
Statistica Sinica ??(2014), 000-000 1

STATISTICAL PREDICTION OF GLOBAL SEA LEVEL

FROM GLOBAL TEMPERATURE

David Bolin, Peter Guttorp, Alex Januzzi, Daniel Jones,

Marie Novak, Harry Podschwit, Lee Richardson, Aila Särkkä,
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Abstract: Sea level rise is a threat to many coastal communities, and projection

of future sea level for different climate change scenarios is an important societal

task. In this paper, we first construct a time series regression model to predict

global sea level from global temperature. The model is fitted to two sea level

data sets (with and without corrections for reservoir storage of water) and three

temperature data sets. The effect of smoothing before regression is also studied.

Finally, we apply a novel methodology to develop confidence bands for the projected

sea level, simultaneously for 2000-2100, under different scenarios, using temperature

projections from the latest climate modeling experiment. The main finding is that

different methods for sea level projection, which appear to disagree, have confidence

intervals that overlap, when taking into account the different sources of variability

in the analyses.
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1. Introduction

One of the anticipated consequences of a warming climate is sea level rise.

It is the result of two main processes: thermal expansion of sea water, and

increased melting of glaciers and other land ice masses. However, the detailed

understanding of the melting process of the Greenland and Antarctica ice sheets

is still limited, and the uncertainties associated with these processes and with

the role of the virtually unknown deep ocean are still very high (?).

Partly because of these uncertainties, and since only very few climate models

explicitly calculate sea level projections, some statistical approaches have been
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developed to relate historic sea levels to temperatures (see Rahmstorf et al. (2011)

for an overview). The thought is that such relations can be used to estimate sea

level from climate model temperature projections (the term projections is used in

climate modeling to denote simulations of future climate using specified forcings

of the climate system). Since most climate models anticipate substantial warming

in the 21st century under all scenarios considered, this means that the statistical

models will be applied to a region of temperatures and sea levels outside the range

of the training data. Generally, the statistical models have yielded estimated sea

level rises that are substantially higher than the projections made by the climate

models, fueling a concern that the climate model projections are too optimistic

and that the climate models are missing crucial aspects of the physics causing

sea level rise.

The motivation for this study is to produce statistically based global sea

level projections with statistically defensible measures of uncertainty. Such

projections, with uncertainty quantifications, are important tools for planners,

decision-makers, and risk analysts dealing with issues of flooding, storm surges,

and infrastructure in flood-prone areas. The uncertainty in future projections is

typically visualized using point-wise confidence bands. These are calculated sep-

arately for each future time point t, and are constructed so that, with probability

1 − α, the process is inside the confidence interval at time t. The problem with

this approach is that the joint interpretation of the resulting confidence band is

not what one might expect. If the point-wise confidence intervals have coverage

probability 1 − α, the probability for the process staying inside the confidence

band at all time points considered in the future is in general much lower than

1 − α. Even though this may be obvious to a trained statistician, planners and

decision-makers may incorrectly interpret the confidence band as a simultaneous

one, and thereby under-estimate the uncertainty in the projection. A better way

to visualize the uncertainty is therefore to construct the confidence band jointly,

so that it has the correct simultaneous interpretation: with probability 1 − α,

the process stays inside the confidence band at all time points for which future

projections are made. The method for doing this is presented in Section 5.2.

These simultaneous bands allow construction of confidence intervals for a given

year by slicing vertically, and for a given sea level by slicing horizontally.
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In Section 2 we describe the main data sets and fit a statistical model to

them. We compare our fit to a popular smoothing approach from the climate

literature in Section 3, and assess the forecast quality of the two models. Section 4

deals with the sensitivity to different data sets and data corrections. In Section 5

we apply our statistical model to project global sea level, when the temperatures

are given by the latest temperature projections developed for the recent Fifth

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change

(IPCC) (Stocker et al. (2013)). We calculate simultaneous confidence intervals

for the sea level rise projections, which to our knowledge has not been done

before. In Section 6 we discuss our findings and compare them to the outcomes

presented in AR5. All analyses in this paper are made using the R statistical

package (R Core Team (2013)), and the code and data sets used are all available

at http://www.statmos.washington.edu/datacode.html.

