the

parameter increases and by integrating this function the boundary contribution to the upper

bound is obtained. In the same figure (Right) the second integrand of (17), namely

E[W10(x)+W02(x)−1{W (γ(θj))<u,j=1,...,100} W01(x) = 0, W (x) = u]fW01(x),W (x)(0, u)

is shown. From this picture it is obvious that this function is not symmetric around the

origin, although the problem that is solved is totally symmetric. This artifact is due to

that a certain direction, the x1-direction in this case, was chosen when the upcrossings from

one dimension were generalized to two dimensions. Thus, if another direction would have

been chosen another integrand had been obtained. In this case, however, since this problem

is symmetric their integrals would have been the same and thereby also the upper bound.
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Figure 1: Left: The first integrand in (17) as a function of the angle θ. Right: Second

integrand in (17). In both cases the integrands are computed for u =
√

0.12 ppm1/2.

Unfortunately, for a non-symmetric problem, this may not be the case and the choice of

direction can influence the upper bound.

Next we turn our attention to the distribution of the maximum. The upper and a lower

bounds for the distribution of the maximum are shown on a linear and a log scale respectively

in Figure 2. For the values of v of interest to us, i.e. for v up to 0.2 ppm, the result is very

accurate. Also note that the lower bound approaches the upper bound as the number of

points N increases as could be expected.

In order to study the implications of this distribution to the statistical quality of the

ozone standard the important thing to study is the decay of the distribution. A fast decay

would mean that the effect of the spatial variability of pollutant concentration is not so

important to consider, whereas a slow decay would indicate that this really is something

that should be taken into account. In this case the decay is pretty slow. In fact, there is

almost as much as a 5% risk of exceeding 0.18 ppm, which is the limit for a serious violation

and obviously considered as a very dangerous concentration level to be exposed to. Thus, in

this case, the consequences of not considering the variability of the concentration field away

from the monitor when designing the standard could be very serious.

So, how should then the standards be designed? One way of approaching that problem

would be to first specify how large the probability of the maximum exceeding the level 0.18

ppm is allowed to be, and then setting the standard by finding out what observed value at

the monitoring site this corresponds to. In Figure 3 the result from such a computation is

shown. From this curve one sees that, if the probability of having a serious exceedance is

to be decreased to for example 1% then the 1-hour standard level needs to be changed to

around 0.095 − 0.10 ppm.
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Figure 2: Upper (solid) and lower bounds, N = 50 (dashed) and N = 100 (dotted) for the

probability of the maximum in the circular region to exceed level v on a linear scale to the

left and on a logarithmic scale to the right.

6.2 Example 2: PM2.5 in southern California

The US EPA has a 24-hour standard for PM2.5. To check whether this standard is met one

should, for each station, compute the 98th percentile of daily measurements (24-hour avera-

ges) over a year and then compute the average of such 98th percentiles for three consecutive

years. If this average is equal to or below 65 µg/m3 the standard is attained, otherwise

not. The health effects caused by exposure to PM2.5 are not totally clear, but the latest

US studies indicate that serious health effects can result from PM10 exposure to as little

as 25 µg/m3, see the Staff document US EPA (2005) used in the latest revision of the PM

standard.

In this example a more sophisticated model, described below, will be used. This model

was fitted using four years of daily observations from 21 monitoring stations in the Los

Angeles region, see the left part of Figure 5. One of the stations, station number 3, is

located in central Los Angeles and in this example we will consider the distribution of the

maximum in a circle centered at this station with a radius of about 20 miles, covering most

of Los Angeles city. The important question that we will answer is: How high concentrations

of PM2.5 can anyone in Los Angeles be exposed to given that the standard level 65 µg/m3

is observed at station number 3 on a particular day?

6.2.1 Model of mean and covariance

To model the ambient PM2.5 concentration field a space-time model described in Guttorp

et al. (2006) will be used. Here, for completeness, we review the main features of the model

but for any details regarding the model or how it is fitted we refer to their work. Since the

model is in space and time the pollution field will be denoted by ξ(x, t), where t is time.