2. A statistical model relating sea level to temperature

Let Tt be the estimated annual mean global temperature at time t from the

latest mean annual global temperature product from the Goddard Institute of

Space Sciences (GISS) (Hansen et al., 2010), and Ht be the corresponding annual

mean global sea level (from Church and White (2011)). The temperature data

goes up to the present, while the sea level data goes through 2009. Panel (a) in

Figure 2.1 shows the scatter plot of the two time series with a fitted least squares

line, using data from 1880–1999 (we are reserving the data from 2000–2009 for

forecast verification).

Looking at the residual plot (panel (b) of Figure 2.1) it is clear that there is

some temporal dependence present. Hence, we fit a time series regression model

to the data, namely

Ht = α+ βTt + εt, (2.1)

where εt is an integrated moving-average error structure, ARIMA(0,1,2), with

drift but a non-significant regression coefficient. The choice of time series model

is made using Akaike’s Information Criterion (AIC) (Akaike (1974)) in the R

package forecast (Hyndman et al. (2013)). From a predictive point of view, this

means that we would predict sea level not from temperature but from time. In

order to get a more meaningful relationship, we therefore undo the integrated part

of the model by fitting a time series regression model to the sea level differences

http://www.statmos.washington.edu/datacode.html
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Figure 2.1: The Hansen et al. (2010) series of global temperatures plotted against the

Church and White (2011) series of global sea levels (panel (a)) for the years 1880–1999

(relative to the years 1970–1999), with the fitted least squares regression line. The

residual plot from the least squares regression (panel (b)) shows considerable temporal

structure, leading us to fit temperature against differenced sea level (panel (c)). The

residuals from the fitted line are shown in panel (d). They still show temporal structure,

which has been removed in the estimated innovations from the time series fit in (2.2)

(panel (e)).

∆Ht, again using temperature Tt as a regressor,

∆Ht = γ + δTt + ηt, (2.2)

where now ηt is a moving-average error structure of order 2. This fit is shown in

panel (c) of Figure 2.1. The fitted moving average coefficients are -0.49 (standard

error 0.08) and -0.24 (0.10), while the intercept γ is estimated to be 0.20 (0.02)

and the slope δ is 0.16 (0.07), now significantly different from zero. Panel (e) of

Figure 2.1 shows the estimated innovations from this fit, which pass a series of

white noise tests, including autoregressive fitting, spectral estimation, and the

white noise test of Lobato and Velasco (2004) with a P-value of 0.64.
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The climate literature contains some papers where the type of analysis per-

formed in this section is carried out using somewhat different techniques from

ours. They are all based on the basic premise that the rate of sea level change

should be related to temperature. Rahmstorf (2007) and Grinsted et al. (2009)

both essentially use (2.2), while Vermeer and Rahmstorf (2009) add a regression

term corresponding to temperature change, and Jevrejeva et al. (2009) replace

the temperature by radiative forcing. Our analysis indicates that the additional

term in Vermeer and Rahmstorf (2009) is not significantly different from zero

when taking the time series structure into account. Furthermore, the response

of the climate to radiative forcing is linear in temperature (Shine (2000)) to first

order, so the empirical models using temperature or radiative forcing are very

similar. On the other hand, when trying to project future sea levels they are

very different. A projection using the relationship between sea level and radia-

tive forcing looks similar to the scenarios (which prescribe forcings, see Section

5). A projection that uses the climate model output for temperature, which is

influenced by internal climate processes in addition to the forcing prescribed by

the scenarios, does not follow the scenarios, since the climate system reaction to

forcings is not immediate. In fact, even if the greenhouse gas emissions decrease,

the concentration in the atmosphere will stay high for a long time, so the projec-

tions relating sea level to radiative forcing are not very believable from a physical

point of view. For conciseness, we will focus in the next section on comparing

our analysis to that of Rahmstorf (2007).

3. The effect of smoothing

In order to relate the change in sea level to temperature, Rahmstorf (2007)

first smoothed both series, obtaining T̃t and H̃, respectively. The smoother used

was a singular spectrum analysis (SSA) decomposition (Vautard and Yiou (1992))

with a 15-year window. His regression equation was

dH̃t/dt = a(T̃t − T0) + εt (3.1)

where T0 corresponds to an equilibrium temperature and the εt are errors. The

rate dH̃t/dt was approximated by differencing H̃. Rahmstorf did not assume

that the errors are independent. Rather, he binned the data in five-year bins,

and performed ordinary least squares estimation of the parameters a and T0.