However, when the model is employed to compute the distribution of the maximum a fixed
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Figure 3: The probability that the maximum in the region exceeds 0.18 ppm for different

1 hour standards. Upper bound (solid) and lower bounds, N = 50 (dashed) and N = 100

(dotted).

time point t0, say, is considered and then it is understood that ξ(x) = ξ(x, t0). To obtain the

parameters used in this example the model was fitted using four years of daily measurements

from 21 monitoring stations in southern California, see the left part of Figure 5.

Guttorp et al. (2006) found that after a logarithmic transformation the data was well

approximated by a Gaussian distribution. Therefore, in their model, they choose the field

ξ(x, t) as the logarithm of the ambient PM2.5 concentration field and it is assumed to be

Gaussian. The mean function is modeled as a linear combination of smoothed temporal

empirical orthogonal functions (EOFs), i.e. smoothed eigenvectors of the empirical covariance

matrix, with spatially varying coefficients viz.

mξ(x, t) = β0(x) +

J∑
j=1

βj(x)fj(t),

where fj(t) are smoothed EOFs. The gain in using EOFs is that a small number of orthogonal

functions can describe most of the trend in the data and in this example only two EOFs are

used. In Figure 4 these two trend components are shown together with the mean function

at the third monitoring station. From these pictures it is clear that the EOFs manage to

capture the seasonal trend in the data and also that the seasonal pattern is allowed to change

from year to year.

From the model fit the spatial coefficients β0(x), β1(x) and β2(x) are only specified at

the monitored sites, i.e. the spatial points where the measurements are taken. To predict the

trend at unmonitored sites the spatial coefficients are spatially interpolated using kriging,

see Cressie (1993). However, for our purposes, the important thing is that the mean can be

computed at any spatial point at any time point.
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Figure 4: Top: The first annual trend component. Middle: The second annual trend com-

ponent. Bottom: Measurements and fitted trend at monitoring station 3.

The underlying process ξ(x, t) is assumed to have a Sampson-Guttorp nonstationary

spatial covariance, see Damian et al. (2001). This means that in the geographic coordinates

the covariance is nonstationary but if the geographic plane is deformed using a function f ,

say, then, in the deformed geography, the covariance is approximately isotropic. If we assume

that the covariance in the deformed plane is of the Gaussian type we can write

Cov(ξ(s, t), ξ(x, t)) = σ2 exp
(−||f(s) − f(x)||2/φ2

)
. (18)

The function f is modeled using a pair of thin-plate splines, see Bookstein (1989), which is a

parametric function R
2 	→ R

2. The specific deformation f used in this example is depicted in

Figure 5. The interpretation of this figure is that areas with high correlation are compressed

while areas with low correlation are stretched out, so that the correlation in the deformed

geography becomes isotropic. The other parameters, obtained by fitting the model to the

data, used in this example are σ2 = 0.2910 (log(µg/m3))2, φ = 2.0328 and the variance

of the measurement error is σ2
ε = 0.0128 (log(µg/m3))2. (The geographical coordinates of

the monitor sites are given in so-called Lambert coordinates. These are obtained by locally

projecting the longitude/latitude coordinates on the sphere onto a plane. Thus the unit for

φ is the unit for distance in the Lambert-projected plane.)

6.2.2 Computational issues

The computations are, in principle, carried out in the same manner as in the ozone example.

However, the model for mean and covariance that is used for PM concentrations makes the
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Figure 5: Spatial deformation representing nonstationary spatial covariance structure.

computations a bit more involved. In order to evaluate the distribution of the maximum,

given by (17), spatial derivatives of the mean of the ambient pollution field are needed, see e.g.

formulas (21)-(25) in the appendix. Since, by the way the model for the mean is constructed,

the mean can be evaluated in every point in time and space so that these derivatives can be

evaluated numerically by using e.g. symmetric differences. Another problem that must be

dealt with is the non-stationary covariance model. To derive expressions for the derivatives

of the covariance function (18), necessary to evaluate the distribution of the maximum (17),

is quite complicated. However, in the deformed geometry, see Figure 5, the underlying field

is isotropic and therefore the problem is greatly simplified if all computations are carried out

in the deformed geometry and then transformed back.

6.2.3 Distribution of the maximum in Los Angeles

In this section the distribution of the maximum in the Los Angeles region, i.e. a circular region

with radius 20 miles centered around station number 3, will be computed for a particular

day. The day we choose to study is November 8, 2001. The reason for this choice is that the

mean level has a peak at this date, see Figure 4, so that we may expect to get high measured

values for this particular day. In fact, the measurement that was obtained exceeded the

standard level 65 µg/m3. In Figure 6 the mean around monitor station 3, according to the

model, is shown together with the region over which the maximum will be computed. Note

that this figure is plotted in deformed coordinates so that the circular region is transformed

to a somewhat more elliptical shape.

Suppose that we got a measeurement exactly at the standard level 65 µg/m3, corre-

sponding to 4.17 log(µg/m3) on the log-scale. Given that measurement, what is then the
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Figure 6: The mean surface according to the model at November 8, 2001, together with the

Los Angeles region in transformed geographical coordinates. The concentrations are plotted

on the log-scale and the x- and y-axis are in Lambert coordinates.

distribution of the maximum in Los Angeles? In Figure 7 upper and lower bounds for dis-

tribution of the maximum are shown. From this figure one can see that the decay of the

distribution is quite slow. For example, the probability of having concentrations that are

30% higher than the standard is as much as 0.2. This again shows the importance of taking

the variability of the field away from the monitoring sites into account. By only using the

measured values without considering the spatial variability away from the monitoring site,

one is not getting a good idea of what concentrations people actually are exposed to. Thus,

we believe that there is major reason for concern about the PM2.5 standard.

6.2.4 How much should the pollution concentration be decreased?

Los Angeles is a city with high concentration of PM2.5, being a health threat to its inhabi-

tants. Consequently it would be interesting to know how much the overall mean concentra-

tion in the city should be decreased in order for the concentrations not to exceed dangerous

levels, at least with high probability. One of the advantages with our methodology is its

flexibility which makes it possible to answer such questions. In Figure 8 the probability of

exceeding the standard in Los Angeles given a measurement exactly at the standard level is

shown for different values of reduction percentages of the overall mean surface. For example,

one can see that in order to decrease the probability of exceeding the standard to 5%, the

overall mean needs to be reduced to about a factor of 0.88 − 0.89 of its current value.
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Figure 7: Upper (solid) and lower bounds, N = 50 (dashed) and N = 100 (dotted), for the

probability of the maximum in the Los Angeles region to exceed level v on a linear scale to

the left and on a logarithmic scale to the right.
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Figure 8: Upper (solid) and lower bounds, N = 50 (dashed) and N = 100 (dotted), for the

probability of the maximum in the Los Angeles region to exceed the standard 65 µg/m3 as

the overall mean is reduced to a percentage of its current value.
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6.2.5 Parameter uncertainty

So far nothing has been said on the sensitivity of this methodology to uncertainties in the

parameter estimates. In this case the model for PM2.5 concentration is given in a Bayesian

framework, so that the parameters are estimated by sampling from a posterior distribution.

Hence we could pick out individual samples from the posterior distribution and compute

the distribution for the maximum for each of these samples and look at the spread of these.

In Figure 9 this has been done for 10 samples from the posterior distribution, both for the

upper bound and the lower bound based on N = 100 points. The figure shows that for lower

levels the spread is quite large but that it gets smaller as higher levels are considered.
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Figure 9: Upper (left) and lower bounds (right) for the survival function for 10 samples from

the posterior distribution.

7 Summary and discussion

The purpose of this paper is to increase the understanding of the performance of environ-

mental standards. In particular we want to illuminate what happens if the spatial variability

of the pollution field away from the monitoring sites is taken into account. To do so we have

been looking at the distribution of the maximum in a region that in some sense is representa-

tive of the monitoring site, conditional on a measurement being at the level prescribed by the

standard. The methodology that we propose uses some recent results from the probability

litterature and can be used in combination with a fitted statistical model and multivariate

normal software.