The equations (2.2) and (3.1), apart from the effect of smoothing, can be related
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to each other by setting a = γ and T0 = −δ/γ. The estimates (in terms of

the parametrization in (2.2) and using the data from the previous section) are

γ̃ = 0.19 (0.01) and δ̃ = 0.16 (0.03), where the tilde corresponds to smoothed

estimates, and we use a time series regression model with ARMA(2,1)-structure,

again chosen by AIC. The estimates from the smoothed and raw analyses are not

significantly different. However, the estimated innovations from the smoothed fit

do not pass the white noise test (P-value 0.027). Data, residuals and estimated

innovations are shown in Figure 2 of the Supplementary material.

The SSA smoother is not one commonly used in statistics. It was introduced

in paleoclimatology (Vautard and Ghil (1989)) to handle noisy data, particularly

when numerical derivatives are needed. The smoothing parameter chosen by

Rahmstorf (2007) maximizes the correlation in the model (3.1). The implemen-

tation of the SSA smoother used here first extends the data using local linear

regression by a window’s worth of data on either side of the data set before

smoothing, in order to diminish the edge effects.

A difficulty with using smoothed data in regression is that the residuals will

tend to have a more complicated time series structure (see Section 4). At the

same time, the correlation between the two series in the regression increases, but

this correlation is spurious and induced by the smoothing.

We assess the quality of the model fits by forecasting the values for the years

2000 through 2009, which were not used in the fitting. Figure 3.1 shows the

forecasts and the reserved observations for the raw (left) and smoothed (right)

models, respectively. In the unsmoothed (or raw) forecast, the reserved data fall

inside the 90% prediction bands (we use 90% confidence levels since this is what

is commonly used in the IPCC assessments), but for the smoothed forecast the

first two values are too high.

4. Sensitivity analysis

The projections obtained from time series regression may depend on which

sea level and temperature data are used. In this section we compare the results

based on two sea level data sets and three temperature data sets. In addition,

we study how the so-called reservoir correction (explained below) to observed sea

level affects the results.

There are different products estimating global temperature (e.g. Hansen



PREDICTING SEA LEVEL FROM TEMPERATURE 7

Unsmoothed forecast

Year

S
ea

 le
ve

l r
is

e 
(c

m
)

1880 1900 1920 1940 1960 1980 2000

-1
0

1
2

Smoothed forecast

Year
S

ea
 le

ve
l r

is
e 

(c
m

)

1880 1900 1920 1940 1960 1980 2000

0.
10

0.
20

0.
30

Figure 3.1: Forecast (solid), 90% forecast bands (grey) and reserved data (dotted) for our

model given by equation (2.2) (left panel) and by Rahmstorf’s model given by equation

(3.1) (right panel). The reserved data fall in the forecast band for the raw differences

(left) but not for the smoothed differences (right). The sea level rise series are shown in

black.

et al. (2001); Morice et al. (2012)) from land station data, ship logs, buoy data

etc. They are based on somewhat different (but largely overlapping) data sets.

Estimation approaches range from local spatial methods to principal components.

Likewise, there are different products describing global sea level (e.g. Church and

White (2011); Nerem et al. (2010)). Here the sources are mainly tide gauges and

bottom pressure gauges, and more recently satellite measurements as well. The

sea level data have been adjusted for glacial rebound effects. In this section we

look at the sensitivity of our analysis to the particular data set used.

The GISS global mean temperature data product used by Rahmstorf (2007)

is an earlier version than that used in Section 2. The data sets for temperature

as well as for sea level undergo continuing refinements. Often new stations (with

historical data) are added to the network used in the analysis. Also, methods for

correcting data (e.g., adjusting for relocation or replacement of a measurement

instrument) are continually being revised. In addition to the GISS data used by

Rahmstorf (2007), which we denote by R07 GISS, and our current GISS data set

(downloaded in December 2013 and based both on a larger set of observations

and a revised data correction approach), we also consider a third global mean
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temperature product, HadCRUT4 (also downloaded in December 2013), devel-

oped by the Hadley Centre of the UK Met Office (Morice et al. (2012)). There

is no obvious advantage of one data product over the other. In terms of sea level

data, we compare using the older Church and White (2006) and the more recent

Church et al. (2011) data products. The latter is an updated product which uses

more stations.

We also consider the effect of using the land reservoir corrected series Ĥt

proposed by Vermeer and Rahmstorf (2009), who applied a correction factor to

sea level data before forming anomalies and smoothing:

Ĥt = Ht + 1.65 + (3.7/π) arctan((t− 1978)/13). (4.1)

Chao et al. (2008) provided an in depth analysis of artificial reservoir water

containment in response to the 2007 IPCC report (Solomon et al. (2007)), which

noted that the water balance equations for global sea level rise were not (at the

time of the report) satisfactory, in part due to relatively unstudied contributions

to the balance from land-based water alterations. After collecting information

about all reasonably large reservoirs around the world, they modeled the amount

of water that had been artificially withheld from the oceans. Using their results,

they argued that the stored water, if allowed to run into the ocean, would further

increase the sea level rise, and therefore should be accounted for when modeling

global sea level. This is clearly important when considering Earth’s water budget

(Church et al. (2011)), but seems less relevant to projections of actual sea level.

Of concern to policy makers is the observed global sea level, not the global sea

level with some anthropogenic drivers removed. Since these drivers tend to reduce

sea level, correcting for them will produce a higher sea level than the observed

global sea level. Two options are to try to predict these anthropogenic drivers

into the future and correct for them, which requires a number of assumptions

about future behavior, or to make the assumption that the empirical model will

be robust to these drivers.

Later work by Wada et al. (2010) demonstrates that ground water depletion,

which adds water into the ocean, has been occurring at generally higher rates

compared to the reservoir correction and would actually balance and reverse the

effects of the reservoir correction if included. Because of these results, we chose

not to use a reservoir correction in our analysis in Section 2. Below we illustrate
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Figure 4.1: Comparing temperature datasets (top row) and sea level datasets (bottom

row) for both the original data (left column) and the smoothed data (right column).

the effect of the reservoir correction as well as the effect of using different data

sets in the analysis. We have not found any reference to how equation (4.1) was

derived, and our uncertainty analyses therefore does not take into account the

uncertainty in the reservoir correction.

Figure 4.1 shows the various data sets, and Tables 4.1 and 4.2 compare the

model structure and fits of the raw and smoothed models to each of the com-

binations of data sets. The smoothed time series models always have a more

complicated structure than the raw models. There is hardly any difference be-

tween using the current GISS data set and using the HadCRUT4 temperatures,

while the older GISS data set (using fewer stations and different homogenization

technique) yields higher slope estimates. The earlier sea level data set and the

reservoir correction always yield higher slopes. The smoothed and raw analy-

ses yield essentially the same parameter values, with the standard errors of the

smoothed series smaller by a factor of 2-3.
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Sea Level Data Temperature Data Raw Smoothed

Church 2011

Current GISS (0,0,2) (2,0,1)

R07 GISS (0,0,2) (6,0,3)

HadCRUT4 (0,0,2) (2,0,1)

Church 2006

Current GISS (0,0,2) (6,0,4)

R07 GISS (0,0,2) (2,0,1)

HadCRUT4 (1,0,1) (2,0,1)

Church 2011 Res

Current GISS (0,0,2) (2,0,1)

R07 GISS (1,0,1) (6,0,4)

HadCRUT4 (1,0,1) (2,0,1)

Church 2006 Res

Current GISS (1,0,1) (6,0,4)

R07 GISS (1,0,1) (6,0,4)

HadCRUT4 (0,0,2) (6,0,4)

Table 4.1: ARIMA models for raw (unsmoothed) and SSA smoothed data. Res stands

for reservoir correction.

5. Projecting Sea Level Rise

The models discussed so far can be applied to project global sea level us-

ing the latest temperature projections developed for the recent Fifth Assessment

Report of the IPCC (AR5, Stocker and Dahe (2013)). First we explain how to

project future climate events, e.g. global temperature, by using climate mod-

els, and then we present a novel approach to compute simultaneous confidence

intervals for the projections.