The current implementations of the air quality standards are based on measurements

from a network of monitoring stations. However, these implementations do not take into

account that people do not live at, or sometimes even close, to the monitoring sites. In

our case studies we show that with the current standards, the concentrations are with high
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probability much higher than the intended exposure limits, in regions where people actually

live. Thus we believe that there is reason to be concerned about the standards being set far

too low.

In the case studies only a fixed time point is considered. However, it would be interesting

to be able to compute a true spatio-temporal maximum so that one could say something

about the maximum of the pollution levels during for example a year. That problem is

of course much more complicated than the one considered in this work, and presumably it

would require both heavier mathematical as well as computational tools.
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A Mean and covariance

In this appendix, in order to make our presentation complete, we give full expressions for the

means and covariances that are needed to compute the upper bound of the distribution of

the maximum (17). First the means and covariances connected to the boundary term (15)

are given and then those for the region term (16). Finally the expressions are written down

in the special case of isotropy.

To compute the means and covariances frequent use is made of the differentiation rules

for random fields and their relation to derivatives of the mean- and covariance functions.

In general, if W (x) is a random field with mean m(x) and covariance function r(s,x) the

following differentiation rules hold

E[Wij(x)] =
∂i+jm(x)

∂xi
1∂xj

2

(19)

and

Cov (Wij(s), Wkl(x)) =
∂i+j+k+lr(s,x)

∂si
1∂sj

2∂xk
1∂xl

2

. (20)

A.1 On the boundary

Let m(x) = E[W (x)] and r(s,x) = Cov(W (s), W (x)) be the mean and covariance function

of W (x) and let γ(θ), θ ∈ [0, Θ] be a parametrisation of the boundary of the region S
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satisfying ||γ′(θ)||2 = 1. Moreover let X(θ) be the process W (x) restricted to the boundary,

i.e. X(θ) = W (γ(θ)), and let {θ1, . . . , θk} be a subdivision of the interval [0, Θ]. Writing

γ(θ) = (x1(θ), x2(θ)), the derivative X ′(θ) may be expressed as

X ′(θ) = x′
1(θ)W10(γ(θ)) + x′

2(θ)W01(γ(θ)).

To be able to compute the upper bound (15) the joint distribution of the vector

X(θ1), . . . , X(θk), X
′(θ), X(θ)

is needed. Since W (x) is Gaussian the distribution will be Gaussian and by frequent use of

(19) and (20) one can conclude that it has mean

E [(X(θ1), . . . , X(θk), X
′(θ), X(θ))]

=

(
m (γ(θ1)) , . . . , m (γ(θk)) ,

(
x′

1(θ)
∂m(x)

∂x1
+ x′

2(θ)
∂m(x)

∂x2

)∣∣∣∣
x=γ(θ)

, m (γ(θ))

)
,

and covariances

Cov(X(θi), X(θj)) = r (γ(θi), γ(θj)) , i = 1, . . . , k, j = 1, . . . , k

Cov(X(θi), X
′(θ)) =

(
x′

1(θ)
∂r(s,x)

∂x1
+ x′

2(θ)
∂r(s,x)

∂x2

)∣∣∣∣
s=γ(θi),x=γ(θ)

, i = 1, . . . , k

Cov (X(θi), X(θ)) = r (γ(θi), γ(θ)) , i = 1, . . . , k

Var (X ′(θ)) =

(
x′

1(θ)
2 ∂2r(s,x)

∂s1∂x1

+ 2x′
1(θ)x

′
2(θ)

∂2r(s,x)

∂s1∂x2

+ x′
2(θ)

2 ∂2r(s,x)

∂s2∂x2

)∣∣∣∣
s=x=γ(θ)

Cov (X ′(θ), X(θ)) =

(
x′

1(θ)
∂r(s,x)

∂s1

+ x′
2(θ)

∂r(s,x)

∂s2

)∣∣∣∣
s=x=γ(θ)

Var (X(θ)) = r (γ(θ), γ(θ)) .