Climate models (large deterministic models solving a system of partial dif-

ferential equations describing the various aspects of the climate system) are used

to project future climate events. Since there are no global models to predict the

policy options available to politicians, and what decisions they will make, it is

standard practice to develop some scenarios for the future, describing some pos-

sible policy outcomes. The current set of scenarios are called representative con-

centration pathways (RCPs)(Moss et al. (2010)). The four RCPs used are each

a representation of different combinations of variables that as a whole provide a

plausible descriptive framework regarding how future climate may evolve. The

variables involved in the four scenarios include socio-economic changes, changes

in technology, changes in energy and land use, and changes in emissions of green-

house gases and air pollutants. As a whole, the RCPs represent varying outcome
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Rawl Smoothed Raw Smoothed

Sea Level Data Temperature Data γ SE γ SE δ SE δ SE

Church 2011

Current GISS 0.20 0.02 0.19 0.01 0.16 0.07 0.16 0.03

R07 GISS 0.19 0.02 0.19 - 0.19 0.08 0.18 -

HadCRUT4 0.19 0.02 0.19 0.01 0.17 0.07 0.17 0.03

Church 2006

Current GISS 0.24 0.03 0.24 0.02 0.31 0.10 0.33 0.06

R07 GISS 0.23 0.03 0.23 0.02 0.36 0.11 0.36 0.06

HadCRUT4 0.22 0.02 0.22 0.01 0.31 0.08 0.32 0.05

Church 2011 Res

Current GISS 0.25 0.03 0.24 0.01 0.27 0.07 0.25 0.04

R07 GISS 0.25 0.02 0.23 0.02 0.31 0.07 0.27 0.05

HadCRUT4 0.24 0.02 0.23 0.01 0.28 0.07 0.27 0.04

Church 2006 Res

Current GISS 0.29 0.03 0.28 0.02 0.40 0.07 0.39 0.05

R07 GISS 0.28 0.02 0.27 0.02 0.46 0.09 0.44 0.05

HadCRUT4 0.27 0.03 0.27 0.01 0.40 0.09 0.41 0.04

Table 4.2: Parameters and standard error for each model and data set combination. An

entry “-” means that the fitting procedure failed to compute standard errors. Res stands

for reservoir correction.

levels of radiative forcing, i.e., factors that cause a change in the net radiation

received and emitted by Earth. RCPs are constructed to include representations

from low, intermediate, and extreme scenarios of radiative forcing (van Vuuren

et al. (2011)). The four RCPs, labeled according to their predicted radiative

forcing (W/m2) in 2100, are RCP2.6, RCP4.5, RCP6.0, and RCP8.5. For ex-

ample, RCP 2.6 corresponds to implementing serious reductions in greenhouse

gas emissions worldwide leading to a decline in radiative forcing starting around

2050, while RCP 8.5 allows a continuing increase in these emissions. This struc-

ture allows the RCPs to describe a wide range of uncertainty. With the variables

combined, each individual RCP provides a basis for assessing mitigation options,

associated costs, and potential future impacts on climate with the goal of inform-

ing policy-making.

In this section we first describe briefly the experiment from which our climate

projections are obtained and then how for each of the four RCPs, we can use

our model to develop uncertainty bands for sea level rise, taki,ng account both of

the variability between models and of the uncertainty in the fitted relationship

between global sea level and global temperature.

5.1 The CMIP5 Experiment

In order to make projections comparable for the different RCPs, we have se-

lected those climate models from the Coupled Model Intercomparison Project
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(1) bcc-csm1-1, China (2) CCSM4, USA

(3) CESM1-CAM5, USA (4) CSIRO-Mk3-6-0, Australia

(5) FGOALS-s2, China (6) FIO-ESM, China

(7) GFDL-CM3, USA (8) GFDL-ESM2G, USA

(9) GFDL-ESM2M, USA (10) GISS-E2-R30, USA

(11) HadGEM2-AO, UK (12) IPSL-CM5A-LR, France

(13) MIROC5, Switzerland (14) MIROC-ESM, Switzerland

(15) MIROC-ESM-CHEM, Switzerland (16) MRI-CGCM3, Japan

(17) NorESM1-M, Norway (18) NorESM1-ME, Norway

Table 5.1: Climate models used.

Phase 5 (CMIP5) experiment (Taylor et al. (2012) )with global mean tem-

perature computations for all the four RCPs for the years 2000-2100; a to-

tal of 18 models out of 45 for which we have data. These 18 models span

the full range of model output for each of the scenarios. The CMIP5 exper-

iment, which consists of comparable runs from nearly all the world’s serious

climate system models, formed part of the basis for the most recent IPCC

assessment (Stocker et al. (2013)). Table 5.1 shows which climate models

we are using (for URLs to more information about each of these models, see

http://courses.washington.edu/statclim/GCMs_used.html).

Figure 5.1 shows the temperature projections for the 18 models (each model

has a separate color in the online version) for the four different RCPs. The

range of temperatures gives a rough idea of the model uncertainty. While all

the models solve the same set of partial differential equations to describe the

atmosphere, they vary in the way they numerically solve them, how they include

other parts of the climate system, how they parametrize processes that occur

on smaller scales than the grids used in the numerical solution, etc. The rates

of temperature increase varies with the RCP, and the different models do not

respond identically to a given scenario.

It is worth noting that some modeling groups have more than one model in

this selection. Commonly such models have some code in common, and assuming

that these models are independent or exchangeable, and that the union of them

constitute an estimate of the between-model variability, is an oversimplification

(Jun et al. (2008)). This variability is undoubtedly an underestimate, but it is

http://courses.washington.edu/statclim/GCMs_used.html
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Figure 5.1: Climate model projections of 21st century global mean temperatures for the

four RCPs. Each model has the same color in each panel. The numbers are colored as

the corresponding path, and refer to Table 5.1. The response to the different forcing

scenarios is different between models.

not easy to correct for it. However, the spread in these temperature projections

yields a better uncertainty quantification than the common approach to average

all the projections. As in standard regression methods, we condition on the

covariate values, namely the different global temperature projections.

5.2 Constructing Confidence Intervals for Projected Sea Level Rise

Recall that we, in order to visualize the uncertainty in the future projections,

want to construct a simultaneous confidence band so that with probability 1−α,

the process stays inside the confidence band at all time points that are shown in

the future projection. To do this, we need the joint predictive distribution for the

process at all predicted time points. The predictive distribution for the global

sea level H = {Ht1 , . . . ,Ht2} in a future period t ∈ [t1, t2], conditionally on one

climate model output, the past sea levels and temperatures, and the estimated
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model parameters, is Gaussian with mean value µ = µp−ΣopΣ
−1
o (xo− µo), and

covariance matrix Σ = Σp − Σ−1
o ΣT

op. Here µo and Σo denote the mean and

covariance for the observed sea level, µp and Σp denote the mean and covariance

for the sea level at the prediction time points, and Σop is the cross covariance

matrix between the observed and predicted sea levels. All these quantities are

given by the model (2.2), or, in terms of sea level rather than sea level rise,

Ht =

∫ t

t0
(γ + δTu)du+ ζt, (5.1)

where ζt are the accumulated innovations. In order to take the uncertainty in

the climate model outputs into account, we also integrate the predictions over

all available climate model outputs. Giving the K = 18 climate projections

equal weights yields the final predictive distribution as a mixture of Gaussian

distributions,

π(H) =
K∑
k=1

1

K(2π)tp/2|Σ|1/2
exp

(
−1

2
(H− µk)TΣ−1(H− µk)

)
, (5.2)

where tp is the number of prediction time points and µk is the mean for the

predictive distribution based on climate model k.

A point-wise confidence band is given by [qα/2(t), q1−α/2(t)], where qα(t)

denotes the α-quantile in the marginal distribution π(Ht). Since we have analytic

expressions for the marginal distributions, it is computationally easy to find these

quantiles using numerical optimization.

A simultaneous confidence band, such that the sea level with probability 1−α
stays inside the band at all times t ∈ [t1, t2] can be constructed by considering

the joint distribution for H. We construct this simultaneous confidence band by

finding the value of ρ such that

P(qρ(t) < Ht < q1−ρ(t), t1 < t < t2) = 1− α. (5.3)

Finding ρ requires that we can calculate joint probabilities of this type efficiently,

which is not as easy as finding the marginal quantiles. This can be done using

the sequential integration method in Bolin and Lindgren (2014), which is im-

plemented in the R package excursions (see Supplemental material for more

details). The method can easily be applied in a Bayesian framework as well,

although we are not doing that here.
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Figure 5.2: 90% sea level projection simultaneous confidence sets for 2000-2100 for four

climate scenarios using raw (dark) and smoothed (light) projections, where the smoothed

projections employ the reservoir correction. The sea level data end at 2009.

Applying the reservoir correction of Vermeer and Rahmstorf (2009) yields

higher values than the raw projections (Figure 5.2). However, the projection

uncertainty bands overlap, indicating that the projection uncertainty is such that

we cannot statistically distinguish models with and without reservoir corrections.

When comparing raw and smoothed projections without the reservoir correction

(not shown) there is very little difference between the two uncertainty bands.