A.2 In the region

Let {s1, . . . , sn} be a subdivision of the boundary ∂S and define Xn = (W (s1), . . . , W (sn)).

Moreover let Y (x) = (W10(x), W02(x), W01(x), W (x)). Then the distribution of the vector

(Xn, Y (x)) is multivariate Gaussian with mean

E[(Xn, Y (x))] = (mXn , mY (x)) =

(
m(s1), . . . , m(sn),

∂m(x)

∂x1
,
∂2m(x)

∂x2
2

,
∂m(x)

∂x2
, m(x)

)
,

and covariance matrix partitioned as

Σ(x) =

(
ΣXn ΣXn,Y (x)

ΣY (x)

)
,
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where it should be understood that the lower left part is the transpose of the upper right

part. The different parts of the covariance matrix are

ΣXn = (r(si, sj)), i = 1, . . . , n, j = 1, . . . , n,

ΣXn,Y (x) is the matrix with rows

(ΣXn,Y (x))(i,·) =
(

∂r(s,x)
∂x1

∂2r(s,x)

∂x2
2

∂r(s,x)
∂x2

r(s,x)
)∣∣∣

s=si

, i = 1, . . . , n,

and

ΣY (x) =




∂2r(s,x)
∂s1∂x1

∂3r(s,x)
∂s1∂x2

2

∂2r(s,x)
∂s1∂x2

∂r(s,x)
∂s1

∂4r(s,x)
∂s2

2∂x2
2

∂3r(s,x)
∂s2

2∂x2

∂2r(s,x)
∂s2

2
∂2r(s,x)
∂s2∂x2

∂r(s,x)
∂s2

r(s,x)




∣∣∣∣∣∣∣∣∣∣
s=x

.

A.3 Isotropic case

In the case when the underlying field ξ(x) is isotropic one can form general expressions for

the means and covariances. Isotropy means that the covariance is just a function of distance

||s− x|| and not on the exact locations of (s,x). Alternatively one can write the covariance

as a function of the squared distance. Define

r̂ξ(h) = rξ(s,x), where h = ||s− x||2 = (s1 − x1)
2 + (s2 − x2)

2,

and denote its derivatives by r̂′ξ(h), r̂′′ξ (h), etc. To simplify notation introduce the following

vectors:

rX (x) = (rξ(χk,x)) =
(
r̂ξ(||x − χk||2)

)
r
(i)
X (x) =

∂rX (x)

∂xi

=
(
2(xi − χki

)r̂′ξ(||x − χk||2)
)

r
(i,i)
X (x) =

∂2rX (x)

∂x2
i

=
(
2r̂′ξ(||x − χk||2) + 4(xi − χki

)2r̂′′ξ (||x − χk||2)
)
.

Under the isotropic assumption the mean and covariances from section A.1 for the process

restricted to the boundary are given by

E[X(θi)] = mξ(γ(θi)) + rX (γ(θi))
T Σ−1

X (z(X ) − mξ(X )) , i = 1, . . . , k (21)

E[X ′(θ)] = x′
1(θ)

(
∂mξ(x)

∂x1

+ r
(1)
X (x)T Σ−1

X (z(X ) − mξ(X ))

)

+ x′
2(θ)

(
∂mξ(x)

∂x2
+ r

(2)
X (x)T Σ−1

X (z(X ) − mξ(X ))

)
, (22)
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E[X(θ)] = mξ(γ(θ)) + rX (γ(θ))T Σ−1
X (z(X ) − mξ(X )) , (23)

and

Cov (X(θi), X(θj)) = r̂ξ(||γ(θi) − γ(θj)||2) − rX (γ(θi))
T Σ−1

X rX (γ(θj)), i, j = 1, . . . , k

Cov(X(θi), X
′(θ)) = x′

1(θ)
(
−2(s1 − x1)r̂

′
ξ(||s− x||2) − rX (s)T Σ−1

X r
(1)
X (x)

)∣∣∣
s=γ(θi),x=γ(θ)

+ x′
2(θ)

(
−2(s2 − x2)r̂

′
ξ(||s− x||2) − rX (s)T Σ−1

X r
(2)
X (x)

)∣∣∣
s=γ(θi),x=γ(θ)

Cov (X(θi), X(θ)) = r̂ξ(||γ(θi) − γ(θ)||2) − rX (γ(θi))
T Σ−1

X rX (γ(θ))

Var (X ′(θ)) = −2r̂′ξ(0) − x′
1(θ)

2r
(1)
X (γ(θ))T Σ−1

X r
(1)
X (γ(θ))

− 2x′
1(θ)x

′
2(θ)r

(1)
X (γ(θ))T Σ−1

X r
(2)
X (γ(θ)) − x′

2(θ)
2r

(2)
X (γ(θ))T Σ−1

X r
(2)
X (γ(θ))

Cov (X ′(θ), X(θ)) = −x′
1(θ)r

(1)
X (γ(θ))T Σ−1

X rX (γ(θ)) − x′
2(θ)r

(2)
X (γ(θ))T Σ−1

X rX (γ(θ))

Var (X(θ)) = r̂ξ(0) − rX (γ(θ))T Σ−1
X rX (γ(θ)) .

The mean and covariances of section A.2 that are needed to evaluate the contribution

from the region, that is the mean and covariance of the vectors Xn = (W (s1), . . . , W (sn))

and Y (x) = (W10(x), W02(x), W01(x), W (x)) become under isotropy

mXn =
(
mξ(s1) + rX (s1)

T Σ−1
X (z(X ) − mξ(X )) , . . . , mξ(sn) + rX (sn)T Σ−1

X (z(X ) − mξ(X ))
)

(24)

and

mY (x)

=

(
∂mξ(x)

∂x1

+ r
(1)
X (x)T Σ−1

X (z(X ) − mξ(X )) ,
∂2mξ(x)

∂x2
2

+ r
(2,2)
X (x)T Σ−1

X (z(X ) − mξ(X )) ,

∂mξ(x)

∂x2
+ r

(2)
X (x)T Σ−1

X (z(X ) − mξ(X )) , mξ(x) + rX (x)T Σ−1
X (z(X ) − mξ(X ))

)
. (25)

For the covariances one gets

ΣXn =
(
r̂ξ(||si − sj ||2) − rX (si)

T Σ−1
X rX (sj)

)
, i = 1, . . . , n, j = 1, . . . , n,

(ΣXn,Y (x))(i,1) = −2(si1 − x1)r̂
′
ξ(||si − x||2) − rX (si)

T Σ−1
X r

(1)
X (x)

(ΣXn,Y (x))(i,2) = 2r̂′ξ(||si − x||2) + 4(si2 − x2)
2r̂′′ξ (||si − x||2) − rX (si)

T Σ−1
X r

(2,2)
X (x)

(ΣXn,Y (x))(i,3) = −2(si2 − x2)r̂
′
ξ(||si − x||2) − rX (si)

T Σ−1
X r

(2)
X (x)

(ΣXn,Y (x))(i,4) = r̂ξ(||si − x||2) − rX (si)
T Σ−1

X rX (x), i = 1, . . . , n
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and

ΣY (x) =



−2r̂′ξ(0) 0 0 0

12r̂′′ξ (0) 0 2r̂′ξ(0)

−2r̂′ξ(0) 0

r̂ξ(0)




−




r
(1)
X (x)T Σ−1

X r
(1)
X (x) r

(1)
X (x)T Σ−1

X r
(2,2)
X (x) r

(1)
X (x)T Σ−1

X r
(2)
X (x) r

(1)
X (x)T Σ−1

X rX (x)

r
(2,2)
X (x)T Σ−1

X r
(2,2)
X (x) r

(2,2)
X (x)T Σ−1

X r
(2)
X (x) r

(2,2)
X (x)T Σ−1

X rX (x)

r
(2)
X (x)T Σ−1

X r
(2)
X (x) r

(2)
X (x)T Σ−1

X rX (x)

rX (x)T Σ−1
X rX (x)


 .
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