6. Discussion

IPCC’s AR5 (Stocker et al. (2013)) looked at global sea level rise in the cli-

mate models from the CMIP5 (Taylor et al. (2012)) experiment. The report is

not completely clear as to how the sea levels were obtained, as only very few mod-

els actually calculate sea level over geode. Table 6.1 gives the median projection

and 90% pointwise confidence intervals for sea level rises in 2100 relative to the

mean sea level from 1970-1999 for the smoothed data with reservoir correction,
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RCP2.6 RCP4.5 RCP6.0 RCP8.5

Model Med Set Med Set Med Set Med Set

Raw 40 32-50 46 38-56 46 40-59 58 48-70

Reservoir 55 42-70 63 52-80 64 55-84 81 68-99

AR5 44 26-58 56 33-68 58 35-70 76 51-95

Table 6.1: Point estimates (medians; Med in the table heading) and 90% point-wise

confidence sets (Set in the table heading) for sea level rise (cm) projected in 2100 for

the four climate scenarios used in AR5. We show our analysis using the raw data (row

label Raw), the smoothed data with reservoir correction (row label Reservoir), and the

AR5 model results (row label AR5). All numbers are relative to the 1970-1999 mean sea

level.

for our unsmoothed analysis, along with AR5 projected rises (the latter are given

relative to 1986-2005 in the assessment report, but have here been adjusted to

the same reference period as our analyses).

The indication here is that the statistical fit to historical data without reser-

voir correction yields slightly lower sea level rise than the rise projected in the

climate models, while the projections from the smoothed model with reservoir

corrections are somewhat higher. The uncertainty intervals for the 2100 projec-

tions are similar in size, with the exception that the raw projection for the high

scenario RCP8.5 are somewhat narrower than the other two. All the intervals

overlap, showing some consistency in the uncertainty assessments.

If there are sources of sea level rise, such as substantial land ice melt, and the

gravitational changes resulting from that (Mitrovica et al. (2009)), which have

not been observed in the historical data, the empirical model cannot account

for such changes, but neither are these very well represented by current climate

models ((Stocker et al., 2013, Ch. 13)).

Acknowledgment

We are very grateful to Claudia Tebaldi who provided the data needed to

fit the model in Vermeer and Rahmstorf (2009) and patiently answered all our

questions. We acknowledge the World Climate Research Programme’s Work-

ing Group on Coupled Modelling, which is responsible for CMIP, and we thank

the climate modeling groups (listed in Table 5.1 of this paper) for producing

and making available their model output. The global temperature products



were obtained from the Goddard Institute for Space Sciences web pages and

the Hadley Center web pages, while the global sea level product came from

the CSIRO sea level web pages. The project had partial support from the

NSF Research Network on Statistics in the Atmosphere and Ocean Sciences

(STATMOS) through grant DMS-1106862 and by the Knut and Alice Wallen-

berg Foundation. This research was done as a project in a course in statistical

climatology, in which the authors participated. Further material can be found

at http://courses.washington.edu/statclim. Comments from referees and

co-editors of this volume have improved the presentation of our findings.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19, 716–723.

Bolin, D. and F. Lindgren (2014). Excursion and contour uncertainty regions for

latent Gaussian models. J. Roy. Statist. Soc. Ser. B , 10.1111/rssb.12055.

Chao, B. F., Y. Wu, and Y. Li (2008). Impact of artificial reservoir water im-

poundment on global sea level. Science 320, 212–214.

Church, J. and N. White (2006). A 20th century acceleration in global sea-level

rise. Geophysical Research Letters 33, doi:10.1029/2005GL02482.

Church, J. and N. White (2011). Sea-level rise from the late 19th to the early

21st century. Surveys in Geophysics 32, 585–602.

Church, J., N. White, L. Konikow, C. Domingues, J. Cogley, E. Rignot, J. Gre-

gory, M. van den Broeke, A. Monaghan, and I. Velicogna (2011). Revisiting the

earth’s sea-level and energy budgets from 1961 to 2008. Geophysical Research

Letters 38(18), doi:10.1029/2011GL048794.

Grinsted, A., J. Moore, and S. Jevrejeva (2009). Reconstructing sea level from

paleo and projected temperatures 200 to 2100 ad. Climate Dynamics 34, 461–

472.

17

http://courses.washington.edu/statclim


Hansen, J., R. Rued, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Pe-

terson, and T. Karl (2001). A closer look at United States and global surface

temperature change. J. Geophys. Res. 106, 23947–23963.

Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010). Global surface temperature

change. Rev. Geophys. 48, doi:10.1029/2010RG000345.

Hyndman, R. J., G. Athanasopoulos, S. Razbash, D. Schmidt, Z. Zhou, Y. Khan,

and C. Bergmeir (2013). forecast: Forecasting functions for time series and

linear models. R package version 4.8.

Jevrejeva, S., A. Grinsted, and J. Moore (2009). Anthropogenic forcing dominates

sea level rise since 1850. Geophysical Research Letters 36, L20706.

Jun, M., R. Knutti, and D. Nychka (2008). Spatial analysis to quantify numerical

model bias and dependence: How many climate models are there? Journal of

the American Statistical Association 103, 934–947.

Lobato, I. and C. Velasco (2004). A simple and general test for white noise.

Technical Report 112, Econometric Society Latin-America Meetings.

Mitrovica, J. X., N. Gomez, and P. U. Clark (2009). The sea-level fingerprint of

west antarctic collapse. Science 323, 753.

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012). Quantifying

uncertainties in global and regional temperature change using an ensemble of

observational estimates: The hadcrut4 dataset. J. Geophys. Res. 117, D08101.

Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P.

van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl,

J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M.

Thomson, J. P. Weyant, and T. J. Wilbanks (2010). The next generation of

scenarios for climate change research and assessment. Nature 463, 747–756.

Nerem, R. S., D. Chambers, C. Choe, and G. T. Mitchum (2010). Estimating

mean sea level change from the TOPEX and Jason altimeter missions. Marine

Geodesy 33, 435.

18



R Core Team (2013). R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing.

Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level

rise. Science 315, 368–370.

Rahmstorf, S., M. Perrette, and M. Vermeer (2011). Testing the robustness of

semi-empirical sea level projections. climate dynamics. Climate Dynamics 39,

861–875.

Shine, K. P. (2000). Radiative forcing of climate change. Space Science Re-

views 94, 363–373.

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor,

and H. Miller (2007). Contribution of Working Group I to the Fourth Assess-

ment Report of the Intergovernmental Panel on Climate Change. Cambridge

University Press.

Stocker, T., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung,

A. Nauels, Y. Xia, V. Bex, and P. Midgley (2013). Climate Change 2013:

The Physical Science Basis. Contribution of Working Group I to the IPCC

Fifth Assessment Report of the Iintergovernmental Pabel on Climate Change.

Cambridge University Press.

Taylor, K., R. Stouffer, and G. Meehl (2012). An overview of CMIP5 and the

experiment design. Bull. Amer. Meteor. Soc. 93, 485–498.

van Vuuren, D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard,

G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen,

N. Nakicenovic, S. J. Smith, and S. K. Rose (2011). The representative con-

centration pathways: an overview. Climatic Change 109, 5–31.

Vautard, R. and M. Ghil (1989). Singular spectrum analysis in nonlinear dy-

namics, with applications to paleoclimatic time series. Physica D: Nonlinear

Phenomena 35, 395–424.

Vautard, R. and M. Yiou, P. Ghil (1992). Singular-spectrum analysis: a toolkit

for short, noisy chaotic signals. Physica D: Nonlinear Phenomena 58, 95–126.

19



Vermeer, M. and S. Rahmstorf (2009). Global sea level linked to global temper-

ature. Proceedings of the National Academy of Sciences 106, 21527–21532.

Wada, Y., L. P. van Beek, C. M. van Kempen, J. W. Reckman, S. Vasak, and

M. F. Bierkens (2010). Global depletion of groundwater resources. Geophysical

Research Letters 37, doi:10.1029/2010GL044571.

Chalmers University of Technology and the University of Gothenburg

E-mail: davidbolin@gmail.com

University of Washington and Norwegian Computing Center

E-mail: peter@stat.washington.edu

University of Washington

E-mail: ajanuzzi@uw.edu

University of Washington

E-mail: danjones0806@gmail.com

University of Washington

E-mail: menovak@uw.edu

University of Washington

E-mail: hpodschwit@gmail.com

University of Washington

E-mail: leerichardson2013@gmail.com

Chalmers University of Technology and the University of Gothenburg

E-mail: aila@chalmers.se

University of Washington

E-mail: csowder@uw.edu

University of Washington

E-mail: azimmer@uw.edu

20


